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Schradinger link between nonequilibrium thermodynamics and Fisher information
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It is known that equilibrium thermodynamics can be deduced from a constrained Fisher information extem-
izing process. We show here that, more generally, both nonequilibrium and equilibrium thermodynamics can be
obtained from such a Fisher treatment. Equilibrium thermodynamics corresponds to the ground-state solution,
and nonequilibrium thermodynamics corresponds to excited-state solutions, of @iSghrovave equation
(SWE). That equation appears as an output of the constrained variational process that extremizes Fisher
information. Both equilibrium and nonequilibrium situations can thereby be tackled by one formalism that
clearly exhibits the fact that thermodynamics and quantum mechanics can both be expressed in terms of a
formal SWE, out of a common informational basis. As an application, we discuss viscosity in dilute gases.
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[. INTRODUCTION interesting to note that the present work also covers the sub-
ject of the classical nonequilibrium description of simple flu-
The information content of a normalized probability dis- ids, recently dealt with in a quite interesting fashion from a
tribution P(i) i=1,...N, where the index runs over the different angle by Nettleton if22].
states of the system one is trying to study, is given by Shan- Here we will show that the variational treatment of Fisher
non’s information measur@M) [1] information also accounts faronequilibrium situationsSee
also[26] in this regard. We wilkconnectFisher information
) i with nonequilibrium thermodynamics via the Sctimger
S= _izl P()In[P(D)]. @ equation(SWE). Such a connection is of interest because it
clearly shows that equilibrium and nonequilibrium states
The choice of the logarithmic base fixes the informationhave a common informational origin that is expressed by the
units. If the basis is 2, the® is measured irbits. If one ~ SWE. The same SWE also allows for quantum scenarios, or
chooses Boltzmann’s constant as the informational unit angven mixed quantum and thermodynamic scenarios.
identifies Shannon’s IM with the thermodynamic entropy, The paper is organized as follows. For the benefit of the
then the whole of statistical mechanics can be elegantly reeader we reviewi) our Fisher variational treatment ] in
formulated by extremization of Shannors subject to the Sec. I, and(ii) the Rumer and Ryvkin treatment of Boltz-
constraints imposed by tha priori information one may mMann’s transport equatidi27] in Sec. Ill. Our present for-
possess concerning the system of intef&st malism is developed in Sec. IV. Boltzmann’s equation in the
Now, the phenomenal success of thermodynamics and st&0-called relaxation approximation is the subject of Sec. V,
tistical physics crucially depends upon certain necessaryhile Sec. VI is devoted to the application of our present
mathematical relationships involving energy and entropyformalism to viscosity in dilute gases. Finally, some conclu-
(Legendre transform structyreln the equilibrium situation ~ sions are drawn in Sec. VII.
these relationships are also valid if one replasey Fisher’s

information measuré (FIM) [2]. Using this measurg8], the Il EISHER'S INEFORMATION MEASURE EOR
entire Legendre-transform structure of thermodynamics can TRANSLATION EAMILIES: A VARIATIONAL
be reexpresse(.e., | replaces the Boltzmann-Shann®n In TREATMENT

general, this abstract Legendre structure constitutes an essen-
tial ingredient that allows one to build up a statistical me- Consider a system that is specified by a physical param-
chanics. Fisher informatiohallows then for such a construc- eter@ at a given time. Let g(x, #|t) describe the probability
tion. Also, a desired concavity property, obeyedibfurther  density function(PDF) for this parameter at that time. Of
demonstrates its utility as a statistical mechanics generatorcourse, by normalization,

The interested reader might want to consult works by
Frieden, Soffer, Nikolov, Plastino, Silver, Hughes, Helstrom,
Holevo, Reginatto, Hall, Nettleton, Villani, Casas, and oth- f dx g(x,6|t)=1. 2
ers, that have shed much light upon the manifold physical

applications of Fisher's information measji-2§. It is The Fisher information measu(EIM) | is of the form[28]

2

aglde
. g=g(x,0t). 3

*Present address: 665 Bienveneda Avenue, Pacific Palisades, |:j dx g
CA90272.
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The special case dfanslation familiesis of use. These It is clear that the normalization condition gnmakesa a
are monoparametric families of distributions of the form  function of thel;’s. Let thenp,(x,{\}) be a solution of Eq.
(12), where obviously{\} is an M-dimensioned Lagrange
9(x,0[t)=p(ult), u=x—, (4 multipliers vector. The extreme Fisher information is now a

. . . function of time,
which are known up to the shift parametér Following

Mach'’s principle, all members of the family possess identical (apl 9x)?
shapep(ult) (there are no absolute origindlere FIM takes |=J dx =I(1),
the appearanci21,26|

(13

sincep=p(x|t). Sincep extremized!, we write

I—fd (apl ax)? it 5
=) PP, p=pi, PI=pi(x|t).

Our present considerations assume one is dealing with Let us now find the general solution of EG.2). For the
coordinatesx that belong toR. Let us focus attention upon Sake of simplicity, let us define
the positive-definite, normalized PDp{x|t), evaluated at

. . . M
the timet. It of course obeys the normalization G(x.t)= a+z A(DAX), (14)
K
J dx p(x|t)=1. ©) and recast Eq12) as
Let the mean values alnp|? _#Inp,
o +2 g +G(x)=0. (15

6 =(A) of M functions A(x), k=1,.M (7)

We introduce now the identificatidi3] p,= ()2, recalling
that ¢#(x) can always be assumed real for one-dimensional
problems[2]. Introduce now the new functions

be measured at the timieBy definition,

<Ak>t:J dx A(x)p(x[t), k=1,.M. (8

4 In ¢
These mean values will play the role of thermodynamic vari- T Tox
ables, as explained ir2].

It is of importance to note that the prior knowledg®  'nen Eq.(15) simplifies to

Y=(x,t), v=v(Xt). (16)

represents information at the fixed timeThe problem we G
attack is to find the PDIp that extremize$ subject to prior v'=— {_ +U2], (17)
conditions(6) and(7). Our Fisher-based extremization prob- 4

lem takes the form where the prime stands for the derivative with respect.to

The above equation is a Riccati equat{@9]. Introduction
=0, p=px|t), (9 further of[29]

5p‘ I(p)—a(l)— Ek: M{A

X
at the given time. Equation(9) is equivalent to u=exp{j dX[U]}7 u=u(x,t), (18
aplx)2 M -
5pde %—m‘—}k‘, )\kAkp)]=0, o &

B J'Xd diny B 19

where we have introduced th&i(+ 1) Lagrange multipliers u=ex Xax | =¥ (19

(a,N1"-"\y), Where each Lagrange multiplieq,=X\(t). ) o )
Variation leads now to places Eq(15) in the form of a Schrdinger wave equation

(SWE) [29]
M
ap\? a ap M
dx 8 ‘2<—)+— 2Ip) —|+a+ xA]
J p[(p) x|+ x| (@) ]t 3 M ~ (12— (UD N(OAG=ayls, (20
K
=0, (13)
where the Lagrange multiplie#/8 plays the role of an en-
and, on account of the arbitrariness g, ergy eigenvalue, and the sum of thgA,(x) is an effective
" potential function
[ 9p\? ap
(P) 2 o | o | (2P o +a+ D, NA =0. M
X X X k 12 U=(1/8 MDA, U=U(xt). (21)
k
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Note that no specific potential has been assumed, as
appropriate for thermodynamics. Also, we remark tHas a

time-dependent potential function and will permit nonequi-

librium solutions. The specifi&,(x) to be used here depend
upon the nature of the physical application at hfefid Eq.

(8)]. This application could be of either a classical or a quan-

tum nature.
Also notice that Eq.(20) represents a boundary value
problem, generally with multiple solutions, in contrast with

the unique solution one obtains when employing Jaynes®

Shannon’s entropy in place of FIM]. As discussed in some
detail in [2] and [26], the solution leading to the lowest

value is the equilibrium one. That was the only solution dis-
cussed there. Here we wish to generalize the concomitant

PHYSICAL REVIEW EG66, 046128 (2002

is (viii) These are now solvable subjectiki@own initial con-
ditions like our expectation values. The moments now be-
come known(including any time dependence

(ix) As a consequence, the coefficieat$t) of Eq. (23
are also known, which gives
What does thé as determined above represent? Accord-
ing to Ref.[27], the solution of the above system of equa-
tions would be equivalent to the exact solution of Boltz-
mann’s equation(if enough a priori information were
availablg.
We emphasize that RR do not use an SWE in their ap-
proach.

IV. CONNECTING THE SWE EXCITED SOLUTIONS TO
NONEQUILIBRIUM THERMODYNAMICS

discussion and ask the following: can we choose other solu-

tions?

Ill. RUMER AND RYVKIN'S APPROACH TO
NONEQUILIBRIUM THERMODYNAMICS

In Ref. [27], Rumer and Ryvkin(RR) use the conven-

tional Boltzmann transport equation to build up nonequilib-

rium solutions. They take the following approach.

(i) Consider a nonequilibrium state of a gas after the Iaps«t=1

of a timet large compared to the time of initial randomiza-
tion. The timet is regarded afixed

(i) The timet is, also, small compared to the macroscopic

relaxation timeT* for attaining the Maxwell-Boltzmann law
fy on velocities.

Returning to our analysis, we ask the following: can the
excited SWE solutions to Eq20) represent nonequilibrium
states of thermodynami¢41,26/? An interesting discussion
of this point is provided if22]. Here we try to answer this
question in a different fashion by considering, again, the case
in which x is a velocity and one seeks the nonequilibrium
probability p(x|t).

Let excited solutions/,(x,t) to the SWE Eq.(20) be
identified by a subindex value>0. These amplitude func-
ons are superpositions of Hermite-Gaussian polynomials of
the form

Yn(X,0)=2, bi(OH(x), n=12,... (24)

(ii ) At each point of the vessel containing the gas, a statd he total number of coefficients,;(t) depends on how far

arises which is close to thecal equilibrium state in which
fy is the Maxwell-Boltzmann law on velocities.

(iv) This allows one to expand the nonequilibrium distri-
bution f(x|t) as

f(x,t)/fo=1+ex(x,t), (22

wheree is small and the functiory is to be the object of our
endeavors.

(v) The unknown functiony(x,t) may itself be expanded

as a series oforthogonal Hermite-Gaussian polynomials
H,;(x) with coefficientsa;(t) at the fixed timet,

x(x,0) =2, a(t)H;(x). (23

from equilibrium we are. At equilibrium there is only one
such coefficient.

We will show that the squares of these amplitudes agree,
under certain conditiontsee below, with the known solu-
tions of the Boltzmann transport equatiphl,21,23. Our
coefficientsh;,(t) are computed at the fixed timeat which
our input data(A); are collected. While the ground-state
solution of Eq.(20) gives the equilibrium states of thermo-
dynamicd 2], the excited solutions of E¢20) will be shown
to give nonequilibrium states. For this to happen, our func-
tions ¢,(x,t) will have to be connected to the RiRx,t) of
Eq. (23) via the squaring operatiog?(x,t).

Notice that the square of an expansion in Hermite-
Gaussian polynomials is likewise a superposition of
Hermite-Gaussian polynomials, with coefficierfs(t),

PAx,0 =2 cin(OHi(x), n=

n=1,2,.... (25)

It is important to remark that Hermite-Gaussian polynomials
are orthogonal with respect to a Gaussian kernel, i.e., the&Ve argue now to the effect that, for fixex the RR coeffi-

equilibrium distribution No other set of functions is or-
thogonal (and completg with respect to a Gaussian kernel
function.

cientsa;(t) and ourc;,(t) are equal.
First of all, the RR coefficients are certainly computed,
like ours, at dixedtimet. That is, their momenta are evalu-

(vi) Because of orthogonality, the unknown coefficientsated at that time. Likewise oufshe (A,) of Eqg. (8)] can be

a;(t) relate linearly to appropriateunknowrn moments off
over velocity spacéx space.
(vii) Substituting the expansion fdrinto the transport

regarded as velocity momenta at that time as well.
The difference between the RR coefficients and ours is
one of physical origin, as follows. RBolve forthe velocity

equation and integrating over all velocities yields now a seinoments at the fixed time TheseM gg moments are com-

of first-order differential equations in the momeritghich
are generally a function of the fixed time valte

puted using the RRy; of Eq. (23). We, instead, collecas
experimental inputghese velocity momentsat the fixed
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time t). Thus, if theM gg momentscoincide with our experi- In these conditions, the ensuing Boltzmann equation be-
mental inputs necessarily the,(t) and thec;,(t) have to  comes[30]
coincide well. Let us repeat: the RR moments at the time

are physically correct by construction, since they actually of O of  of f—fo
solve for them via use of the Boltzmann transport equation. EJriZl Uiﬁ_XiJFUi&_vi T (27)
The premise of our constrained Fisher information approach
is that its input constraint$iere our velocity moments\,);) g jinear differential equation fof.
are correct, since they confiom experiment(They calcu- We consider now a situation slightly removed from equi-
late, we measure. librium: f=fo+f, with f,<f,, so that Eq(27) turns into

If there is no agreement between the RR moments and our
experimental inputs, two possibilities come to mirid: we of 3 of of
are measuring inputs showing strong quantum effects, while E+El U‘ﬁﬁ“a_v- =—f, /7 (28

1= | |

the RR treatment cannot handle such a ¢aséng classical

or (b) the numbeM of available experimental data we use as
inputs does not equal the numbdiri of RR computed mo-
ments. This possible disagreement is, however, of a logisti
rather than fundamental nature.

The left-hand side of Eq(28) is small, since the right-
Qand side is, by definition, small. As a consequence, we can
evaluate it by neglecting terms i and write

The required number of expansion coefficiebtsn Eqg. 3
(24) is of interest. At equilibrium only one is needelolf, as %WLE U,‘9_f0+l-),‘9_f0 -7 (29)
that situation is described by a grand-canonical distribution ot =1 ox "o, !

function that is Gaussian. Next, if the system is sufficiently
close to equilibrium, then very few are needed. Hence, near- Sincef is the Maxwell-Boltzmann PDF, independent of
equilbrium cases should pose little numerical difficulty. time [(dfy/dt)=0], we finally get the so-called Boltzmann
Summing up, the approach given in this paper will giveequation in the relaxation approximatig80],
exactly the same solutiora the fixed (but arbitrary) time t 5
ofg . ofp

as does the RR approachherefore, for fixedh, our c;,(t)’s
20, T,
I I

coincide with the RRa;(t)’s and ourp(x|t) coincide with
the RRf(x,t). This holds at each timg cf. Eq.(8)]. For any
other time valuet’, say, we would have to input neg,)
values appropriate for that time. RR, instead, get coefficients VI. APPLICATION: VISCOSITY
a;(t) valid for continuous time, since they are using Bolt-

; . S . As a concrete example of our abstract formalism we will
zmann'’s transport equation, which is a continuous one. Ouépply it here to the nonequilibrium problem posed by the

approach, by contrast, yields S?Igtions valid at a di;cret%henomenon of viscosity in dilute gases. We briefly discuss
point of timet. This distinction, “discrete versus continu- the corresponding phenomenology in Sec. VI A while in Sec.

ous,” does not compromise the validity of the Fisher-y, g e find the distribution lawEq. (54), see below pre-
Schralinger, nonequilibrium thermodynamics bridge that wejicted py the Boltzmann transport theory. Because we have

have built up here. In order to illustrate our formalism with ap,ap, using the relatively little-known Rumer-Ryvkin ap-
relevant application, we consider next a special instance th?:froach[Z?] we also show. in Sec. VIC. that the RR answer
one often encounters in dealing with Boltzmann's equation.gg) for the distribution function agrees with that of the Bolt-
zmann approach. Finally, in Sec. VID we show that the
SWE approach gives the same answer as well, i.e.(@&).

=—f,/r. (30)

=1

V. BOLTZMANN EQUATION IN THE RELAXATION

APPROXIMATION
. . . . o A. Generalities
With a view on developing a simple application of our | . . | ith | | bointi
formalism, in considering the celebrated transport equation 'Mading, in a gas, some plane with its normal pointing

of Boltzmann’s we will focus attention upon a gas in which along thez directio_n. The fluid below this plane exerts a
the effect of molecular collisions is always to restoreeal ~ Mean force per unit aregstress P, on the fluid above the

equilibrium situation described by the Maxwell-Boltzmann Plane. Conversely, the gas above the plane exerts a stress

PDF fo(r,v) [30]. In other words, we assume that if the — Pz On the fluid below the plane. Thecomponent of,
molecular distribution is disturbed from the local equilibrium Measures the mean pressgpg in the fluid, i.e.,P;,=(p).

so that the actual PDFis different fromf,, then the effect When the flu!d is in equilibrium(at rest or moving with
of collisions is simply to restoré to the local equilibrium uniform velocity throughout thenP,,=0 [30]. Consider a
value f, exponentially with a relaxation time of the order ~nonequilibrium situation in which the gas does not move
of the average time between molecular collisions. with uniform velocity throughout. In particular, imagine that

In symbols, for fixedr,v, f changes as a result of colli- th€ fluid has a constariin time) mean velocityu, in the x
sions according to direction such that,= u,(z). For specific examples, see, for

instance,[30]. Now any layer of fluid below a plane
=const will exert a tangential streBs, on the fluid above it.
f(t)y="fo+[f—folexp—[t/7]. (26) If du,/dz is small, one ha$30]
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au, B. Dealing with viscosity in the Boltzmann relaxation
P,=— U (3D approximation

We shall first discuss how to tackle the viscosity problem
where 7 is called the viscosity coefficient. The phenomenonalong conventional, Boltzmann equation lines. To such an
was first investigated by Maxwell, who showed that, for aénd assume that the effect of collisions is just to produce a
dilute gas of particles of mass moving with mean velocity local equilibrium distributiorrelative to the gas moving with
(v), a mean velocityu, at the location of each collision. The

relevant equilibrium Maxwell-Boltzmann PDF is

an{v)yml, 32
77 <U> ( ) fO(r,V't):g(UxyUy-Uz):g(U)y
wheren is the number of molecules per unit volume drid

the mean free patf80]. Ux=vx=t2), Uy=vy, Us=v,

Now consider any quantity(r,t) whose mean value is 312
g(U)=n|=—| exd-BmU?72]. (39
1 2
rt))= d3v f(r,v,t)x(r,1), 33
x(r.0) n(r,t) f o i Ix(r.b) 33 This PDF satisfies Eq27). When a mean velocity gradi-

ent exists, so that, is such that its derivative with respect to
with n(r,t) the mean number of particles, irrespective ofzdoes not vanish, E¢39) no longer complies with Eq27).
velocity, which at timet are located betweenandr+dr. If  Since the situation is time-independent, the ensuimgn)
x(r,t)=v(r,t), the above relation yields the mean velocity PDF cannot depend upon time, but will depend ofthe
u(r,t) of a molecule located near at timet. u(r,t) de- direction of the velocity gradient There are no external
scribes the mean velocity of a flow of gas at a given pointforces, so that vanishes. As a consequence, our Boltzmann
i.e., the(macroscopighydrodynamical velocity. The peculiar equation(27) reduces to
velocity U of a molecule is defined in the fashi¢80]

of .
U=v—u (34) vy =1 (f=fo). (40)
so that One assumes tha@v,/dz is small enough thatf/dz is also
small, so that
(v)=o. 39 f=fo+fy, fr<fo. (41)

If one is interested in transport properties, the fluxes of ag 5 result, we find that

various quantities become the focus of attention. Consider
the net amount of the quantity transported abovej) per ofo
unit time and(ii) per unit areaf an element of area oriented fi=—m Z 47 (42)
along f, by molecules with velocityJ due to their random
movement back and forth across this element of area. Thg is clear from Eq.(39) that
x-associated fluxF, generated in this way is

afg  dg dU, dg duy

= =— , (43
fn(r,t):Jd3vf(r,v,t)[ﬁ.UJX(r,t)=n<[ﬁ-u1X>. 36) 9z Uy gz Uy oz
while
For the present discussion we haye-mv, and A-U P
=nU,. The ensuing flux gives then, preciseRy,, [31]. 9 = —mpgu,, (44)
Sinceu, does not depend upon the velocity, dUy

a relation that we will use below. Here, it will become clear

Pax= N U200 =NIKUL Uy Unl) = nimU U that we need simply to write

. . . - of J J
A simple phenomenologicdine of reasoning that utilizes the o_ % _g’ (45)
so-called path integral approximation yields tH&0] 9z 9z Uy
so that
Po—_ N7duy _ n_r (38
o= " g 1T . duy 99 U (9Uxf 46
1y gu, - A To (40

where 7 is the average time between molecular collisions
(relaxation time and 8= 1/KT. and, finally,
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AUy
X9z

auy dg

=hor g, 50,
X

f [1 mB7v,U ] (47)

Now, thezx component of the stress is

sz=mf d% fU,U,. (48)

As fy depends only on the absolute valuelhfthe above
integral vanishes if one replacésby f, in the preceding
integral for symmetry reasons. Thus,

AUy Jg

sz—m—Jdvv T&U Uy, (49
According to Eq(33), v,=U,, so that, assuming that the

relaxation time does not depend upon velo¢B9],

Ju J
P,= mr— | d3 d

2
0z (?U a0, Yz

A, ) ag
=m75 dedUzUz dUXWXUX. (50

Call the far right integralA. Using Eq.(44), we write it in
the fashion

- mﬁf du,gu2. (51

As a consequence, using the equipartition theorem

au
P =—m2BT—f d3U foUZUZ
au
= —m?gr— X n(UZ)(U3)
au Ju
— 2% 2 _ 7%
m-Br 2 n(kT/m) r n7/ B, (52
and, for the coefficient of viscosity, we finally get
n=n7lp, (53

in agreement with Eq38). Returning now to Eqs41) and
(46), we stress that

au
f=f0[1—UZUXTm,8a—ZX}. (54)

C. The Rumer and Ryvkin treatment

PHYSICAL REVIEW B6, 046128 (2002

1
Ho=1, H;=—2x, 55
0 1 ‘/2 ( )
and, with
1/4
d(x,w)=|—| exd—x%2], (56)

the first two members of the Gauss-Hermite bésisC?) are
Yo=Hod, ¢1=Hi¢. (57)
Since we havé30]
n[mp/(2m) ]2 exd — Bmu2/2]=fo,=ny3,
our variablesx,w in Egs.(55) and(56) are
2x=1[2Bm]v,,
which allows us to recast E@55) as

Hozl, H]_: \/[,Bm]vz.

We deal now with a three-dimensional problem. The per-
tinent Gauss-Hermite basis is the set of functions

w=mp/2, (58)

(59

o(vy) %(Uy) o(vy)

1+ 2 H|<uX>Hm<uy)Hn<uz)”,
(60)
wherel,m,nrun over all non-negative integers.
As data we have here

szsz d3v fU,U,. (61)

In the present instance, in view of E@1), the RR recipe
(22) to find f [27] should be

f(U)=fo(U)[1+aH(U)H(U)]=f[1+amU,U,],
(62

with the coefficienta to be determined from the here relevant
velocity moment61) and the prior knowledge expressed by
Eq. (38). We thus evaluate Eq61) using the ansat#62),

sz=mj d*U{f[1+aBmU,U,J}lUU,. (63
The integralfd3U{f,U,U,] vanishes by symmetry. Thus,

Poan?s [ dU{foUIU3—an?an(UZ)(U2)

The Rumer and Ryvkin techniqi7] is not the conven- anmng
tional one for dealing with the Boltzmann transport equation. = W
However, it constitutes an essential ingredient in formulating
our Fisher treatment of nonequilibrium problems. It is thus a
convenient, for illustrative purposes, to discuss the manner :”Ev (64)

of using it within the context of our viscosity example.

To such an end, we start by remembering that the first twavhere the equipartition theorem has been employed.

Hermite polynomials are

Since Eqs(64) and(38) have to be equal,
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Uy Y=ot ¢1=[1+bH(Uy)H1(U2) ]
a=— TE (65)
=(1+bBmU,U,) i, (72)
and
and, up to first-order terms as well,
A,
f=f 1—UU<T—m ”, 66
R MR (69 V=14 20, (U Hu(U) W 1+ 20 MU .
73
which is identical to Eq(54).
We evaluate now |U,U,|#). For symmetry reasons it
D. The SWE treatment is obvious that ¢|U,U,|#0)=0. Thus,
1. Ground state
— 2 2112
We start with thez component of the probability ampli- (PIU U] ) =2 Bnme(ho| ULU S | o) (74)
tude that obeys
., , Using now the equipartition resu{tJ2)o(U2)o=n/(mB)?,
P12+ N (1) (v7/8) = — (alB) ¢, (67)  we arrive at
t
and we se P, =28bnmyo|UU,| o) =2bn/ B=an/B, a=2b,
A(1)/8=w?/2 and (al8)=—E, (75)
so that the problem becomes time-independent. Our priowhich coincides with the RR result obtained in the preceding
knowledge is the equipartition result subsection. Thus,
1
0D)=5m (68) YP=[1+a(Bm)U,U, 145, (76)
which entails, as discussed aboues m/2, in view of the ~ We have thereby recovered the RR result, which we previ-
fact that the ground state of our SWE reads ously verified to be correct in Sec. VIC.
® 1/4
Yo, =|—| exd—wv/2]. (69) VII. CONCLUSIONS AND DISCUSSION
" o

It is becoming increasingly evideft-7,11,14,15,25,26
Obviously, z//S,ZZfO,Z, the z component of the equilibrium that Fisher information is vital to the fundamental nature of

PDF of the preceding subsections. physics. In a previous effof2], we showed how thé con-
cept lays the foundation for thermodynamiics the usual
2. Admixture of excited states equilibrium case. Here and if26] we have shown that the

onequilibrium thermodynamics case can likewise be

We assume now that we have the additional piece o . : . ) .
P ormed in this way. This considerably expands the horizon

knowledge(38) for P,,. Our SWE obeys nows= i, i, envisioned in 2]

(and, also o= ooy oz, The main result of this work is the establishment, by
7124 w2(v212) +aU U, = Ed, 70 means of Fisher information, of a connection between non-
v 0 vy Uz =Ed (70 equilibrium thermodynamics and quantum mechanics. The

that can be treated perturbatively in view of our knowledge€Mphasis here lies in the word “connection.” Why would

of the problem. a<1 is here the perturbation coupling con- SUch @ link be of interest? Because it clearly shows that ther-
stant. modynamics and quantum mechanics can both be expressed

It is well known[31] that, if one perturbs the ground state PY & formal SWE20), out of a common informational basis

of the one-dimensional harmonic-oscillator wave function[21]- . . . . . . .
with a linear term, only the first excited state enters the per- 1h€ physical meaning of this SWE is flexible, since its

turbative series because of the selection {3, “potential function” U(x) originates in datgdA);, via Eq.
(21), of a physically generahature. This depends upon the
(PoH (X)X hoHm(X))=C18(n,m+1)+c,8(n,m—1), application. The/A,), are introduced into the theory asn-

(7D pirical inputs. The approach also encompasses quantum ef-
fects. In the latter cases, the effective potential function in-
wherec, ,c, are appropriate constajl], which entail that, cludes quantum effects. Also, the Planck consfanivhich
for n=0 (ground statg only m=1 (first excited statecon-  does not explicitly appear in E€O0), would appear in one or
tributes[31]. As a consequence, we can wrifgp to first more inputgA,), as, for example, would occur if the expec-
order in perturbation theoyy tation value of the linear momentum of an electron were
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measured. The classical Boltzmann equation of the RR ap- Finally, and as a concrete example of the power of our
proach would then of courgeot be useable. In this way, our abstract formalism, we have successfully applied it here to
approach encompasses both quantum and classical therntbe nonequilibrium problem posed by the phenomenon of

dynamic effects.

viscosity in dilute gases.
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