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Stationary correlations for a far-from-equilibrium spin chain
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A kinetic one-dimensional Ising model on a ring evolves according to a generalization of Glauber rates, such
that spins at evefodd lattice sites experience a temperatlige(T,). Detailed balance is violated so that the
spin chain settles into aonequilibriumstationary state, characterized by multiple interactions of increasing
range and spin order. We derive the equations of motiomffbitrary correlation functions and solve them to
obtain an exact representation of the steady state. Two nontrivial amplitudes reflect the sublattice symmetries;
otherwise, correlations decay exponentially, modulo the periodicity of the ring. In the long-chain limit, they
factorize into products of two-point functions, in precise analogy to the equilibrium Ising chain. The exact
solution confirms the expectation, based on simulations and renormalization group arguments, that the long-
time, long-distance behavior of this two-temperature model is Ising-like, in spite of the apparent complexity of
the stationary distribution.
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. INTRODUCTION Ising model, even if the usudl, symmetry of the Ising
model is broker{14]. Even then, however, the violation of
Exact solutions of simple model systems play a key roledetailed balance leads to fundamental changes in the con-
in statistical mechanics. They provide reliable quantitativefigurational probabilities, which must be identified and inter-
information about regular as well as singular behavior, angreted before we may hope to formalize our understanding of
serve as proving grounds for approximation schemes. MoréNESS. It is here that exact solutions are expected to be most
over, they can set important pointers in areas where a generaglpful.
theoretical framework is still lacking. A prime example is the ~ Motivated by these considerations, we recer$] in-
study of nonequilibrium stationary statéd$ESS. Similar to ~ vestigated a very simple nonequilibrium Ising-like model,
systems in thermal equilibrium, NESS are characterized byamely, a one-dimensionaiteractingspin chain with spin-
time-independent macroscopic observables; however, dlip dynamics coupled towotemperature baths. The rates are
present these can only be computdgth explicit referencéo  a simple, but nontrivial generalization of the familiar
the imposed dynamics. There is, as yet, no equivalent of th&lauber[16] rates: spins at od(even sites are coupled to a
Gibbs ensemble theory for far-from-equilibrium steadytemperatureT, (T¢). In two dimensions, this modéB,4]
states. As a consequence, most progress to date is made éyhibits an order-disorder phase transition that belongs to the
studying specific models. Ising class, according to renormalization group arguments
Since the Ising modé]1] is one of the most intimately [14] and Monte Carlo simulatior|g]. In one dimension, the
known interacting many-particle systems, many nonequilibtwo-spin correlation function can be calculated exafily].
rium models depart from it by imposing an external forcelts only singularity lies aff ,=T=0, so that the lower criti-
that drives the system out of equilibrium. Examples includecal dimension isi=1. Seeking an expression for the steady
couplings to multiple heat batf2—4], competing Glauber state, we solved the master equation perturbatively, in an
and Kawasaki dynamicg5], or a current-inducing global expansion in the temperatumdifference of the two heat
bias [6]. In all of these models, reviewed in Rdf7], the baths, up to and including second-order tefb5]. To our
nonequilibrium perturbation violates the detailed balancesurprise, the full stationary distribution turned out to be
symmetry of the equilibrium dynamics. On large time andrather complex. At each order, additional spin operators ap-
length scales, one can probe how this affagtsversalbe-  pear, characterized by longer spatial range interactions and
havior, or, adopting a more microscopic but no less fundahigher-order spin products, and lower-order coupling con-
mental perspective, one can ask haenuniversalproper-  stants acquire corrections. So, at first order, one encounters
ties, such as the exact configurational probabilities, ar@ext-nearest-neighbor pair interactions, while at second or-
modified. One finds, generically, that nonequilibrium forcesder, two new terms appear: a next-next-nearest-neighbor pair
have especially profound effects(ij they couple to the bulk interaction and a four-spin interaction spanning four nearest-
rather than the boundari¢8,9] of the systen{10], and(ii)  neighbor sites. All of these are allowed by symmetry, and
the dynamics satisfies a conservation [gM—13. For ex- none allowed by symmetry are absent. Given this structure,
ample, Ising lattice gases wittonservegarticle number can one can, at least in principle, extrapolate to higher orders in
be driven into two distinct nonequilibrium universality perturbation theory.
classes, depending on the symmetries of the external forces Of course, these findings immediately raise an obvious
[6,11]. In contrast, Ising-like systems wittbnconservedy-  question: how does this relatively complicated stationary dis-
namics remain in the universality class of the equilibriumtribution generate long-wavelength behavior in the Ising uni-
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versality class? In this paper, we pursue an alternate route{o;,0, . .. ,on} €volves into a new configuration by flip-
towards the answer. Instead of aiming for the stationary statping a randomly selected spiry with a rate[17]
directly, we seek its representation in terms of correlation

functions—since the knowledge of all stationary correlation Yi

functions is equivalent to knowing the steady state. Starting wi(oi—=oi)=1=Z0i(0i-1+0i), )
from the master equation, we derive a hierarchy of equations

of motion for correlation functions of arbitrary numbers of where

spins. Ind=1, this hierarchy is closed and soluble. Remark-

ably, we find that—in contrast to the apparent complexity of Ye=tani(2J/kgTe), i even

the stationary distribution itself—the correlation functions Y7 y,=tanh(2d/kgT,), i odd. )

are very simple. Apart from two nontrivial amplitudes that
reflect the temperature difference between the two sublatfhus, the full time-dependent configurational probability

tices, the structure of correlationsdempletely analogout® p({c};t) evolves according to a master equation,
the equilibrium Ising model. Specifically, fai—oo, arbi-

trary (even m-point correlation functions factorize into a N

product ofm/2 two-point correlations. Of course, all corre- 5tp({0};t)=2 [—wi(gi— —o)p({a};t)

lation functions involving an odd number of spins vanish by =t

symmetry. +wi(—ai—a)p({atl}in], 4

While some exact analytic results for steady-state distri-
butions are available, they are confined to three classes efhere{o!} differs from {o} by a flip of theith spin. A
systems. First, one-dimensional lattice gas models, restrictegivial time scale has been set to unity, and we use dimen-
to excluded volume interactions, such as the asymmetric exionless units for inverse temperature, i,8.=J/(kg To),
clusion process and its relativEs8—20; second, very spe- etc.
cial one-dimensional spin systems whose master equations Our goal in the following is to find a representation
are solved by the Ising Boltzmann fac{6;21,23; and third, for the stationary solution of Eq.(4), q({o})
interacting systems in one or two dimensionsveny small  =lim,_.p({c};t). This limit is unique, since Eq4) is er-
lattices so that the number of degrees of freedom remaingodic: every configuratiofic} can be reached in finite time
manageabl¢23]. To the best of our knowledge, the work from every other configuratiofo’} (unless T,=T,=0).
presented here is amongst the first complete solutions faFor equal temperature§=T,=T,, the steady-state is just
nonequilibrium stationary states with nontrivighearest-  the (canonical distribution for the Ising chain,
neighboj interactions and arbitrary number of degrees of
freedom. 1

The paper is organized as follows. We first introduce our Go({0}) = exp(—H/kgT). ®)
model and its master equation. Next, we derive the equations
of motion for arbitrary correlation functions. FOllOWing a It is of course Straightforward to Compute arbitrary corre-
brief review of the solution17] for the two-point correlation  |ation functions for the equilibrium Ising chain. Since the
function, we show how fOUr-pOint correlations can be faCtor'|Sing model is invariant under a g|0ba| Spin ﬂi%z(symme_
ized into two-point correlations in the long chaiN{%)  try) only correlations okvennumbers of spins are nonzero,
limit. We then postulate thall correlation functions factor- and are easily expressed in terms of the paramefer
ize in this manner, and show that this factorization solves the- tanh(/k,T). Of course, we may—and always will—order
equations of motion. In the Appendix, we generalize thisthe arguments of am-point correlation function ry even

solution to finite systems with periodic boundary conditions.ithout loss of generality, such thatslk,<K,<- - - <k,
We conclude with some comments and open questions. <N, Then, in theN—c limit one finds easily,

Il. THE MODEL <o—kl. .. a-km>6qZ a(kz_kl)+(k4_k3)+ co +(km_km71)

Our model is defined on a one-dimensional ring, with an =(o o )N o ) - (o oy )&
. . . o 1 "2 3 N4 m-1 "m
even numbeN of sites, and periodic boundary conditions. A
spin variableg;= £ 1, denotes the value of the spin at site

. I _ for m evenandN—c, (6)
and nearest-neighbor spins interact according to the usual
Ising Hamiltonian i.e., a general correlation function factorizes into a product of
two-point functions.
H= _JE OiGis1, (1) We now turn to the nonequilibrium model, characterized
1

by different temperatures ;¥ T,. The associated stationary

state violates detailed balankb] and differs from the Bolt-
with an exchange coupling The dynamics is a nonequilib- zmann distribution, Eq(5). The degree to which detailed
rium generalization of the usual Glauber mofl&6]: spins  balance is violated can be measured by the paranbter
on even and odd lattice sites experiemtifferenttempera- =(y,— v.)/2. Similar to the Ising model, the stationary state
tures, T, and T,. Specifically, a configuration{c} is invariant under a global spin fligZg). As a consequence,
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all stationary correlations of an odd number of spins vanistinserting Eq. (2) for Wki(‘Tka_’_‘Tki) and taking the
identically, and again, only even correlations need to be dismfinite time limit, we obtain the equations satisfied by the
cussed. We also note the symmetry under translations by stationary correlation functions, |im..(oy oy« - - oy ¢
lattice sites,T,,, combined withd— —d if nis odd: roe "

a({o};d)=q({—oa};d), 7
a{o};d)=a(Tp{a};(—1)"d).

m
While a direct exact solution of the master equation has +z Yok, ok (Ok 1t o)oK, Ok )
proven elusive, a perturbative calculation, in powersdof =t
shows[15] that the stationary distribution for this nonequi- 9
librium model is rather complicated, with longer-range and
higher-order spin operators appearing. Specifically, writingAs mentioned before, all stationary correlations of odd num-
q(ol)= 7~ texgV({o})], we find that the potential function Pers of spins are trivially zero, and we need to focus only on
V({a}), to second order i, has the form the case of evem. Moreover, all stationary cor.relat|ons are
translationally invariant, modulo the sublattice structure.
_ As in the Glauber moddi24], the hierarchy of correlation
Vo =B oioi+d\ 2 (—1) gi0i., functions is closed; the equation fon-point correlations
' ' does not involve any higher correlations, and it is homoge-
neous, provided there are no nearest-neighbor pairs among

=(0ok, 0k, " Ok )
1 2 m

0:_2m<0'k10'k2' . 'O'km>

+2(d>\)2§i: (001421 0101141011201 +3 the arguments. Otherwise, thepoint correlations couple to
lower correlation functions, which appear as inhomogene-
—cOth28) (004 1+ a0 4 3)], (8) lties. In the following section, we motivate an ansatz for

<(Tk10'k2- . -okm>, and then show that it satisfies E®) for

where tanh(B)=(7ye+7,)/2 and\ = — £ sinh(4). An analy- ~ any choice offky ky, ... Kkp}.

sis of the structure of the perturbation series indicates that, at

each order, additional spin operators appear, consisting of IV. EXACT SOLUTIONS FOR STATIONARY

spatially longer-range interactions and higher-order spin CORRELATIONS

products. It is therefore quite remarkable that the correlation

functions turn out to be very similar to those of the Ising To establish several key relations, we briefly review the

model, as we now proceed to show. exact solution for the two-point functiongr;o;) [17]. For
this case, Eq(9) reads

I1l. EQUATIONS OF MOTION FOR ARBITRARY

CORRELATION FUNCTIONS 0=—4(gio))+y{(git1toi_1)0y)
We begin by deriving the equations of motion for arbi- +yi(oi(oj 1t oj-1). (10)
trary time-dependenim-point spin correlation functions, _ ) o _ _
<gklgk2. . .gkm>t, starting from the master equation: For nearest-neighbor sites, e.g=i+1, this equation be-

comes inhomogeneous:

(0o, Tk, " Tkt _
0=—40i0i+1)+t ¥i{0i-101+1) T Yi+ 1{TiTi42) T Vi

N
:Zl {E} ok, 0k, 0k [~ Wi(oi— — o)) p({o};t) i1 (11)
For simplicity, we restrict the discussion in this section to
+W(—ai—o)p{ol;t)]}. correlation functions in the thermodynamic limN— .

Thus we may label the lattice sites by the integérsy.
Correlations on finite periodic chains and some details for
Here, the subscripf-); will be used to distinguish the time- the N— limit will be addressed in the Appendix. Follow-
dependent averages from their stationary limit%,)  ing Ref.[17], it is easy to show that the solution is unique
=lim;_.(°);. Due to the sum over all configurations, tfle  and takes the fornfor i <j, without loss of generality
bracket on the right-hand side obviously vanishes for all sites
i, which do not belong to the s¢k,,k,, ... k,}, and one N A AL i
finds easily that ’ fole m} (o o) =VA A o', 12

with the spatial decay length controlled by the parameter
Ik, Ok, Tk )t P yiend yinep

m 1
:_221 (01,01, Tk Wi (0= = 1))t W= /—yeyo(l_Vl_?’e%)- (13)
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The key difference to the equilibrium Ising model is the (oiojoyay)={oio|){oxoy) (17
emergence ofwo amplitudesto match the sublattice sym- o ) ) ) ) )
metries, namely, for i<j<k<I. When inserting this ansatz into the right-
hand side of Eq(9), we need to distinguish whethgandk
Ae=(Yet v0)(27,), 1 even are nearest-neighbor sites or notkifj+ 1, we obtain
A= . (14

AO:(’YQ+70)/(279)1 | Odd _8<0'i0'j0'k0'|>+’yi<(0'i+1+0'i_1)0'j0'k0'|>
For later reference, we note that these relations imply a fur- + ¥i(oi(gj 1t o)1) o0y)
ther identity forproductsof pair correlations, namely, for any
i<j<j+i<l, +ydoioi(okr 1t ok-1) o)+ y(oiojon o1t oi-1))

=[—4(oioj)+v((oi1tTi_1)oj)
+yi(oi(oj 1t oj_1)) Kowo) +[—4(owo)

+ Y{(oxs1t oD o)+ y(ojo o1+ 01-1))]

0=(yj+ 711 (o7 )= ¥; (0 0j11) (Tj41 )
—Yj+1(0i 0y) (o] 07). (15

This relation will be needed in the discussion of four-point
functions. X{(oj0)=0, (179

Itis quite rer_narkablc_e that the thre_e quanm_te,sAe, and since the expressions in the square brackets vanish for the
A, also determine all higher correlation functions, through 3stationary two-point functions, by virtue of E€LO) or (11),
structure that is almost perfectly analogous to the eq“”ib'depending on whethei ) or (k,1) are nearest neighbors or
rium case. Deferring the case of finleto the Appendix, we ot | k=j+1, we need to consider a slightly different
consider only an infinite chain here. Focusing on even COrgquation, namely,
relations, we assert that arbitranypoint correlation func-
tions, withk;<k,<---<k,, andm even, are given by —8(0iojoj 10+ ¥i{(0i1 1t 0 1) 0j0) 1 107)
+¥i(oi(Tj41F+ Tj-1)Tj4107)

(o)

_ m k2K (Kg=ka)+ -+ (kp—Km_1) + 7j+1<0'i0'j(0'j+2+0'j)o'l>+ 7I<0'i0'j0'j+l(o'l+l
1 2 m
to-1))=[—Hojo)+y{(ois 1T 0i-1)0)

={o, O g, T s (O g ’ (16)
(P77 (T 1Tk +yi(oioi-) o100+ yi{oio) +(oioy)

i.e., higher correlation functions factorize into two-spin cor-

: : o X[~ 4o +yi (o +y (o
relations as in the equilibrium case, E&). However, two [= 414100 % 71+ 114200 T 70} 02(0142

features disting_uish these cgrrelations from _their equilibrium +o_ )1+ (oo =yi{oio)+ ¥+ 1{oio)
counterparts. First, the spatial dependence is controlled by a

different parameterp. In analogy tow for the equilibrium = ¥i(0i0)+1(0j+101) = ¥j+1{Tig)0}01)=0.
system,w defines areffective temperaturéor the nonequi- (17b

librium system, viaw=tanhQ/kgTes). Tef diverges withT,

or T, but vanishes only if botfT, and T, go to zero, As a The proof is completed by induction. Assuming that the

result, the correlation length, defined via lnv=—¢"?%, di- factorization has been proven f 2)-point functions. it
verges only ifboth temperatures vanish. Second, and more 2¢t0r1zation has been prove ant-2)-point functions,

importantly, we note the appearance of the even/odd amplf—S sufficient to show that the ansatz

The last equality follows from Eq15).

tudesA., A,, reflecting the sublattice identities of the two (oo V={0op o Now o) (18
. . . . . 1 m 1 m—2 m—1 "m

spins. These amplitudes carry the primary information about

the nonequilibrium nature of our dynamics. solves the equations of motion for thre-point functions.

Before turning to a general proof of E(.6), it is instruc-  Again, we need to distinguish whethky,_, andk,_; are
tive to confirm it explicitly for the four-point functions. In  nearest neighbors or not. If they are separated by more than
this case, factorization implies one lattice spacing, i.e., K,_1>k,,_»>+1, we have

m
_2m<0k10k2' ) 'Ukm>+§l 'Yki<0'kl' ) '(Tki,1(0ki+1ﬁL O-ki—l)o'kHl' : 'Ukm>

m—2
=(ox ok )[—2(m=2)(oy o )+ Zl Yok, o (o1t ook, ok )]
(o, o =20k ox )T, ((ox  +1tox 1ok )+ (o (o +1tox —1))]=0. (18a
Here, we have used the fact that both square brackets vanish, since they enclose the equations of motion for the two- and
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(m—2)-point functions, respectively. Next, we consider the dase;=k,,_,+1. Again, we add and subtract the terms
missing from the full equations of motion of the lower correlations functions:

m

—2m(oy, o, - 'Ukm>+i:21 Yok, ok (o1t ook, ok )

= ’)’km,2<0'kl‘ ) "Tkm,sffkm,2+1><(7km,10km>+ Ykm,2<0kl' : ‘Ukm,sﬁkn}_ Ykm,l<0kl' : ‘Ukm,2><0km,l—10km>

+ 7km—1< o-kl T Ok Ukm> = <0-k1 T O-km—4>{( ‘ykm—2+ ‘ykm—l)< O-km—30-km> B ’YKm—2< O.km—sa-km—2+ 1>< O-km—lo-km>

m—3

— Y%, Tk, Ok Nk ,-10% )}=0. (180

To obtain the last two identities, we have factored out artispin interactions are present in ¢{c}). Here, we have
(m—4)-point correlation, and used E@.5). This concludes shown that the exact correlation functions for this model are
the proof. We emphasize again that the condifibn1l has remarkably Ising-like: they decay exponentially with a char-
been imposed for reasons of simplicity alone: expressions faacteristic correlation length, which diverges only if bdth
arbitrary correlation functions ofinite rings, while some- and T, vanish. Also, in theN—~ limit, arbitrary (even
what more cumbersome, are easily derived and also follown-point correlations factorize into products of two-point cor-
the Ising pattern, as we will show in the Appendix. relations, following exactly the same scheme in both the
Finally, we discuss one special case of the two-Ising and the two-temperature chain. The only key difference
temperature Glauber dynamics where the two-point correlais the appearance of two nontrivial amplitudés, and A,
tions do not have the form of E¢L2). This is the case if one which reflect the sublattice symmetry: for each spin on an
of the two parameterg,, 7, is zero, the other finite, i.e., the odd (even site, the correlation function carries a factor of
temperature of one sublattice is infinite. Without loss of gen-\/A (\/A,). Of course, stationary correlations of odd num-
erality we assumey,=0 in the following. One can then bers of spins vanish identically, due to symmetry. In short,
easily show directly from the equation of moti¢h0) that  the correlations of the model are entirely consistent with its

the two-point function reads Ising-like long-distance properties.
It is remarkable—and not at all immediately obvious—
veld it j—i=1 that these two amplitudes should be the only remnants of the

large number of interactions i({c}). There is, however, a
) very simple and elegant representatj@b] of the stationary

0 otherwise. state in terms of an extended Ising model, consistingf 2

spins on a comblikel=1 lattice with HamiltonianH,,,=

Hence, spins are only correlated over a distance of at MOSL 355,54 1~ Jo= 04 Si 01 — JeSeveiSioi . Here, the spins
two lattice sites. Turning to the higher correlations, we ob-{s} form an auxiliary set that must be traced out in order to
serve that Eq(15) also holds for these parameter values.gptain stationary observables associated with the original
Thereforem-point correlations ifh even again factorize into variables{c;}. If the interactionsJ, J,, andJ, are tuned

(o7 ajy= { 748 if j—i=2 andi even (19

two-point correlations. appropriatelyin the complex planethe o correlations of
Haux are identical to those of the two-temperature model.
V. CONCLUSIONS Further, the exact stationary state of the two-temperature

) , model follows asq({c})=Tris1exd —Hau. Details and
To summarize, we have found an exact solution for all o . i
generalizations will be presented elsewh8).

stationary correlation functions of a one-dimensional non- . . ) !
It would of course be interesting to investigate other non-

equilibrium Ising spin chain with an even numbiof sites. L . . 4
The system is globally coupled to two temperature bathsequmbrlum versions of Glauber dynamics. Will the correla-

spins on oddeven lattice sites experience a temperatiige tions still have a rather simple structure if a spin chain is

(T.) and flip according to a generalization of the familiar coupled, in a translation-invariant manner,no-2 different

Glauber rates. The presence of two different temperatur tgmperatures. wil the'y still chtprlze, provided asufﬂmently
arge number of amplitudes is introduced? Clearly, we still

violates detailed balance and maintains a nontrivial nonequi- .
o : . need to cover lots of ground before even such simple non-
librium stationary state. The complete set of correlation func-e Gilibrium svstems are fully understood
tions provides us with the full, exact solution for this steady q Y y '

state. This allows us to reconcile two potentially contradic-

tory earlier flndlngs: yvh|le simulations and renormallzatlon ACKNOWLEDGMENTS
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APPENDIX: STATIONARY CORRELATIONS IN FINITE
CHAINS

In this appendix, we address the correlation functions fo
our model on dinite periodic chain(a ring of N sites, with
i=1,2,...N. To set the scene, we first review the equilib-
rium case, with uniform temperatuiile The correlation func-
tions of the Ising model on a ring are well known. Using an
orderedset of arguments, £k;<k,<- .- <ky=N without
loss of generality, one finds

(o, oy )?%=0 forodd m,

(o - o )= {a(kz—k1)+(k4—k3)+~~+(km—km71)
1 m

1+
+ N~ (ka—ky) = (kg=kg) = -~ (ky~ km—l)}
for even m, (A1)

with w=tanh{/kgT)<1. The periodicity of the ring implies
that (o - - - oy )% is invariant undero"—o"~" for any
integer 0=n=<N. ForN—x, Eq. (A1) obviously reduces to
Eq. (6).

Turning to the nonequilibrium case with two tempera-

even/even, odd/evénof pair correlations. Moreover, the
symmetry undew— o~ ! implies that, for each solutiow,

o ! is also a solution. Proceeding to solve the system, we
find yeAs= v,Ae and

r

2 1
(1)+(1)71: Yoy 3wi:m(lim)
\ o7e e’so

with o, =1/w_ . The two rootsw. of this quadratic equa-
tion provide us with the two anticipated linearly independent
solutions. However, to satisfy the inhomogeneous @4)
for both finite and infiniteN, we have to take a convex com-
bination of the two solutions,
(gioj)=aJAA0 "+ BVAA 0 with a+B=1,
(A3)

which then leads toye Agt ¥, Ae= Yot v, . This relation,
together with the previous identity.A,= v,Ae, determines
the values of the two amplitude&, and A,. Demanding
periodicity for the ansatgA3) results in a second identity for
the two integration constants, 8, hamely= aw" . Com-
paring the result with our assertion, EGA2), we identify
w=w_ andZ(w)=1+o" . Sincew_<1, theN—o limit
is also obvious.

tures, we first assert that the Stationary tWO-pOint correlation To treat the genera] case, we set up some notation. For

function, with I<i<j<N, is given by

(o o,->:%m[ww+www], (A2)

where the parametes and the amplitude8, e {A., A,} are
simply those of Eqs(13) and (14), and the normalization
factor Z(w) is given byZ(w)=1+ . Clearly, {o; gj) is
periodic with periodN. For easy reference, we fill in some
details here which are also relevant to tlie-~ case.
Equation (10) is essentially a second-order difference
equation in the variablg—i. To find a unique solution, we
need two boundary conditions: one of these is 84) for
j—i=1 and the other is the requirement that {of; o) to
be periodic with periodN (or, for N—, that(o; o) vanish
for large separationsWe therefore expect a superposition of

any evenm=2, we define two auxiliary functions that de-
pend on an ordered set of argumentss Ky <k,<- - - <k,
<N,

S0(kq ko, - . Kin)

= /A A - A otk k)T kemkg)+ -t (Km~km—y)
1 2 m

= S0 (ky k) S (kg Ka) -+ - S (K1 K,

SP(ky kg, .« .. Km)

= A, A Ay o ek~ (ekd =~k hin-)

=SP(ky ko) S (K3, ka) - - S (K1, Km)

two linearly independent solutions whose coefficients can ) )
then be determined. Away from the boundaries, the ansatthus, we rewrite Eq(A2) in the form

(oi0;)=\AA;0' " reduces Eq(10) to three relations, for
the combinations,j odd/odd, even/even, and odd/even, re-
spectively,

0=—4A,+27,VAs Aj(w+ w1,
0=—4A+2y.VAs Aj(w+tw™ 1),

—4\VAe Aot (YoAet 'Yer)(w+w71)-

0

1
(o1 o)= 770y SO j)+ oS L)),

and recall thaboth §"(i,j) and $P)(i,j) satisfy the equa-
tions of motion for thanfinite chain, i.e., Egs(10), (11), and
(15).

We now proceed as follows: First, we argue that both
S(ky Ky, ... k) and SP(kq ks, ... ky) solve the

We note that the third equation is simply a linear combina-homogeneous and inhomogeneous equations of motion
tion of the first and second, expressing the fact that there ar®) for m-point functions on the infinite chain. For

only two amplitudes, and not three, as one might have asS{"(k; ks, . ..

Km) =limy_..{o, - - - o), this is immedi-
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ately obvious. ForS{?(kq Kz, . .. ky), we simply need to combination aS{"(ky,ks, ... km)+BSP (ks Kz, .. . K
retrace the inductive proof from Sec. IV, since the basicwith e+ 8=1 is a solution.

relations (10), (11), and (15) all hold for S, we may Finally, we have to satisfy the remaining property of the
replace each(okl- . -a'km> in Egs. (17) and (18) by the full correlation function, namely, periodicity. Given an or-
appropriate S’ without violating any of the equalities. dered set of arguments<lk; <k,<---<kp<N, we assert
Since some of the equations of motiof®) for the that a general correlation function af=2 spins takes the
m-point correlations are inhomogeneous, only a convexorm

(ox, -0y )=0 forodd m,

Ak1 Ak2-~ Ky
<0'k1' . .a-km>: Z(w) {w(szk1)+(k4*k3)+'"+(km*km—1)+ wN*[(k2*k1)+(k4*k3)+'"*(km*km—l)]}
.t (D (kq,k k) + NS (kq, k k f A4
Z(w){sm(l’z""’m) D) (ky,ky, ... ky)}  foreven m, (A4)

which is obviously periodic on the ring. Comparing E¢al) and (A4), it is manifest how closely the correlations of the
nonequilibrium model mirror those of the Ising chain. Again, the only significant difference is the appearance of the two
amplitudes A, andA,.
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