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We propose diffusionlike equations with time and space fractional derivatives of the distributed order for the
kinetic description of anomalous diffusion and relaxation phenomena, whose diffusion exponent varies with
time and which, correspondingly, cannot be viewed as self-affine random processes possessing a unique Hurst
exponent. We prove the positivity of the solutions of the proposed equations and establish their relation to the
continuous-time random walk theory. We show that thstributed-order time fractional diffusion equation
describes the subdiffusion random process that is subordinated to the Wiener process and whose diffusion
exponent decreases in tinfeetarding subdiffusion This process may lead wuperslow diffusionwith the
mean square displacement growing logarithmically in time. We also demonstrate that the distributed-order
space fractional diffusion equation describes superdiffusion phenomena with the diffusion exponent increasing
in time (accelerating superdiffusion
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[. INTRODUCTION characteristic displacemefi.g., of the root mean square
[1]. These processes are also called fractal, or self-affine pro-
Recently, kinetic equations with fractional space and timecesses, and are characterized by the expoHewtlled the
derivatives have attracted attention as a possible tool for thelurst exponent, which depends on the order of fractional
description of anomalous diffusion and relaxation phenomderivative in the kinetic equation. We recall that the stochas-
ena, see, e.g., RefB]__4] and references on earlier studies tic proceSSX(t) is Self-afﬁne, or fraCta.I, if its Stationary in-
therein. It was also recognizd8—9] that the fractional ki- Ccrements possess the following propefriyl]:
netic equations may be viewed as “hydrodynamitiat is, .
long-time and long-spag¢dimit of continuous-time random
wal?«s (CTRW) [10]g, apmodel that was successfully applied X(t+ k7) = X() = <X+ 1) =x(1)], @
to describe anomalous diffusion phenomena in many areas, .

e.g., turbulencgll], disordered medigl2], intermittent cha- i, o
otic systems[13]. Kinetic equations have two advantagesWhereK andH are positive constants. The sign implies
‘ ! that the left and the right hand sides of Et). have the same
over a random walk approach: first, they allow one to eXppDFEs.
plore various boundary conditiorie.g., reflecting and/or ab- g 5 hossible generalization of fractional kinetics, we pro-
sorbing and, second, to study diffusion and/or relaxation,qse fractional diffusion equations in which the fractional
phenomena in external fields. Both possibilities are difficultyrqer derivatives are integrated with respect to the order of
to realize in the framework of CTRW. differentiation (distributed-order fractional diffusion equa-
There are three types of fractional kinetic equations: thjons). They can serve as a paradigm for the kinetic descrip-
first one, describing Markovian processes, contains equationfon of the random processes possessing a nonunique diffu-
with fractional space or velocity derivative; the second onesion exponent and hence, a nonunique Hurst exponent. The
describing non-Markovian processes, contains equationsrocesses with a time-dependent Hurst exponent are believed
with fractional time derivative; and the third class, naturally,to provide useful models for a host of continuous and non-
contains both fractional space and time derivatives, as welktationary natural signals; they are also constructed explicitly
However, all three types are suitable to describe time evoluF15-17. Ordinary differential equations with distributed-
tion of the probability density functiofPDF) of a very nar-  order derivatives were proposed in the works by Caputo
row class of diffusion processes, which are characterized by18,19 for generalizing the stress-strain relation of inelastic
a unique diffusion exponent showing time dependence of thenedia. In Refs[20], [21], the method of the solution based
on the generalized Taylor series representation was proposed.
A basic framework for the numerical solution of distributed-

*Electronic address: achechkin@kipt.kharkov.ua order differential equations was introduced in R@g]. Very
"Electronic address: gorenflo@math.fu-berlin.de recently, Caputo[23] proposed the generalization of the
*Electronic address: igor.sokolov@physik.hu-berlin.de Fick’'s law using the distributed-order time derivative.
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Il. DISTRIBUTED-ORDER TIME FRACTIONAL where
DIFFUSION EQUATION
We write the distributed order time fractional diffusion ~ I(s7) _
: G(u,s)=——e U7 9
equation for the PDF(x,t) as ' s

azf
j dpr?~ 1p(,[S') atﬁ el f(x,00=48(x), (2 is the Laplace transform of a functi@d(u,t) whose proper-
ties will be specified below. Nowf,(x,t) can be written as

where r andD are positive constants;is given in seconds

andD is given in units of criisec,p(B) is a dimensionless =dk o ds o [F L L.
non-negative function, and the time fractional derivative of 0= f_wﬁe JBr 2mi © fo due clus)
order 8 is understood in the Caputo serg4],

Pt

—X2/47TD7'
f du G(u,t). (10)
9P~

47TU T

Jdt(t t')~ B&t,. ©)

If we setp(B)=458(B—Bq), 0<Bo=1, we arrive at time The functionG(u,t) is the PDF providing the subordination
fractional diffusion equation, whose solution is the PDF oftransformation, from time scaleto time scaleu. Indeed, at
the self-affine random process with the Hurst exponent equdirst we note thaG(u,t) is normalized with respect to for
to By/2. The PDF is expressed through the Wright functionanyt. Using Eq.(9) we get

[25]. The diffusion process is then characterized by the mean

square displacement o w [
f du G(u,t)=L;1f dul-e”
0 0 S

* 2
2 t))Eﬁwdx %f(x,t)szflfﬁotﬁo_ (4)

ul

1
=L 1H =1, (11

_ _ o whereL ! is an inverse Laplace transformation. Now, to
This formula provides the generalization of the correspondprove the positivity ofG(u,t), it is sufficient to show that its

ing formula for clqssical diffusion valid a]Boz_l. _For Laplace transfornG(u,s) is completely monotonic on the
B<1, Eq.(4) describes the process of slow diffusion, or y,gjtive real axis28]. The last statement arises from the

subdiffusion. : ~ .
Let us now prove that the solution of E®) is a PDF. observation thatG(u,s) is a product of two completely
monotonic functionsl/s and exp(ul). The monotonicity of

The derivation here parallels the method used in [R5, the f b h h ; tv of the latt
see also Ref.27]. Its aim is to show that the random process. e former is obvious, whereas the monotonicity of the latter
is an elementary consequence of the criterion 2 in (2,

h PDF ob Eq2 bordinated to the Wi
whose obeys E@2) is subordinated to the Wiener pro- Chap. XIll, Sec. 4. Thus, we may conclude that the solution

cess. Returning to E@2) and applying the Laplace and Fou- .
fier transflérr‘rl1$gin su(gczassion PRYINg P U of Eq.(2) is a PDF, and that the random process, whose PDF
' obeys a distributed-order time fractional diffusion equation,

N ® ot is subordinated to the Gaussian process using operational
f(k,s)=f dx éka dte S (x,t), (5) time.
— o 0
we get from Eq(2) I1l. SUBDIFFUSION WITH RETARDATION
AND SUPERSLOW DIFFUSION
s 1 |(S7’)
f(k,s)=¢ I(s7) +KZD 7’ (6) Let us concentrate on the behavior of the second moment
of the PDF, that is, on the mean square displacerfidd8D).
where Using Eq.(6), we get
' B 2 (k,t)
I(ST)=J dB(s7)”p(B). (7 ) 9K _ 1
0 <X >(t)— 72— k:O—ZDTLS S|(ST) . (12)

We note that under the conditions described above the func-

tion I (s7) is completely monotonic on the positive real axis, consider two fractional exponents in E@), namely, let
i.e., it is positive and the signs of its derivatives alternate. We

rewrite Eq.(6) as follows:

P(B)=B18(B—B1) +B28(B—B2), (13
Py | * 2 * 2~
f(k.s)=— —u[l+k DT]ZJ —uk“D|
(ki) s fo due 0 due Gu.s), where 0< 8,<B,<1, B;>0, B,>0. Inserting Eq(13) into
(8)  Eq.(12) we get, denotlngnl—Blrﬁl b,=B,7"2:
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) . 1 and, using then Eql12),
e Fr ) t t
2\ _ t/ 7 _
o7 o hi-1 (x*)=2Dr In7_+y~|—e El( 7)] (23
=4 L% . (14)
2 b_l+552751 where y=0.5772... is the Euler constant, and
2
Recalling the Laplace transform of the generalized Mittag- E1(Z):f dYT (24)
Leffler functionE,, ,(z), ©>0, »>0, which can be conve- ‘
niently written as24] is the exponential integral. Using now the expansions valid
- on the positive real axis, see R¢B1], Egs.(5.1.1) and
v _ 1/, i
L {t E’“’(_M#)}_M’ Res>x|\|Y#, (15  (5.1.51, respectively,
- (=2)"
we get from Eq(14), Ei(2)=—vy—Inz— E el z—0 (25
n=1 :
2DT b]_ _
<X2>: b_zt’BZEBZ_ﬁl'BZ-Fl( - b_ztﬂz ﬁl) . (16) and
ez N nl
To get asymptotics at smdllwe use an expansion, which is, E(2)~— 2 (-1) ey (26)
in fact, the definition o, ,(2), see Ref[29], Chap. XVIII,
Eq. (19), . . .
a- (19 we get, retaining the main terms of the asymptotics at small
% o and large times, respectively,
=2 oty (17
o T(un+v)’ t 7
ZDT;lﬂ?, t—0
which yields, in the leading order for the MSD, <x2)~ 27
t
2Dr t)\ A2 2DT|n(—), t—o0,
2\ Y B2 T
X~ B gD ) e (49

Thus, at small times we have slightly anomalous superdiffu-
For larget we use the following expansion valid on the real sion, whereas at large times we hagerslow diffusion
negative axis, see RgR29], Chap. XVIII, Eq.(21), The superslow diffusion, for which MSD grows logarith-
mically with time, (x?(t))=In’t, was observed in the Sinai
model[32], in aperiodic environmentg33], and in an iter-
E.(2)=— Z lﬂ(_—w+0(|2|717'\'), 2| —oe, ated map[34]. The superslow diffusion was also found nu-
=t H (19) merically in an area preserving a parabolic map on a cylinder
[35]. Up to now, it was unclear, whether this type of anomaly

N -n

which yields (“strong anomaly,” by terminology of Ref34]) can be de-
scribed within the framework of fractional kinetics. The ex-
) 2Dr t)A1 ample presented above demonstrates that the distributed-
=BT 7 (200 order fractional kinetic equations can serve as a tool for the

description of a strong diffusional anomaly.

Since8,< 3,, we have the effect adiffusion with retarda- The formula(27) can be generalized to the case
tion. We also note that the kinetic equation with two frac-

tional derivatives of different orders appears quite naturally 1 L 0=p;=B<pB,=<1
when describing subdiffusive motion in velocity fielpB0]. p(B)=4 B2—B1 (28
In this case the orders of derivatives g@nd—1, so that 0, otherwise,

the situation differs from the one discussed above.

Now we consider a simple particular case which, in someand [5dg p(8) = 1. Inserting Eq(28) into Eq.(7) and then
sense, is opposite to the cases considered above. Namely, Wgo Eq.(12), we get
put

) 2Dt In(s7)
PIA)=1, 0=p=L. @D {x >(t)=ﬂz—ﬁ1Ls [S[(ST)BZ_(ST)'Bl]J
Inserting Eq.(21) into Eq. (7) we get 2Dr | d | s 5B t
st—1 :_32_31{%LS sPmfi—1 ](;) so1
I(s7)= s’ (22 29
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Recalling Eq.(15), the MSD can be written as the decoupled joint PDFR/(&,t) =N (&)w(t), and that the
jump length variance is finite, that is, the Fourier transform

B2 B2—B1 i
o2 e
2 1\ 7T 2 1:P2 T

A(K)~1—D7k? (35)
d t\B2=h1
— (d_5Eﬁ2_B1'BZ+5( (;) ) J (30 to the lowest orders ik. Then, we consider the situations in
6=1 which mean waiting time diverges, that is, at larg¢he

] . waiting time PDF behaves as
Using Eq.(17), we get an expansion fdx?) at smallt,

(x2)= 2D~ (t)52§ (E)“Wz‘ﬁﬂrln T

- —+ 1+
By B\ 7| &\ 7 t) P((1+ B, and, consequently,

+n(B2— BN 1+ Bo+n(B—B1)], (3D
B . . at smalls. If Bis constant, then inserting Eq&7) and (35)
where y(v) =d(InT'(»)/dv is the  function. At larget we Eq. (34) and making an inverse Fourier-Laplace trans-
explore the asymptotics valid on the real positive axis, S€orm, we arrive at the time fractional diffusion equation.
Ref.[29], Chap. XVIII, Eq.(22), Now let us consider the case whg@rfluctuates Indeed, for

example, in the model called the Arrhenius cascade, which is

w(t)~7rAtE o< p<1, (36)

W(s)~1—(s7)? (37)

E, (2= iz(l_y),ﬂ exp(Z1) — % z" inspired from studies of disordered systems, the uniGue
M =1 I'(v—pun) appears only under the assumption that the random trapping
time is related to the random height of the well by the
+0(|z77N). (32)  Arrhenius law[36]. In a more realistic model, this law gives
only the average value of the trapping time. Thus, we may
Using Eq.(32), Eq. (30) takes on the form speculate that in order to take into account the fluctuations of
the trapping time, we can introduce the conditional PDF
o 2D7 [t\Brd [t TMEA[ ¢
o ggls] 2l (el e W) o, %)

and the PDFp(B), as well. Now, we have the relation

—n(ﬁz—ﬁl))]F_1[1+Bz—n(ﬂz—,31)]- (33

1
W(t)=f dBp(B)w(t|B), (39
If we setB,=0, B,=1 in Egs.(31) and(33), then we arrive 0
at the same expansions that are obtained by inserting E
(25 and (26) into Eq. (23), respectively. In particular, the
leading terms of the serig@1) and (33) at 8,=0, B,=1
coincide with Eq.(27).

q\S/(ihere[o;l] is the whole interval for variations @&. We note
that all waiting-time distributions witl8=1 correspond to a
similar behavior described by the first-order derivative.
Then, for theW(s) we have, instead of Eq37),

IV. RELATION TO THE CONTINUOUS-TIME RANDOM 5 1 1
WALK THEORY W(S)~1—f0 dB(sm)Pp(B), p(B)=0, fo dgp(B)=1.
The fractional diffusion equations with a given order of (40

fractional time derivative are closely connected to the CTRW . . ]
processes with the power-law distribution of waiting times!"S€ring Eqs(40) and(35) into Eq. (34) we arrive at Egs.
between the subsequent stdfiss]. Now we establish the (6) @nd(7). Thus, we see that the weight functip() has
connection between the distributed-order time fractional dif-N® meaning of the PDF.

fusion equations and more general CTRW situations. Recall '€ model with fluctuatingis, of course, only one of the

the basic formula of the CTRW in the Fourier-Laplace spacd0SSiPle interpretations of EG39): the nonexact power-law
[11] ehavior of the waiting-time PDF can physically have very

different reasons. In particular, the representat& allows
A 1—T(s) 1 us to considerregularly varying waiting-time PDFs, i.e.,
F(k,s)= , (34  those which behave aw(t)xt 1 Ag(t) at t—o, where
s l—:zﬁ(k s) g(t) is a slowly varying function, e.g., any power oftlf28].

' We are also able to consider waiting-time PDK&) that
show an approximately scaling behavior with the exponents
= changing with timeFor such distributions the effective PDFs
PDF w(t), and ¢(k,s) is the Fourier-Laplace transform of p(8) can be determined, and thus such nonperfectly scaling
the joint PDF of jumps and waiting timeg(&,t). Assume  CTRWSs can be described through distributed-order diffusion

where W(s) is the Laplace transform of the waiting-time
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equations. The formal inversion of E(B9) can follow by
noting thattw(t) taken as a function of lnis the Laplace
transform of the function

*p(B),
0,

0=pB8=<1
1< B<oo,

¢(,8)={

Indeed,

tw(t)= f:dﬁ (Bt P= f:dﬁ ¢(B)exp—pBInt)
=Lg{a(B)}(Int).

The functiong(p) is thus given by

B(B)=L, {e'w(e")}.

PHYSICAL REVIEW B6, 046129 (2002

. Dt (2
f(k,t)=exp{—l—z—fodaA(a)(|k|l)“]. (44)

Note that the normalization condition

f dx f(x,t)=f(k=0t)=1 (45)
is fulfilled.
Consider the simple particular case
Ala)=A10(a—ay)+A8(a—ay), (46)

where O< a1 <a,<2, A;>0, A,>0. Inserting Eq(46) into
Eqg. (44) we have

f(k,t)=exp{—a|k|21t—ay|k| “2t}, (47)

wherea;=A;D/I?" %1, a,=A,D/I?" 2, The characteristic
function (47) is the product of two characteristic functions of

The value ofr can then be found through the normalization the Levy stable PDFs with the lwy indexesa,, a,, and the

condition [ ¢(B) 7 #=1, which then defines the function

LY 1 :
scale parameteis; “1 anda, “2 respectively. Therefore, the

p(B). The description of the process through the distributedinverse Fourier transformation of E¢47) gives the PDF
order diffusion equation is possible whenever this function iswhich is the convolution of the two stable PDFs,

non-negative and concentrated os B=<1.

V. DISTRIBUTED-ORDER SPACE FRACTIONAL
DIFFUSION EQUATION

Now we turn to another type of fractional equation,
namely,distributed-order space fractional diffusion equation
which, in dimensional variables, takes on the form

[e3

af_ 2 o“f B
E—deaD(a)W, f(x,00= 8(x), (41)

whereD is a (dimensional function of the order of the de-
rivative @, and the Riesz space fractional derivativéd|x|*

is understood through its Fourier transfofbnas

¢4

A(éf
(DW (42

)=—|k|“f.

If we setD(a) =K, &(a—ap), then we arrive at the space
fractional diffusion equation, whose solution is aviyestable

PDF of the self-affine stable process whose Hurst exponent
is equal to 1&,. The PDF is expressed in terms of the Fox’s

H function[37,3§. In the general casB(«a) can be repre-
sented as

D(a)=1*"2DA(a), (43

wherel (in centimetersandD (in cn/seg are dimensional
positive constantsA is a dimensionless non-negative func-

tion of a. The equation that follows for the characteristic

function from Eq.(41) has the solution

Ve —Vas, — 1, — 1/
f(x,t)=a, "ta, T T2

o)

xf_mdx’L%O

whereL ,(x) is the PDF of the symmetric vy stable law
possessing the characteristic function

X—x'
(alt)llal LaZ,O

X'
(azt) Tay |1

(48)

L a oK) =exp(—[K[). (49)

The PDF given by EQq(48) is, obviously, positive, as the
convolution of two positive PDFs. The PDF will be also
positive, if the functiorA(«) is represented as a sumgfs
functions multiplied by positive constanthl is a positive
integer. Moreover, ifA(«) is a continuous positive function,
then discretizing the integral in E¢41) by a Riemann sum
and passing to the limit we can also conclude on the positiv-
ity of the PDF.

VI. SUPERDIFFUSION WITH ACCELERATION

Since the mean square displacement diverges for thg Le
stable process, the anomalous superdiffusion can be charac-
terized by the typical displacemenk of the diffusing par-
ticle [39],

dx o<(|x| N1, (50)

where(|x|9) is theqth absolute moment of the PDF obeying
Eq. (41). For the stable process with théweindex «

C(q;a)t¥e,

) J=«,

o<g<a<2

(Ix|%= (51)

e'e]
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where the coefficient
(|x|%= —I‘(1+q)5|n( )f dk(1—Ref(k,t)) 971,
2
C(q;a)——(K t)q/“sm( )F(1+q) (1—%) (53)
(52 _ . . . .

We insert Eq.(47) into Eq. (53) and expand in series either
was obtained in Ref.39]. To evaluate thegth moment for  exp(—a; [k/“1t) or exp(—ay|k/*2t), with subsequent integration
the case given by Eq46), g<a,, we use the following overk. As the result, for thejth moment we have expansions
expression, see e.g., R¢4AQ]: valid atq<«; and for small and large times, respectively,

(|X|q>=i(a ¥ sifl | p1+qr| 1 ] 14 —3
7q (82 3 q ” q)
ri-—
@z
© (_1)n+1 - l/ , nal_q )
E— apiae - (1=-aq/as)
anl apnt 2182 r s t L =0, (54)
1
(Ix[%)=~ —(alt)q’“lsm( )F(1+q)r( 9 14
@ q
rla- 2]
@y
N
)n+l —nayla Na,—q) o lan—
Z ! ala, 2T a—lt naglay=1) | o0, 55

One can see, that at small times the characteristic displace+der kinetic equations and for modeling sample paths of the
ment grows as$*2, whereas at large times it grows &&. random processes governed by these equations is also of im-
Thus, we havesuperdiffusion with acceleration portance.
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