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Percolation threshold is not a decreasing function of the average coordination number
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It is commonly believed that the percolation critical probability is a monotonically decreasing function of the
average coordination number for periodic lattice graphs in the same dimension. This paper provides
counterexamples—a pair of planar lattices for which the bond percolation critical probabilities and average
coordination numbers are in the same order, and a pair for which the site percolation critical probabilities and
average coordination numbers are in the same order. These counterexamples confirm the existence of this
counterintuitive phenomenon, which was observed in one case in numerical estimates by van der Marck.
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I. INTRODUCTION graph theory, the term “degree” is used, rather than “coor-
dination number.}
Since the origins of percolation theory, determining the
value of the critical probabilities of various lattices has been
an important and challenging problem. Exact solutions are
known for arbitrary treeg1] and a few periodic two- This paper proves that critical probabilities and average
dimensional lattices: the bond percolation thresholds for theoordination numbers of lattices in the same dimension can
square[2], triangular and hexagonB], and bowtie lattice have the same order, for both site models and bond models.
and its dual4], the site percolation threshold for the trian-  Unfortunately, current mathematical bounds are not suffi-
gular lattice[5], and various transformations of these solu-ciently accurate to verify the ordering of the pentagonal lat-
tions to related graphs, such as the Kagdatiice site model tice and Kagomeattice site percolation thresholds observed
and the (3,12 lattice site mode[6]. Rigorous bounds have numerically by van der Marck.
been established in the mathematical literat(®ee[7—11], For bond percolation, we prove that a modification of the
and references therejnConsiderable work in the physics (3:12) lattice has critical probability between 0.69523 and
community has produced Monte Carlo simulation estimate®-69825 and average coordination numbgr Bhich may be
(see[12] and references therdirand development of ap- compared to the hexagongl lattice, with exact percolatllon
proximation formulagsee[13-16, and references thergin threshold_O.§527... and uniform degre‘? 3. The proof, using
A commonly accepted observation is that more richlythe substitution methofP4,25,9-11, is given in Sec. Ill.

connected lattice graphs have lower percolation thresholds, The site percolation example is based on the bond model
) . S ; example. We use the result of Sec. Ill to show that a planar
One rigorous result of this nature is Fishefk7| contain-

L : subgraph of the line graph of the modification of the (3)12
ment principle: If G is a s_ubgraph ofH, thep Pc(G) lattice has site percolation critical probability greater than
ZPC_(H)’ for both bqnd an_d S_'te models. A resuI'F in the Samep 69523, while its average degree is 5. This contrasts with
spirit is the contraction principlgl8]: If H is obtained from  yhe Kagomdattice, which has percolation threshold equal to
G by contracting edges, then(G)=p.(H) for bond mod- 6527, and average degree 4. The lower bound for the
els. Such results, coupled with substantial numerical evigritical probability of the first graph is obtained by elemen-
dence from simulations, have led to a common belief that theary reasoning involving the bond-to-site transformation and

critical probability is a monotonically decreasing function of the containment princip|e_ The proofs are given in Sec. V.
the average coordination number of the lattice for lattices in

the same dimension, that is, if two lattices have average co-
ordination numbers in one ordel(G)=<d(H), then the per- ll. BOND MODEL EXAMPLE
colation thresholds have the opposite orgef{G)=p.(H).

This belief has been built in to several “universal” approxi- ity for the hexagonal lattice, 4 2 sin(x/18)=0.6527..., was

mation formulas for critical probabilities in the physics lit- ; o
erature, where the formulas based on dimension and Coordgnonjectured by Sykes and Ess¢@%6] and proved by Wier

) o : nan[3]. We will compare the hexagonal lattice with a modi-
nation number or average coordination number all imply thaj

the critical probability is a decreasing function of the avera eication of the (3,12) lattice, denoted., in which we add a
lucal p Myt . INg functi VErag€ entral vertex in each triangle, connected by an edge to each
coordination number if the dimension is fixésee, for ex-

vertex of the triangle, which corresponds to replacing the
ample, Refs[19-22,13). ) ; )
However, recently van der Mard3] noted “one excep- triangle by aK, (complete graph on 4 verticesSee Figs. 1

tion to this rule: the site percolation threshold of the pentago-
nal lattice(0.6471 is lower than that of the Kagomiattice

(0.6527..), although its average coordination number is
lower (31 vs 4).” (Note that in the mathematical literature in 0.7385<p.((3,12) bond=0.7449,

Il. RESULTS

The exact value of the bond percolation critical probabil-

The latticeL contains the (3,13 lattice, which satisfies
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FIG. 1. An induced subgraph of the (37)2attice. FIG. 2. An induced subgraph of the lattite

so it has a lower critical probability. The purpose of addinggraph. We denote the probability measure corresponding to
the central vertices and edges is to increase the average dge bond percolation model dnby P,(-), and the probabil-
gree, while lowering the critical probability relatively little, ity measure corresponding to the hexagonal lattice bond
keeping it above that of the hexagonal lattice. model byQq(-). A probability is determined for each parti-

We apply the substitution method to compute accuration 7 by summing the probabilities of all configurations
bounds for the bond percolation critical probabilitylofTo  which produce the partitionr.
apply the substitution method, we decompose the 3,12  The set of partitions, ordered by refinement, form a par-
lattice into isomorphic edge-disjoint subgraphs, and substitially ordered setw is a refinement of3 if every cluster ofx
tute alternative subgraphs in order to obtain another latticgs contained in a cluster 8. ABCis the maximum element
(which, in this case, is exactly solvedo facilitate this, we andA|B|C is the minimum element, and, for exampheB|C
first subdivide each edge which connects two triangles in thes a refinement oABC. An upsetU is a set of partitions such
(3,12) lattice, i.e., replace it by two “half-edges” in series. that if « is a refinement of3 and ae U then BeU. The
The vertices inserted between the half-edges are callegrobability of an upset is the sum of the probabilities of the
boundary verticesTo maintain equivalence with the bond partitions in the upset.
percolation model with parametpy each of the half-edgesis = we now calculate the partition probability measures cor-
open with probability\/ﬁ. The lattice may then be decom- responding to the two bond percolation models.
posed into isomorphic subgraphs, each consisting &f,a To calculate the probability of the maximum partition,
with three incident half-edges. Substituting three-stars fol\BC, notice that all half-edges must be open, and then de-
these subgraphs produces a subdivided hexagonal lattice. Seémpose the event according to the number of edges in the
Fig. 3. original triangle that are open, to obtain

Consider subgraphs in the decompositiond_cénd the
hexagonal lattice, with the boundary vertices of both labeled — 32113 201 _ 201 _ 2
A, B, andC. To compare probabilities of open connections on Pp(ABC)=p™{p™+3p(1=p) +3p%(1-p)

the two subgraphs, we compute probabilities of partitions of X[p?+2p(1—p)]+p3(1—p)3}
the boundary vertices. A partition is denoted by a sequence ’ y / y y
of vertices and vertical bars, where vertices not separated by =3p"?+5p%2—18p1 A+ 15p192-4pTo

a vertical bar are in the same cluster.
The bond percolation model on each lattice assigns a A similar (somewhat more complicatedlecomposition
probability to each configuration on the corresponding subinto cases and simplification yields

P,(AB|C)=P,(AC|B)=P,(BC|A)=p?—p*?+2p3+ p"?+ 5p¥2— 7p°— 11p*2+ 7pb+ 8p¥2— 2p7 — 2p1572

To calculateP,(A|B|C), decompose the event according ~We compare this distribution with that determined by the
to the number of half-edges that are open, to obtain bond model on the subdivided hexagonal lattice, denoted

Qq:
Pp=(A|B|C) Q4(ABO)=¢?,
=p373p(1-p)°+(1-p)°]+3p(1-p*?)
X[2p(1-p)%(1+2p-2p?)
+3p(1-p)°+(1-p)°]+3p"A1-p??+(1-p?)°

Qq(AB|C)=Qqy(AC|B)=Q4(BC|A)=g*(1-q),

Qq(A[B|C)=(1-0)3+3q(1-q)%

=1—3p2—6p3+6p72+ 10p¥2+ 21p°— 36p1L2 The probability measure®, and Qq are compared by
stochastic ordering: IP andQ are two probability measures
—21p®+30p*%2+6p’ —8pto2 on the same partially ordered sgtthenP is stochastically
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FIG. 3. The substitution used in deriving the bound for the bond
percolation critical probability oE. L is decomposed into copies of
the subgraph shown on the left, while the subdivided hexagonal
lattice is decomposed into copies of the subgraph shown on the
right. The boundary vertices are labeladB, andC.

FIG. 5. A planar subgraph of the line graphlaf
smaller thanQ, denotedP<,Q, if P[U]<Q[U] for every
upsetU of S The set of probability measures &are par-
tially ordered by stochastic ordering.

Set g equal to the critical probability of the subdivided 0.69523<5,<0.69524,
hexagonal lattice, i.e.,

we obtain the following bounds for the solutions of the upset
equations, withs;, i=0, 1, 2, 3, denoting the solutions:

0.69582<5,=<0.69583,

go=V1—2 sin(7/18)=0.8079.... 0.696715,<0.69672
By standard arguments relating coupling and stochastic or- 0.69824<5,;=<0.69825.

dering, if Ppgstho, thenp is less than or equal to the

critical probability ofL, and if Pp=sQq, thenp is greater

than or equal to the critical probability &f Thus, our lower

and upper bounds are the maximum valuepdfor which 0.69523<p.(L;)=<0.69825.

P,LU]=<Qq[U] for all nontrivial upsetsU, and the mini-
0

mum value ofp for which Pp[U]quo[U] for all nontrivial

upsetsU, respectively. Equivalently, the lower and upper We first note that the lattice and the hexagonal lattice
bounds are the smallest and largé®tspectively solutions  are a pair of graphs with site percolation critical probabilities

Thus, taking the lower bound fag and the upper bound for
S3, We obtain

IV. SITE MODEL EXAMPLE

for p of the equations and average degrees in the same order: Wierri0j
showed that the site percolation critical probability of the
Pp[U]=QqO[U] hexagonal lattice is less than 0.79472has site percolation
threshold equal to that of the (32)2lattice, because the
for nontrivial upsetdJ. vertex at the center of each triangle of the (3)1R&ttice is

The nontrivial upsets consist of the partitié?®C and 0, ~ Not es_sential_to_ the creation of an infinite open glu_st_er, ie., if
1, 2, or 3 of the partitioné\B|C, AC|B, andBC|A. Thus, there is an infinite open.cluster, there is an infinite open
there are only four different upset equations, with the form cluster using only the vertices of the (37} 2attice. Thus the
addition of the central vertices in the triangles merely serves
Pp(ABC)+iPp(AB|C)=QqO(ABC)+quO(AB|C), :_0 raise th(_e average_degree, With_out contribu_ting to p_erc_ola-
ive behavior. For this reason, this example is unsatisfying,
and we provide a more substantive example.
The bond-to-site transformation converts the bond perco-
lation model on a grapls into an equivalent site percolation
i model on a different grap&*, called theline graph (in the
0.807900764 \/1—2 sin(m/18)<0.807900765, mathematical literatupeor the covering graph(in the phys-

ics literaturg. Applying the bond-to-site transformation to

the graphs in Sec. Ill, we obtain the Kagoadtice as the
ﬁ line graph of the hexagonal lattice, and the graph shown in

Fig. 4 as the line graph df. By the equivalence, the Kagome

lattice site percolation critical probability is 0.6527... and the
site percolation critical probability of the line graph bfis

greater than 0.69523. Since the Kagolattice has uniform
degree 4 and the line graph bfhas average degree equal to

fori=0, 1, 2, 3.
Using the bounds

5.6 (since 60% of the vertices have degree 6, while 40%

w have degree)5the site percolation critical probabilities and

average degrees are in the same order.
Note that the line graph df is not planar, however, since
FIG. 4. An induced subgraph of the line graphLof there are three pairs of crossing edges in each subgraph cor-
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responding to the substitution region in Fig. 3. For an ex-some refinement of th@usually correct intuition is called
ample involving only planar graphs, delete the three crossinfpr.

edges that form a trianglesee Fig. 5. The resulting graph Toward this end, one may view the counterexample as an
has site percolation critical probability larger than that of theindication that variability in bond density may increase the
line graph ofL (by the containment principleso it is larger  percolation threshold. In the counterexample, one lattice has
than that of the Kagomdéattice. Its average degree is 4.8 relatively uniform density, while the other has regions of
(40% of vertices have degree 4, 40% have 5, and 20% haveigh density linked across sparse regions. The sparse regions

6), which is also larger than that of the Kagotagtice. may act as bottlenecks which tend to impede the formation
of large clusters, while the dense regions increase the aver-
V. CONCLUDING REMARKS age coordination number without greatly affecting connectiv-

For more than four decades, intuition has suggested thgty'
more richly connected lattices have lower percolation thresh-
olds. One specific interpretation of this statement is that the
percolation threshold is a decreasing function of the average
coordination number. However, while the statement is true in  Research supported by the Acheson J. Duncan Fund for
most cases, this paper shows that it is not always true. Thuthe Advancement of Research in Statistics.
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