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Controlling simple dynamics by a disagreement function
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We introduce a formula for the disagreement function which is used to control a recently proposed dynamics
of the Ising spin system. This leads to four different phases of the Ising spin chain at zero temperature. One of
these phases is doubly degenera@eatiferromagnetic and ferromagnetic states are equally probdbfethe
borders between the phases two types of transitions are observed: infinite degeneration and instability lines.
The relaxation of the system depends strongly on the phase.
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[. INTRODUCTION neighbors to have the same orientationrandom sequential
updating, while for an antiparallel pair, the left neighbor
The Ising spin system is one of the most frequently usedakes the orientation of the right part of the pair, and the left
models of statistical mechanics. Its simplicifyinary vari-  neighbor follows the right part of the pair. Thus the model
ables makes it appealing to researchers from other branchesan be described by two simple dynamic rules:
of science including biologja1], sociology[2], and economy (i) Dy: S_4(t+1)=S(t) and S, ,(t+1)=S(t) if
[3,4]. In sociophysics models of opinion formation based onS;(t)* S, 1(t)=1.

the social impact theoryreviewed in[5]), the individual (i) Dy S_q1(t+1)=S,4(t) and S ,(t+1)=5(t) if
opinion is described by the Ising spin. This corresponds no§(t)* S, 1(t)=—1.
only to typical “yes”-“no” questions, but also to important In contrast to the usual majority rul¢s0], in this model

issues where the distribution of opinion seems to be bimodathe influence does not flow inward from the surrounding
peaked on extreme values. In general, in these models theeighbors to the center site, but spreads outward from the
influence flows inward from the border to the center, like incenter to the neighbors. The model thus describes the spread
the majority rules, where the site in the middle takes the statef opinions. The dynamic rules lead to two different stable
of the majority of neighboring sites. In contrast, in US[  steady stategferromagnetic and antiferromagnetievith
abbreviation from the sociological rule “United we stand, equal probability. The second dynamic rul®,) of the
divided we fall”) model[6] an outward flow of influence is model has been already changed in two different ways. In the
imposed. In the USDF model, an isolated person does natase of antiparallel spins the neighboring spins can either flip
convince others; however, a group of people sharing thevith probability 1/2[9] (D,,) or remain unchanged7]
same opinion influences their neighbors. In spite of simplgD,g). In both cases@,, andD,g) the only final state is
rules the model exhibited complicated dynamics in §8e  ferromagnet. It is worth mentioning that the ferromagnetic
and more dimensiongeviewed in[7]). In less than a year, state for both ruled),, andD g, is always reacheteven in

this model has found several applications: e.g., it was used tavo dimensionsin contrast to the Ising spin system under
explain the distribution of votes among candidates in Brazil-Glauber dynamic§11,12. In the case ofD,g besides of

ian local election[8] and to model the price dynamics of ferromagnetic stable steady states, the antiferromagnetic un-
financial instrument$9]. stable steady state exists.

In this paper we introduce th&isagreement function” Since we have up till now three different rules for the case
[3] which is used to control the dynamics of the model. Weof antiparallel spins, we propose a generalization of the pre-
show that for a one-dimensional Ising spin chain at zero/ious models. The generalized model consists of two com-
temperature this leads to four different phases: ferromagponents(TC) hence the name TC model.
netic, antiferromagnetic(2,2) antiphase, and a doubly de- (i) The dynamics: choose a pair of spis.; andS;. ,
generated phase in which both the ferromagnet and antifend change its next nearest neighb8randS, , ;.
romagnet phases are equally probable stable steady states of(ji) The rules: control the dynamics of thi¢h and
the system. Apart from structural differences between phases 3)th spins by the disagreement function.
the difference in relaxation will be shown. The system in |n the following sections we introduce the disagreement
general will relax in two different ways depending on the function and show that the TC model includes as special
phase. Moreover, a sharp change of the relaxation time ogases all earlier proposed modgfs7,9. Moreover, the TC
borders of the phases will be observed. model consists of more than those three subcases which we

present on its phase diagram. Using Monte Carlo simulations
Il. THE MODEL we show how the system described by the TC model relaxes.

Recently a simple model for opinion evolution in a closed 1. HOW TO CONTROL DYNAMICS?
community was proposelb]. In this model the community
is represented by a horizontal chain of Ising spins, which are Let us assume for a while that we have the formula for a
either up or down. A pair of parallel neighbors forces its twofunction that can control TC dynamics and denote itEby
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We choose at random a pair of spi8s ; andS;,, and we 1 : : —
calculate E* =E(S;,S;+1,Si.2). Next we calculateE~ f°“b'e degeneration
: . ] . _ erro (++++) or (———-)

=E(—=S,S+1,S+2) in the case of flippedth spin. IfE and antiferro (+—+-) T
<E™ then we will flip theith spin; if not, the spin will 5¢ 1
remain unchanged. We do the same for the second neighbc unstable unstable
of the chosen pair, i.e., for the sp8, 5.

Our dynamics looks now similar to the Glauber dynamics « o antiferromagnet ferromagnet |
in zero temperature, wheteplays the role of energy. How- 7 ) (#+++) OF (-——=
ever, there are three main differences between these two dy
namics. s f f

(i) In the Glauber dynamics we flip théh spin according —| ) «— fe[ro-antiterro
to the interactions with thei (- 1)th and {+ 1)th spins; here 32‘;?,22;3225& gf_)_"ﬂ'fﬁf se dageneration
we look at the (+1)th and {+2)th spins.

(i) In the Glauber dynamics the flip can be done even if -10% 5 0 5 10
the old energy is equal to the new one. In my opinion flip- J,
ping a spin without any loss of the energyTat O is not very
natural, but is needed to get the ground statéwo dimen- FIG. 1. The phase diagram of the TC model.
sions even this is not enough?2]).

(iii) In our caseE is called the disagreement function, E=-3,SS.1—J,SS .. (2)

since it is not the energy. On the contrary, the Glauber dy-

namics deals with the real energiye., the sum of interac- Each individual would like to minimize the corresponding

tions with all neighbors disagreement function. In the TC dynamics we choose a pair
Now we will look for the formula forE. We shall deal Si+1 and S, and we change its neighb® (we also

with the lattice model where each lattice sitg occupied by change Sj.3 spin  calculating E=-J,5,355,,

an Ising spinS=+1. Usually, the spins are assumed to —J>Si;+3Si+1, but for simplicity we further write only about

interact through pairwise coupling of the formJ;S;S;,  theith spin. For these three spin$§(,S11,S;+2) we have

whereJ;; are exchange integrals. Of course, the ordering ofour values ofE:

the spins is determined by the interactions. One of the best (1) +++ or ——— givesE;=—(J;+Jy).
studied examples is the nearest neighfdN) Ising model (2) —++ or +—— givesE,=J,—J;.
with ferromagnetic coupling, i.e.J;;=J>0 for neighbor (3) +—+ or —+ — givesEz=J;—Jy.

spinsS; and S;, while J;;=0 for more distant spins. Cer- ~ (4) ——+ or ++— givesE,=J;+J,.
tainly, in a such model, the spins form the ferromagnetic It is worth noticing that the possible transitions are only
state(all spins up or all spins dowrat the ground state. For between states 1 and 2 or between 3 and 4. Now we can
J<0 the antiferromagnetic state is formedTat 0. derive from the TC model all previous models.
In the TC model théth spin interacts with its two neigh-  (a) We have the USDF modéb] if Si,,(t)* S »(t)=1
bors, and the one-dimensior{dD) Hamiltonian can be writ- then S;(t+1)=S,(t), i.e., E;<E; if §11(t)*S2(t)=
ten in the following form: —1 thenS(t+1)=S,,(t), i.e., E3<E,4. Thus the USDF
model corresponds to the TC model with],<J;<J,.
B (b) We have the model of the financial marked] if
H==32 8807922 S D SL*Se=1 then  S(t+1)=S,u) i
S 1()*So(t)=—1 then S(t+1)=—S(t) with prob-
For J,>0 andJ,<0 this is the well known ANNNI(axial  ability 1/2. This corresponds to the TC model wEh<E,
next-nearest-neighbor Isipgnodel introduced if13] and andE;<E; =—J,<J; andJ;>J,.
reviewed in[14]. It describes the Ising spin chain with fer-  (c) Other models reviewed if7] are as follows: if
romagnetic interaction];>0 between nearest neighbors S . 1(t)* S ,(t)=1 thenS(t+1)=S,(t), i.e., E;<E, if
(NN) and antiferromagnetic interactions between next nearS; ,1(t)* S, ,(t)=—1 then S(t+1)=S(t), i.e., E3=E,.
est neighborgNNN). Of course, in the one-dimensional case These models correspond to the TC model with J.
truly ordered states are stable only at zero temperafure  There are of course more subcases of the TC model de-
=0. If we introduce the competition ratio= —J,/J; we get  pending on the interaction coefficienig and J,. In Fig. 1
in T=0 ferromagnetic state far<1/2 and(2,2) structure for  all possible phases, depending on the interaction coefficients,
r>1/2. Interestingly, for allr<0, the equilibrium ground are presented. The Nortdoubly degenerategphase corre-
state cannot be reached via single spin-flip Glauber dynamicgponds to the original rul®,. The East(ferromagnetit
[15]. In contrary in TC model single spin-flip is sufficient to phase corresponds to rubs,, (the flip in case of antiparallel
get the ground steady state. spins is made at randgnThe line between these two phases
Now, we will use the NNN Ising Hamiltoniafil] to con-  corresponds to rul®,g (the flip is possible only in the case
struct the disagreement functi@ Chowdbury and Stauffer of parallel sping On this line the antiferromagnetic steady
introduced similarly a disagreement function based on thetate still exists but it becomes unstable and we never reach it
simple NN Ising hamiltonian to the model of financial mar- outside of this state. It is also interesting to see what happens
ket [3]. We write E in the following form: on other border lines.
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FIG. 2. Examples of three different steady states of the TC 0 . 2, 4 0 . 2, 4
model are presented. Bright lines denote spins up and dark linew time [10™ MCS] time [10™ MCS]

denote spins down. FIG. 3. Examples of the relaxation for 1000 spins system are

The border between the ferromagnetic state and2t@ presented. Two kinds of relaxations were observed depending on
antiphasgsee Fig. 2is infinitely degenerated. Let us define interaction coefficients. Fod;>—J, the system makes a long
(after [14]) a k band formed byk adjacent, identically ori- “random” walk .IO the flna_l state, while fOt‘J_l<—Jz the system
ented spins, terminated at the both ends by opposite orientdf2kes decreasing oscillations around the final state.
spins. With such a definition, the ferromagnetic structure is
zero-band structure, the antiferromagnetic phase is a on
band structure and th@,2) antiphase is a two-band struc-
ture. On the line between the ferromagnet 2@ antiphase
any sequence & band k=2) is equally probabl¢see Fig.

2). The line between th€2,2) antiphase and the antiferro- ]Eione it to reccr)]gnize th(,:‘f final statg:élh,—l or 0 for the
magnet is also degenerated, and any sequende tnd (€Tomagnet phase, antiferromagnet phase andf# an-

(with k=1,2) is the steady statsee Fig. 2 tiphase, respectivelyFor J;>—J, (North and East parts of

There is also another interesting feature which differsin€ diagram in Fig. JLthe ordering of the system is very

phases from each other—the time and the style in which thélow' Sometlme§ the opinion can change dramaticaly in a
system relaxes. We will describe it in the next section. sh(_)rt t|me_(see Fig. 3 The long time trends_ are_observed,
which reminds us very much of the real sociological process

IV. HOW DOES THE SYSTEM RELAX? [6]. ForJ;<—J, the system is almost ordered after several
Monte Carlo steps; however, then it takes a long time to
What happens when we suddenly cool our system from @each the real final steady state. The opinion is fluctuating
high temperature to zero temperature? As we mentioned prexround zero and these fluctuations are decreasing in(tieee
viously the system will relax to one of the possible final Fig. 3). Although the way in which the system relaxes in the
states described by the phase diagf&ig. 1). But how does  North and East phases is the same, the relaxation time in
it relax? We studied this using Monte Carlo simulations. Weeach of these phases is different. About a two times shorter
found out that the relaxation process strongly depends on th@n averaggtime is needed to reach the final state in the
phase. The system can reach antiferromagnetic state in thiegenerated phase. The relaxation time changes very sharply
West (antiferromagneticphase as well as in the Nortde-  on the border between these two pha@gsg. 4). A similar
generatefiphase. However, it will relax to this state differ- effect is observed also on the border between the antiferro-
ently in each case. In the antiferromagnetic pH&sg. 3c)]  magnetic and degenerated phases.
the system will be almost totally ordered after several Monte et us now understand more deeply the relaxation of the
Carlo StepgMCS). Then the system will oscillate around the system. We first focus on the case withe (J,,—J,), for
final state. These oscillations will decrease in time and finallywhich the(2,2) antiphase is the ground stathe South part
the system will reach the steady state. In the degeneratest the phase diagram in Fig.),las this case leads to an
phase[Fig. 3(@)] the system will order very slowly. interesting dynamics. We will follow the way in which it was
In Fig. 3 the examples of relaxations in all four phases arejone for the one-dimensional ANNNI model under Glauber
presented. To show this relaxation we choose the opiniodynamics[15]. Starting for simplicity from an initial ferro-
changes, since the model was proposed to investigate theagnetically ordered up state, this system evolves to the
opinion dynamics. We defined the opinip®] as a magneti- state[...++——++——++ ...]. In the TC model we

%_or such a choice the system will relax|to| =1 (ferromag-

ned or |m|=0 [antiferromagnet or(2,2) antiphasg¢ Of
course, one could also choose the two point correlation func-
tion g=(S;S ;1) to see how the system relaxes. We have

zation of the system: choose a pair of spins at random and we try to flip its neigh-
N bors. The disagreement function decreasesAlE~=4(J;
m:E S. ) +J,) when two NN spins flip to create two isolated down
i=1 spins. The sameE loss arises for any nucleation event which
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FIG. 4. Relaxation time fod,=1. In this figure we present
results for the system of 1000 spins averaged over 10 000 samples. These 1- and 3-domains can create again a 4-domain or
diffuse freely in the system. Now we can ask what is the
occurs within the domain of lengtk4. After this nucle-  process which leads finally to the ground state. Imagine that
ation, the single spin domain can grow to length 2, decreasa 1-domain meets a 3-domain. They annihilate to form a
ing the disagreement function lyE=2(J,—J,), stable 2-domain, like in the case of the ANNNI model under

Glauber dynamic§15]:
++++++++++

1+3—0
l

t+——+———++—-—

U

+——++——++——,

+++—++—+++

U

+++—++——++ . .
Since each of the described processes leads to a I&ss of

U they each occur at the same rate wAen0. Thus, while the

nucleation process, which leads to an almost ordered state, is
very fast in the TC model, the second step which leads to the
final state is rather slow. The magnetization is almost zero
fter the first nucleation ste@vhich takes several MQSIn

At the end of_th|s nuclea_1t|0n stage, the system consists %he second step it oscillates because of diffusive domains and
ordered(2,2)-antiphase regions as well as domains of size 1decreases due to annihilation processes

3, and 4. These remaining domains now undergo a sequence [~ """ - quickly at the case of the ferromagnetic

of reactions which lead the system to the ground state. ; A .
1-domains and 3-domains diffuse freely within a sea Ofstate('ghe Ea_st part of the phase. diagram in Fig. I this

) L ) . case, in the first step small domains are created and then they
2-domains, analogously like in the one-dimensional ANNNI

. . lowly. The reaction is possible only when the pair
model under the Glauber dynamif$5]. Interestingly, the grow s . i >
4-domain behaves more cor%plica’?ed]for the TC ?n)c/Jdel ther\4vhICh changes its neighbofanderlined touches a wall of a

for the ANNNI model with Glauber dynamics. In the latter domain:

FH——++——++.

case 4-domain splits into two 3-domains, b4 444
4—3+3 I
I e +++.
U If we choose a pair inside the domaiand not touching
the wall of this domainor on the border between domains
——+t———+++——++. nothing will happen, thus the relaxation is slow. Domain

walls follow a random walk resulting the process with long
On the other hand, a 4-domain will form when two up and down trendésee Fig. 3.
3-domains collide. In the case of double degenerati@he North part of the
In the case of the TC model there are two possibilities, phase diagram, Fig.) The relaxation is similar but faster. In
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this case reaction takes place not only in the neighborhood dhe simple dynamics of an Ising spin chain at zero tempera-
domain wallg(in this case a local ferromagnet is creatdmit ~ ture. This allowed us to generalize the previous model of
also on the border between domaifis this case a local opinion dynamics. It was shown that the phase diagram for

antiferromagnet is created that system described by such a model consists of four dif-
ferent phases. The most interesting is the existence of the
S A doubly degenerated phase in which the system can reach the
antiferromagnetic steady state or the ferromagnetic steady

l state with the same probability. Moreover, it was shown that

the system can relax in two different ways depending on the
interaction coefficients. Surprisingly the system can reach

If d denotes the number of domains then for the ferromagzhe antiferromagnetic state in two different ways. In the an-

netic case there ared2points where the reaction can take tiferromagnetic phase the system will be almost ordered after
P . several Monte Carlo steps and then decreasing oscillations
place and for the degenerated phase there dreeaction

. ; . . around the final state will lead the system into this state. In
points. Apart from more reaction points there is another reag, degenerated phase, the system will behave “blindly”

son for which relaxation is slower in the ferromagnetic making a long “random” walk to the final state. It would

gggsse.irl]n It:'fhgads; ;?]re?;(;g szssznvfeagavr:ecﬁgr?ngetv% ;n? Sobably be worth looking at the system described by such a
it the Fz:hésen air g on the bgrder of doma(mokgat the Pifddel in higher dimensions and higher temperature. We also

pair . . hope that the generalized TC model will find as many appli-
above example This explains the difference between relax-

ation times in both phases shown in Fig. 4. cations as its older brothefs].

FH+———F—+—++.
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