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Morphological changes during the order-disorder transition in the two- and three-dimensional
systems of scalar nonconserved order parameters
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The order-disorder transition is studied in a system of a scalar nonconserved order parameter. We use this
well studied system to show that the application of the methods of topology and geometry reveals that our
knowledge of the kinetic pathways by which the order-disorder transition proceeds is far from being complete.
We show that in two-dimensional~2D! and 3D systems there are three dynamical regimes in the evolution of
the system: early, intermediate, and late. In the intermediate regime two length scales govern the behavior of
the system, whereas in the early and intermediate regime there is only one length scale. The size distribution
of the domain area indicates the pathway by which the domains change their size. There are only two types of
domains in a 2D system: circular and elongated with well defined characteristics~scaling of the area with the
contour length! which in the late regime do not depend on time after rescaling by the average area and contour
in the system. The elongated domains continuously change into circular domains reducing in this way the
overall dissipation in the system. In order to reach a Lifshitz-Cahn-Allen~LCA! late stage regime the number
of elongated domains must be strongly reduced. In the intermediate regime the number of elongated domains
is large and simple LCA scaling does not hold. In a 3D symmetric system we always have a bicontinuous
structure that evolves by cutting small connections. The late stage regime seems to be associated with the
appearance of the preferred nonzero mean curvature. The early-intermediate regime crossover is associated
with the saturation of the order parameter inside the domains, while the intermediate-late stage regime cross-
over is related to the global breaking of the6 order parameter symmetry~marked by the appearance of the
nonzero mean curvature but still zero average magnetization!. The times for the occurrence of these crossovers
do not depend on the size of the system.

DOI: 10.1103/PhysRevE.66.046121 PACS number~s!: 64.60.Cn, 68.55.Jk, 75.40.Gb, 75.40.Mg
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I. INTRODUCTION

Interfaces are ubiquitous in nature as they invariably fo
during typical phase transitions, such as paramagne
ferromagnetic, liquid-gas, liquid-solid, isotropic-nemat
uniform blend–separated blend, etc. In each case during
transition the domains of one phase appear and together
the domains an interface can be defined. Despite the fact
the kinetic pathways crucially depend on the curvature of
interfaces present in the system, not much attention has
paid in the domain of phase transitions to the morpholo
~topology and geometry! of these interfaces. This paper pr
sents a thorough investigation of the system morphology
the simplest case of the phase transition, order-diso
phase transition in the system of the scalar nonconse
order parameter, and is a long version of our previous s
paper@1#. Such system is a toy model for the paramagne
ferromagnetic phase transition.

As we have already stated, the simplest example o
system exhibiting the phase ordering kinetics@2–5# is a fer-
romagnet quenched from a temperature above its crit
temperatureTc to a temperature belowTc . After lowering
the temperature, such a system is brought into thermo
namically unstable, two-phase region. The two phases
characterized by positive and negative magnetizations,
spectively. The system starts to evolve towards one of
two equilibrium states. Since both the coexisting6 phases
1063-651X/2002/66~4!/046121~13!/$20.00 66 0461
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are equally likely to appear, the system consists of doma
of these two phases. During the phase ordering process
domains coarsen and the system orders over larger and la
length scales. The coarsening process is associated with
topological transformation of the interface. In order to d
scribe quantitatively the latter one uses the Euler charac
istic and/or genus, because they describe quantitatively
topology of the surface. The genusg of a closed surface is
equal to the number of holes in it. The Euler characteristic
defined asx52(12g). It is 2 for a sphere~sinceg50), 0
for a torus (g51), and22 for two tori joined by a handle
~passage! (g52). The Euler characteristic for a system
disjoint surfaces is equal to the sum of the Euler charac
istic of individual surfaces. If we join two surfaces by
passage the Euler characteristic of a system will change
22, which is easy to see. Let us take two spheres for wh
we havex54. If we join them by a passage we will get
single closed surface withx52. Therefore a passag
changedx of the system by22. If a droplet appears in a
system the Euler characteristic changes by12. Therefore
we have two typical topological elements: a droplet and
passage. Finally, it is possible to define the Euler charac
istic for the flat interface in a periodic box. Such surface
equivalent topologically to a tori and therefore its Euler ch
acteristic is zero. In our case of phase ordering the interf
between the1 domains and the2 domains has a large an
negative Euler characteristic at the beginning of the order
©2002 The American Physical Society21-1
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MARCIN FIAŁKOWSKI AND ROBERT HOŁYST PHYSICAL REVIEW E66, 046121 ~2002!
process, as the interface is highly interconnected and the
tial structure is bicontinuous. At the end of the process
Euler characteristic is12 or 0, since either we have at th
end a disappearing droplet of1 phase in the sea of2 phase
or a flat interface between6 phases.

The systems undergoing phase transitions~such as order-
disorder transition! often exhibit scaling phenomena@2–5#,
i.e., a morphological pattern of the domains at earlier tim
looks statistically similar to a pattern at later times ap
from the global change of scale implied by the growth
L(t)—the domain size. Quantitatively it means, for examp
that the correlation function of the order parameter~density,
concentration, magnetization, etc.!,

g~r ,t !5g„r /L~ t !…, ~1.1!

where

L~ t !;tn, ~1.2!

the characteristic length scale in the system, scales alge
ically with time t with the exponentn different for different
universality classes@2#. The Fourier transform of the corre
lation function gives the scattering intensity that can be r
resented by the following scaling form:

I ~k,t !5Ld~ t !Y„kL~ t !…, ~1.3!

wherek is the scattering wave vector andY is the scaling
function. Assuming the scaling hypothesis we can also de
all the scaling laws for different morphological measur
such as the Euler characteristicx(t), surface areaS(t), the
distribution PH(H,t) of the mean, and the Gaussia
PK(K,t). It is interesting to note that these morphologic
measures allow a very detailed test of the scaling as we s
present in the paper. They also allow one to study the kin
pathways by which various scaling regimes are achieved

Despite the fact that the two-dimensional~2D! system of
scalar noncoserved order parameter has been studied fo
most 40 years@6#, surprisingly, its morphology has only bee
determinedquantitativelyrecently@7#. The domain structure
can be in a first approximation viewed as a cellular structu
Cellular structures in 2D are known in many areas of scie
@8#. Whether we consider bee’s honeycomb, soap foam~or
froth! @9–11#, defect condensation of charge density wav
@12#, territory of fire ants @13#, administrative divisions
@14,15#, superclusters of galaxies~large scale structure of th
universe! @16#, 2D sections of polycrystalline material
chemical patterns on surfaces or crack structure in ceram
@17#, we find characteristic morphological patterns. Here
show that the domain pattern of the phase ordering syst
in 2D obtained in our computer simulations defines a n
2D morphological class. Moreover, we will show how
obtain this morphology from the Jaynes maximum entro
principle @18# and show how to apply this principle to othe
2D systems undergoing phase transitions.

Some progress in the study of morphology has been d
in recent years both in the theoretical and experimental s
ies. The topological methods have been used for the cla
fication of the extremely complex structures correspond
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to the local minima of the Landau-Ginzburg Hamiltonia
@19–22# for the surfactant systems. It has been also sho
that the phase transitions in the systems of surfactants~or in
general in systems with internal surfaces! are accompanied
by strong topological fluctuations that manifest themselve
a large peak of the standard deviation of the Euler charac
istic at the transition and in the jump in the characteris
itself @23–26#. Such topological fluctuations have been al
determined in the experiments for surfactant systems@27–
29# since they strongly affect the rheological properties
such systems. Another application has been found in
study of the droplet-bicontinuous morphological transform
tion in the homopolymer blends@30,31# and the spinodal
decomposition in mixtures@30,32,33#. The summary of other
applications of the morphological measures can be foun
the review articles@34–40#. The morphological studies in
the experiments have been hampered by the lack of adeq
methods for the reconstruction of three-dimensional ima
during the phase transitions. A great progress has been
recently. Jinnaiet al. @41–43# from Hashimoto group devel
oped a technique for the direct visualization of the interfa
in the 3D polymer system undergoing spinodal decompo
tion. From the 3D image obtained by the use of the la
scanning confocal microscopy~LSCM! the authors were able
to obtain the curvature distribution of the interface and
scaling of the Gaussian and mean curvatures. The same
thors combined the methods for the 3D reconstruction de
oped in LSCM experiments with spinodally decomposi
blends and transmission electron microtomography to v
alize the 3D structure of the gyroid phase in the triblo
copolymer system and to measure its distribution of cur
tures@44#. It is the purpose of this paper to show that top
logical and geometrical methods are indispensable tool
the study of phase transitions even in the simplest sys
such as a 2D and 3D phase ordering systems of the sc
nonconserved order parameter.

The paper is organized as follows. In the following se
tion we will discuss the equations for the scaling of vario
morphological quantities. In Sec. III we will describe in d
tail the methods that allow computation of the interface ar
Euler characteristic, and the Gaussian and mean curvat
Next we will present the results for the order-disorder ph
transitions in a 2D and a 3D system of the scalar nonc
served order parameter using the Landau-Ginzburg free
ergy and fully dissipative dynamics. The concluding rema
are contained in the summary.

II. ORDER-DISORDER TRANSITION: GROWTH
EXPONENT AND DYNAMICAL SCALING

The dynamics of the system of the nonconserved sc
order parameterf(r ,t) following a quench from the tem
peratureT5` to T50 is governed by the time depende
Ginzburg-Landau~TDGL! equation@2,6,45#:

]f~r ,t !

]t
52

dF@f#

df
, ~2.1!

with the free-energy functional taken to have the form of t
coarse-grained Ginzburg-Landau free energy,
1-2
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MORPHOLOGICAL CHANGES DURING THE ORDER- . . . PHYSICAL REVIEW E 66, 046121 ~2002!
F@f#5E dr F1

2
u“f~r !u21 f „f~r !…G . ~2.2!

The bulk potentialf (f) has the Landau-Ginzburg double
well structure

f ~f!5
1

4
f42

1

2
f2, ~2.3!

with two degenerate minima atf561. The TDGL equation
with the potential given by Eq.~2.3! leads to the following
kinetic equation governing the time evolution of the fie
f(r ,t):

]

]t
f~r ,t !5Df~r ,t !1f~r ,t !2f3~r ,t !, ~2.4!

whereD stands for the Laplacian.
The early stage of the phase ordering kinetics is gover

by the saturation of the order parameter inside the doma
The phase interface then follows the bulk evolution and
exponentn50.5 results simply from the linearized TDG
equation. If we drop thef3 term in Eq.~2.4!, the solution
fk(t) in the Fourier space reads

fk~ t !5fk~0!exp@2~k221!t#, ~2.5!

wherek5uku; the functionfk(0) is assumed to be a con
stant, and this corresponds to the initial conditions with
uncorrelated fieldf(r ,0). Since in the early stage the ave
age domain size is very small, we havek@1 and the argu-
ment of the exponent in Eq.~2.5! can be approximated by
2k2t. The linearized equation~2.4! describes then a purel
diffusive process and its real space solution is written as

f~r ,t !;exp~2r2/4t ![exp$2@r /L~ t !#2%. ~2.6!

In view of the above solution, it is clear why in the ear
stage of the evolution the characteristic length scaleL(t)
grows ast1/2.

Once the domains are saturated the system is suppos
enter the late stage scaling regime, where the whole ev
tion of the system is governed by one length scaleL(t), the
size of the domains. It follows from Eq.~2.2! that, when
inside the domainf561, i.e., the domains are saturate
the coarsening of the domains is driven by the curvature
the domains@2,6#. The interface is defined byf(r ,t)50 and
the local velocity of the interface is given by the local me
curvature of the interface,H:

v52H. ~2.7!

It follows that all convex domains decrease their size. T
typical time needed to close the domain of sizeL(t) is t
;L(t)/v5L(t)/Hchar , where Hchar is the characteristic
curvature in the system. Now ifHchar;1/L(t), we find
L(t);t1/2 in the late stage regime. Please note that we n
a characteristic mean curvature scaling in order to have
growth exponent 0.5.
04612
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The scaling relations~1.1!, ~1.2!, and~1.3! have been re-
cently supplemented by additional scaling relations for
morphological measures@1#. Assuming the scaling hypoth
esis, we can derive all the scaling laws for different morph
logical measures, such as the Euler characteristicx(t), sur-
face areaS(t), the distributionPH(H,t) of the mean, and the
GaussianPK(K,t) curvatures. The scaling hypothesis im
plies the following scaling laws for any phase separati
ordering symmetric system irrespective of the universa
class:

S~ t !;L~ t !21, ~2.8!

x~ t !;L~ t !2d, ~2.9!

PH~H,t !5PH* „HL~ t !…/L~ t !, ~2.10!

PK~K,t !5PK* „KL~ t !(d21)
…/L~ t !(d21), ~2.11!

where d is the dimensionality of the system. The first la
follows from the congruency of the domains@46#. We can,
namely, treat the domains as spheres of diameterL(t) touch-
ing each other. The total number of domains,nd , is then
nd5@L0 /L(t)#3, whereL0 denotes linear size of the system
Since the total area of the interface is proportional to
productndL(t)2, the scaling relation~2.8! is obtained. The
scaling law ~2.9! results from the Gauss-Bonnet theore
that relates the Euler characteristic to the Gaussian curva
and the surface area,

x5gE K~S!dS, ~2.12!

where *dS denotes the integral over the surface, andg is
twice the inverse of the volume of a (d21)-dimensional
sphere of unit radius (g51/2p for d53). Since

K~ t !;L~ t !2d11 ~2.13!

and S(t);L(t)21, we find scaling~2.9!. The probability
densitiesPH(H,t) andPK(K,t) are normalized to unity. The
relation ~2.10! is a simple consequence of the scaling of t
mean curvature

H~ t !;L~ t !21. ~2.14!

The last relation results from the scaling~2.13! of the Gauss-
ian curvature. Note that ford52, the scalings~2.10! and
~2.11! are equivalent. If true scaling exists in the system,
these scaling relations should be satisfied.

III. MORPHOLOGICAL MEASURES
AND COMPUTATIONAL TOOLS

Since the 3D morphology is more complicated to d
scribe, we will start by describing the methods for this ca
and at the end we will briefly mention the methods for t
2D morphologies.

The scalar order parameter giving the6 magnetization,
f(r ,t) is represented on a cubic lattice. The function
F@f(r )# @Eq. ~2.2!# becomes a functionF($f i , j ,k%) of N3
1-3
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MARCIN FIAŁKOWSKI AND ROBERT HOŁYST PHYSICAL REVIEW E66, 046121 ~2002!
variables, whereD5(N21)h is the linear dimension of the
cubic lattice,h is the lattice spacing, and$f i , j ,k% stands for
the set of all variables of the function. Each variablef i , j ,k
represents the value of the fieldf(r ) at the point r
5( i , j ,k)h, wherei , j ,k51, . . . ,N. In order to get rid of the
boundary effects we impose the periodic boundary con
tions f1,j ,k5fN, j ,k , f2,j ,k5fN11,j ,k , f3,j ,k5fN12,j ,k ,
f0,j ,k5fN21,j ,k , f21,j ,k5fN22,j ,k , and similar fory andz
directions. The points outside the unit cell, given by the
riodic boundary conditions, enter the functional through
calculations of derivatives of points at the boundary and n
the boundary of the lattice, i.e., when at least one of
indices i, j or k is equal to 1, 2,N21 or N. The periodic
boundary conditions also simplify the computations of va
ous morphological measures. In the periodic box the surf
is, in fact, closed. For example, a plane is topologica
equivalent to a torus. Therefore the standard definition of
genus as a number of holes in a closed surface can be u

The surface separating6 domains is given by the follow-
ing equation

f„r5~x,y,z!…50, ~3.1!

the position of the surfacef(r )50 is determined by inter-
polation between the neighboring points of different sign
is highly unlikely, because of numerical accuracy, tha
value of the fieldf(r )5f i , j ,k at the pointr5( i , j ,k)h on the
lattice is exactly zero. Therefore the points of the surfa
have to be localized by interpolation between the neighb
ing sites of the lattice. Iff„r15( i , j ,k)h…5f i , j ,k,0 and
f„r25( i 11,j ,k)h…5f i 11,j ,k.0, then the point r0, for
which f(r0)50, must lie between the pointsr15( i , j ,k)h
and r25( i 11,j ,k)h. Moreover, the location ofr0 depends
on the values of the field at the pointsr1 and r2 in the
following way:

r05S i 1
uf i , j ,ku

uf i , j ,k2f i 11,j ,ku
, j ,kDh. ~3.2!

All points of the surfacef(r )50 are found by the inter-
polation of the points located between the neighboring lat
sites. Due to the discretization, the unit cell is divided
(N21)3 small cubes of the size of the lattice spacingh. The
surfacef(r )50 passing through a small cube cuts a polyg
out of it. The edges of the polygons are formed by inters
tion of the surface and the faces of the small cube@21#. The
edges can be approximated by straight lines. Unfortuna
the cube lattice decomposition scheme suffers from arbit
choices, i.e., such representation of the surface leads to
biguous situations. An alternative way to resolve the ambi
ous surface approximations is to divide the original latt
not into cubes, but into more primitive subunits. Each cu
can be divided into six five-vertex pyramids@40#. Here we
use the simplest method based on the division of elemen
cubes into tetrahedrons. When the tetrahedron decompos
is employed, the surface inside such simplex can be re
sented by only two cases~polygons!: a triangle or a tetragon
as shown in Fig. 1. From the decomposition described ab
we can easily get the Euler characteristicx. The practical
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way of computingx is related to the coverage of the surfa
with polygons. Then, the calculation of the Euler charact
istic is straightforward when it is based on the Euler formu

x5NF1NV2NE , ~3.3!

whereNF , NV , andNE are the number of faces, vertice
and edges respectively, of all polygons cut by the surfa
The surface area is simply the area of all polygons cover
the surface. Finally we can use the same polygons to c
pute the curvatures. Before we do it we present anot
method, which although imprecise, is frequently used@21#.
From the differential geometry we have the following form
las for the curvatures.

H52
1

2
“•n52

1

2
“•S “f

u“fu D ~3.4!

and

K5
1

2
@~“•n!22~] inj !

2#, ~3.5!

FIG. 1. Two cases of the polygonal surface representation
single tetrahedron; a triangle~a! and a tetragon~b!. The black and
the white circles represent the points with the values off higher
and lower than the thresholdf0.
1-4
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MORPHOLOGICAL CHANGES DURING THE ORDER- . . . PHYSICAL REVIEW E 66, 046121 ~2002!
wheren is the vector normal to the surface at pointr , where
we calculate the curvatures, andnj is its j th component.
Thus using the whole distribution off we can compute the
distributions of curvatures. The errors produced by the us
the approximate formulas for the derivatives off are espe-
cially big if the spatial derivatives of the fieldf have sharp
peaks at the phase interface. This is a common situatio
the late-stage kinetics of the phase ordering process, w
the order parameter is saturated and the domains are s
rated by thin walls. There is, however, a simpler method t
involves the previously defined polygons. It comes from
tegral geometry and does not suffer from the problems m
tioned earlier.

Consider a polyhedron that is a discrete representatio
the phase interfacef(r )50 obtained in the triangulation
procedure. For each vertex of the polyhedron we can de
the angle deficit by

Ti52p2(
j 51

m

a i
j , ~3.6!

wherem is the number of triangles that meet ati th vertex
anda i

j is the angle between the two edges ofj th triangle at
this vertex~see Fig. 2!. The Gaussian curvature ati th vertex
is given by

Ki'Ti /Si , ~3.7!

whereSi is one-third of the area of the triangles. To pro
this formula, let us first show that the integral of the Gau
ian curvature over the surface regionS i ~over triangles shar-
ing the same vertex! is

E
S i

K~S!dS5Ti . ~3.8!

The total angle deficit of the polyhedron,T5($v i %
Ti is re-

lated to the number of its verticesNV , facesNF , and edges
NE ~Cartesian theorem! as

FIG. 2. A piece of polyhedron’s surface composed of triang
meeting at the vertexv i ; a i

j is the angle between two edges of th
j th triangle shearing the vertexv i andu i

j is the angle between th
faces of two adjacent triangles.
04612
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T52p~NV1NF2NE!. ~3.9!

On the other hand, the total integral from the Gaussian c
vature can be expressed by using the Gauss theorem:

2p~NV1NF2NE!5E
S
K~S!dS. ~3.10!

By using the fact that

E
S
K~S!dS5(

$v i %
E

S i

K~S!dS ~3.11!

and comparing Eq.~3.9! to Eq. ~3.10!, Eq. ~3.8! is deducted.
Now, by assuming that the Gaussian curvature is cons
within the regionS i , the formula~3.7! is obtained from Eq.
~3.8!.

The integral of the mean curvatureH over the surface
regionS i can be written as

E
S i

H~S!dS5H̃ i , ~3.12!

where

H̃ i5
1

4 (
j 51

m

l i
ju i

j ; ~3.13!

l i
j is the length of the edge ofj th triangle andu i

j is the angle
between two adjacent trianglesj and j 11 ~see Fig. 2!. As-
suming again the constancy of the mean curvature within
regionS i , its value can be evaluated as

Hi'H̃ i /Si . ~3.14!

Note that in Eq.~3.13! the anglesu i
j can have either sign

depending on the orientation of the surface of the poly
dron.

The curvaturek of the interface in two dimensions is ca
culated in a similar way. Consider a polygon consisting
verticesv i connected by edgesl i . Let us denote byl i the
length of the edge between (i 21)th andi th vertex. The cur-
vatureki at the i th vertex can then be approximated as fo
lows:

ki'2u i /~ l i1 l i 11!, ~3.15!

whereu i denotes the angle between two edges that mee
the vertexv i . Note also that the two-dimensional version
the Gauss-Bonnet theorem implies that the sum( iu i taken
over all vertices gives62p, where the sign depends on th
orientation of the polygon boundary.

IV. COMPUTER SIMULATIONS AND RESULTS

Equation ~2.4! has been solved on cubic 3D lattices
sizes 403, 503, and 1003 and quadratic 2D lattices of size
5122, 10242, and 20482. All the quantities computed in the
simulations have been averaged over 150 runs. A simple
ler integration scheme with time stepDt50.05 and mesh

s

1-5
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MARCIN FIAŁKOWSKI AND ROBERT HOŁYST PHYSICAL REVIEW E66, 046121 ~2002!
sizeDx51 has been used. The initial conditions have be
chosen from the uniform distribution of fieldf with zero
mean. In order to check the results against numerical artif
we have varied the mesh size betweenDx50.5 and 2 and
also used different numerical approximations for the Lapl
ian with no apparent changes in the obtained results.

At every time step we determine the position of the int
face separating the6 domains. The interface given by th
equationf(r )50 is located~on the cubic lattice! by the
linear interpolation of fieldf between the lattice points. W
find in 3D systems that after the initial transient time w
many separated interfaces we get into the regime where t
is a single surface in the system separatingf.0 domain
from f,0 domain. The6 domains percolate and the sy
tem is bicontinuous in 3D~Fig. 3! and we have many close
domains in 2D~Fig. 4!.

To deriveL(t) and the growth exponentn, we determine
the equal time correlation function: g(r ,t)
5^sgn@f(r ,t)#sgn@f(0,t)#& for which an approximate, ana
lytical formula exists, given by Otha, Jasnov, and Kawas
@47#:

g~r ,t !5
2

p
arcsin$exp@2r2/L~ t !2#%. ~4.1!

Fitting the simulation data to Eq.~4.1! we obtain the domain
sizeL(t).

A. 3D system: Domain size, curvatures, and the Euler
characteristic

It was found in Refs.@1,48# that the system described b
the TDGL equation exhibits two scaling regimes:~i! the
early regime where the characteristic domain sizeL(t) scales
with t0.5 and ~ii ! the intermediate regime whereL(t);t0.4.
The functionL(t) obtained from the relation~4.1! for the

FIG. 3. Snapshot of the interface separating thef,0 and
f.0 regions in the 3D ferromagnet undergoing the ph
separating/ordering process. During the whole evolution the sys
has a bicontinuos morphology with a single interface and two p
colating6 domains. The arrow indicates remainings of the pass
shortly after its breakage.
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system of size 1003 is shown in Fig. 5. The transition be
tween the early and the intermediate regimes was found t
marked by the saturation of the order parameter inside
domains. The crossover from the early to the intermed
stage occurs att1'8.5. The late-stage dynamics predicted
the Lifshitz-Cahn-Allen~LCA! theory with the growth expo-
nentn50.5 was not observed by us in 3D due to finite-si
effects, but it has been only recently observed for the sys
of 7003 size by Brown and Rikvold@49#. The authors cited
that the late stage in the 3D system is reached fort*150.
The growth of the domain size in the intermediate stage
not based on a single exponent. The effective exponen
this regime changes smoothly to 0.5 at the crossover t
t2'150 when the late stage begins. For the periodt1,t
,75, the effective exponent derived from the simulation
n50.4060.02.

e
m
r-
e

FIG. 4. Snapshot of the domain pattern in the 2D ferromag
undergoing the phase separating/ordering process. The black
white colors represent, respectively, domains with positive a
negative magnetizations.

FIG. 5. Log-log plot of the time dependence of the domain s
L(t) for the 3D system. The least-squares fit yields the effect
growth exponent 0.560.01 in the early regime and 0.460.02 in the
intermediate regime. The crossover time lnt1'2.1 is marked by the
saturation of the order parameter inside the domains@see Fig. 7~c!#.
1-6



in
b

ic
s

in
re

tw

a
g

-

ge

a

E
a

f
c

ks

p
e

m
p
he

n-
in-

ed

see

f
s

r-
to
o
ag

a

s
t-
nts

a-

MORPHOLOGICAL CHANGES DURING THE ORDER- . . . PHYSICAL REVIEW E 66, 046121 ~2002!
During the whole evolution the system has abicontinuous
morphology with a single interface and two percolating6
domains in a 3D symmetric ordering system. At the beg
ning of the process the interface is highly interconnected
passages and has a large and negative Euler characterist
the phase separation proceeds, the number of passage
creases, which results in the increase ofx. Eventually, at the
end of the process, the Euler characteristic is equal to 0 s
in the final equilibrium state there is only one phase cor
sponding to negative or positive magnetization.

The curvature on the passage’s neck is described by
principal radiiRn andRs , whereRn is the radius of the neck
and Rs denotes radius of the axial cross section of the p
sage’s surface. The radii have opposite signs and the ma
tude ofRn is much smaller thanRs . The local mean curva
ture on the neckH5(1/Rn11/Rs)/2'1/2Rn tends to infinity
as the neck narrows. Thus, the breaking of a single passa
accompanied by a rapid increase~or rapid decrease—
depending on whether the neck’s curvature (1/2Rn) is posi-
tive or negative! of the total mean curvaturêH&. When the
passage closes, its surface separates into two cone-sh
pieces. They are shown in Fig. 3~indicated by the arrow!.
Since both pieces have pointed endings, according to
~2.7!, they flatten out quickly towards the domain walls. As
result, the excess curvature caused by the breakage o
passage is abruptly reduced. In Fig. 6 the average mean
vature ^H& is plotted as the function of time. The pea
correspond to the breakages of single passages.

In Fig. 7 we showx(t), S(t), and^uf(t)u& as a function
of time for three system sizes, 503, 803, and 1003. As we can
see there is a clear change in the slope of lnx indicating the
change of the scaling regime. In the early regime the ex
nent for x is 23/2 (21.5360.05) and in the intermediat
regime it is21 (21.0460.05). ForS(t) we find the expo-
nent 21/2 (20.5160.01) in the first regime and22/5
(20.4060.01) in the second regime. The crossover ti
does not depend on the size of the system and from the
of ln^ufu& we find that it corresponds to the saturation of t

FIG. 6. Semilogarithmic plot of the time evolution of the ave
age mean curvaturêH& for a single run. The peaks correspond
the breakages of single passages. Three subsequent stages
breakage of the passage are indicated: narrowing of the pass
neck~a!, splitting of the passage into two separated pieces~b!, and
flattening out of the passage remainings towards the domain w
~c!.
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order parameter (61) inside the domains. We have additio
ally analyzed the scaling of the principal curvatures obta
ed from the equations H5(1/R111/R2)/2 and K
51/(R1R2) and found that̂ 1/R1&51/S*dS/R1;2^1/R2&
52(1/S)*dS/R2;1/L(t) in the early regime and;t21/10

in the intermediate regime. We have also determin
^K&/A^1/R1

2&^1/R2
2&;const in the early regime and;t21/2

in the intermediate regime. We also find that^K&;^1/
R1&^1/R2&;1/L(t)2 only in the early regime.

In Fig. 8 the histograms for the meanH and the Gaussian
K curvatures are shown for the early regime. As we can
from this figure the scaling relations~2.10! and ~2.11! are
satisfied withn50.5060.01. Scaling of the distributions o
H andK in the intermediate regime are shown in Fig. 9. A

f the
e’s

lls

FIG. 7. The Euler characteristicx ~a!, surface areaS~b!, and the
order parameter inside the domains^ufu& ~c! as a function of timet
for the 3D system. The symbols correspond to system sizeN
550 (s), 80 (h), and 100 (L). The dashed lines show the leas
squares fits in the two scaling regimes We find effective expone
of 23/2 and21 for x(t), and21/2 and22/5 for S(t). The cross-
over time, lnt1'2.1, is marked by the saturation of the order p
rameter inside the domains as is evident from the plot~c!.
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MARCIN FIAŁKOWSKI AND ROBERT HOŁYST PHYSICAL REVIEW E66, 046121 ~2002!
seen, for different times the data collapse onto single ma
curves. However, in contrast to the early regime, there is
single common length scale for the mean and Gaussian
vatures. The scaling relations~2.10! and ~2.11! are satisfied
with nH52/5 andnK53/10, respectively. Therefore, the cu
vatures H and K scale independently with two differen
length scalesLH(t) andLK(t) that vary with timet as

LH~ t !;t2/5, ~4.2!

LK~ t !;t3/10. ~4.3!

In terms of the two quantitiesLH(t) and LK(t) the scaling
relations~2.8!–~2.11! can be rewritten in the following form

S~ t !;LH~ t !21, ~4.4!

x~ t !;LK~ t !22LH~ t !21, ~4.5!

PH~H,t !5PH
!
„HLH~ t !…/LH~ t !, ~4.6!

PK~K,t !5PK
!
„KLK~ t !2

…/LK~ t !2. ~4.7!

Note that the second relation, Eq.~4.5!, expresses the Gaus
Bonnet theorem~2.12!, with the average Gaussian curvatu
K(t);LK(t)22.

In view of the four relations~4.4!–~4.7!, we see that the
length scaleLH(t) can be interpreted as thegeometrical
measure of the phase interface. It determines quantities
as the characteristic domain size, the area of the interf
and the mean curvature. The second length scaleLK(t) is

FIG. 8. Scaling of the meanH ~a! and GaussianK ~b! curvatures
~given in dimensionless units! in the early regime. The distribution
obey the scaling relations~2.10! and ~2.11! with the growth expo-
nentn50.5. The system size is 503.
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related to thetopology of the system and characterizes
Euler characteristic and the Gaussian curvature.

The existence of the two length scales in the intermed
regime has a simple physical interpretation and can be
plained in terms of the LCA theory, that links the velocity
the interface with its local curvature. Below, we demonstr
that it is related to the domain-neck decoupling processes@1#
taking place in the intermediate stage of the evolution. Le
denote bynd(t) the average number of domains in the sy
tem, which are assumed to be spheres of the diameterLH(t).
The Euler characteristic is then proportional to the produ

x~ t !;nd~ t !p~ t !, ~4.8!

wherep(t) is the number of necks or passages piercing
surface of the sphere~connectivity!. On the other hand, ac
cording to the Gauss-Bonnet theorem, the Euler characte
tic can be written asx(t);K(t)S(t). Since the total area
S(t) of the interface is proportional to the product of th
surface of the sphere of radiusLH(t) and the numbernd(t)
of the domains, we get

x~ t !;LK~ t !22nd~ t !LH~ t !2. ~4.9!

By comparing Eqs.~4.8! and ~4.9! we obtain

p~ t !;S LH~ t !

LK~ t ! D
2

. ~4.10!

FIG. 9. Scaling of the meanH ~a! and GaussianK ~b! curvatures
~given in dimensionless units! in the intermediate regime. The sca
ing relations~2.10! and ~2.11! are satisfied with the exponentsnH

50.4 andnK50.3, respectively. The system size is 503.
1-8
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MORPHOLOGICAL CHANGES DURING THE ORDER- . . . PHYSICAL REVIEW E 66, 046121 ~2002!
In the early regime we haveLH(t)5LK(t)5L(t);t1/2 and,
therefore,p(t);1 is independent of time. This means th
for each sphere of sizeL(t) we have the same number o
passages. In the intermediate regime we haveLH(t);t2/5

and LK(t);t3/10, which givesp(t);t1/5 indicating the de-
coupling between the domains and the connections join
them.

Since in the intermediate regime the average mean cu
ture is equal to zero and its distribution is peaked atH50
@Fig. 9~a!#, we deduce that the phase interface posse
large patches of the minimal-like~saddle like! shape@20,21#
with zero mean curvature. Furthermore, the apparency of
domain-neck decoupling process indicates that these a
are localized mainly at the necks connecting the doma
This means that in the intermediate regime the necks ar
‘‘partially frozen’’ state and slow down the kinetics of th
system. They evolve slower~with the exponentnK50.3)
compared to the domains following the evolution with t
growth exponentnH50.4. Of course, the LCA argumen
does not work in the intermediate regime. However, dur
the evolution, the morphology of the system changes
transforms successively from the ‘‘minimal-like’’ structur
@with the mean curvatureH(t) equal to zero# to the
‘‘constant-mean-curvature-like,’’ where the average me
curvature is proportional to the inverse of the characteri
size of the domains, i.e.,H(t);1/L(t). Once the morpho-
logical transformation is completed the LCA argument wo
and the late scaling with the growth exponentn50.5 is
reached. To sum up, in the intermediate regime the evolu
of the morphology of the phase interface splits off and
‘‘geometry’’ and the ‘‘topology’’ start to evolve indepen
dently with two different growth exponentsnH50.4 and
nK50.3, respectively. This process manifests as the brea
down of the scaling laws, Eqs.~2.8!–~2.11!. The existence of
the two length scales in the intermediate regime is a con
quence of the fact that the late-stage morphology and
early-stage morphology differ significantly and by no mea
can be transformed one into another by scaling operat
based on a single length scale.

In order to monitor behavior of the connectivity inde
p(t) during the phase ordering process we use the follow
relation:

p~ t !5 2
x~ t !

S~ t !3
, ~4.11!

which follows immediately from Eqs.~4.4!, ~4.5!, and~4.10!.
In Fig. 10 the time evolution of the quantityp(t), calculated
from Eq. ~4.11!, is plotted. As seen, in the early stagep(t)
hardly changes, which confirms the prediction thatp(t) re-
mains constant before the order parameter has satur
Next, in the intermediate stage, its value starts to grow. T
growth exponent is roughly 0.2. This value of the grow
exponent is in agreement with the predictionn52(nH
2nK)50.2 following from Eq. ~4.10!. We see thatp(t)
starts to saturate fort*100 signaling the end of the topolog
cal transformation discussed above. We also expect tha
valuep(t)'0.26 attained at the end of the intermediate sta
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does not change during the late stage~not observed in our
simulations due to the finite-size effects!.

It is worth noting here that the parameterp(t) calculated
from Eq. ~4.11! is related to some existing measures used
characterize features of minimal surfaces. Namely, the qu
tity G52S0

3/px0, referred to as the dimensionless grou
was applied@50# to describe various types of triply periodi
minimal surfaces@20,21# with respect to their topology.S0
and x0 denote here, respectively, the surface area and
Euler characteristic calculated for unit cell. Another quant
used to characterize minimal surfaces is the so-called ho
geneity indexH @51# defined asH5S3/2/u2pxu1/2V, with V
being the volume of the unit cell. The dimensionless gro
and the homogeneity index are linked with the parame
p(t) by the relationH;G 1/2;p21/2.

B. 2D system: Scaling regimes

In Fig. 11 the average domain size calculated from E
~4.1! for the 2D system of size 20482 is plotted. It follows
from Fig. 11 that the evolution of the system can be divid

FIG. 10. Time evolution of the connectivity indexp(t)
52x(t)/S(t)3 plotted on a log-log scale.

FIG. 11. Log-log plot of the time dependence of the domain s
L(t) for the 2D system of size 20482. The least-squares fit to th
data points in the early regime gives the growth exponentn50.49
60.01. In the intermediate regime, for the period of time 2
, ln t,4, n50.4060.02. In the late stage, fort*150, the growth
exponent isn50.4960.01. The transition between early and inte
mediate stages is marked by the saturation of the order param
inside the domains@see Fig. 12~c!#.
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MARCIN FIAŁKOWSKI AND ROBERT HOŁYST PHYSICAL REVIEW E66, 046121 ~2002!
into three scaling regimes: early, intermediate, and late.
least-squares fit yields the growth exponentn50.4960.01 in
the early stage andn50.4060.02 in the intermediate stag
for the period of time 2.1, ln t,4. The transition from the
early to the intermediate stage is marked by the saturatio
the order parameter inside the domains@see Fig. 7~c!#. The
late stage is reached when the growth exponentn attains the
value of 0.5 (0.4960.01) predicted by the LCA theory. Th
crossover timet2 from intermediate to the late stage
roughly t2'150. Note that the same value of the crosso
time t2 has also been found@49# for the 3D system.

In Fig. 12 the total number of objects~closed contours! in
the system,N(t), the total length of the phase interface~bor-
der line! C(t), and the saturation of the order parame
inside the domains,̂ufu&, are shown. The number of object
N, plays here a role of the 2D version of Euler characteris
The scaling relations forN(t) and C(t) have the following
form in 2D:

C~ t !;L~ t !21, ~4.12!

N~ t !;L~ t !22. ~4.13!

We have found that in the early stage the number of c
tours, N(t), grows with the effective exponentnN521.02
60.01, and the length of the interface with the expon
nC520.5160.01. The scaling relations~4.12! and ~4.13!
with the growth exponentn50.5 are therefore satisfied. I
the late regime, for lnt.6, we found thatN(t) scales with
the growth exponent20.9860.01 andC(t) scales with the
exponent20.4960.01. Thus, in the late stage the scali
relations are satisfied with the growth exponentn50.5. In
the intermediate stage the growth exponent changes gr
ally from the value of 0.4 at the beginning to 0.5 as t
evolution enters the late regime. However, for the period
time t1,t,55 the slope of the curves plotted in Figs. 12~a!
and 12~b! do not change much and one may determine
fective exponents forN(t) andC(t). Least-squares linear fit
to the data points yieldnN520.8460.02 andnC520.41
60.01. This means that the scaling holds with a good
proximation in the intermediate regime with the effecti
growth exponentn50.4.

The growth exponent 0.4 obtained for the intermedi
regime indicates slowing down of the evolution after t
early stage. As in the case of the 3D system analyzed in
preceding section, this fact can be explained by the morp
ogy of the domain pattern formed after the order param
has saturated inside the domains. In the early stage the
lution of the system is diffusive and the exponent 0.5 follo
from Eq. ~2.6!. Once the magnetization saturates and
domain walls get thin, further evolution of the system
driven by the curvature of the interface. As we shall dem
strate in the following section, at the beginning of the int
mediate stage, the domains mostly have elongated sha
The phase interface is composed of great amount of im
bile, almost straight lines~of zero curvature!, that slow down
the curvature-driven kinetics.
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C. Domain size distribution

In order to study the shapes of the domains we have
angulated them and computed for each domain its areas and
length of the interfacel at each time step of the evolution
Next we computed the average values of their area and
terface length,sav(t) and l av(t), as a function of time. We
have found that the shape of the domains exhibit the follo
ing scaling relation:

FIG. 12. The total number of objectsN ~a!, the total length of
the borderlineC ~b!, and the saturation of the order parameter ins
the domains,̂ ufu& ~c!, as functions of timet for the 2D system of
size 20482. The dashed lines represent the least-squares fits in
three scaling regimes. The crossover time, lnt1'2.1, between early
and intermediate stages is marked by the saturation of the o
parameter inside the domains. In the early stage the effec
growth exponents arenN521.0260.01 andnC520.5160.01; in
the intermediate stage~for ln t1,ln t,4) nN520.8460.02 and
nC520.4160.01; in the late stage, for lnt.6, nN520.9860.01
andnC520.4960.01.
1-10
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MORPHOLOGICAL CHANGES DURING THE ORDER- . . . PHYSICAL REVIEW E 66, 046121 ~2002!
l / l av~ t !;@s/sav~ t !#n, ~4.14!

where the exponentn depends on whether the domain ares
is above or below the averagesav(t):

n5H 0.5060.01 if s,sav~ t !

0.8860.01 if s.sav~ t !.
~4.15!

This scaling relation is shown in Fig. 13, where we ha
taken all the domain areas and interface lengths for th
different times (t5400,500,1100) and more than 330 0
domains. It is remarkable that all the domains for all tim
fall onto a single master curve showing fairly high degree
regularity in the morphology of the system. In principle, f
a highly irregular~chaotic! morphology we would see, in
stead of a single curve, many points scattered all over
diagram. This equation also shows that the system unde
ing the phase ordering kinetics exhibits scaling at the leve
the shapes of the domains. It means that the shapes o
domains at earlier times look statistically similar to t
shapes at later times, apart from the global change of
average area and interface length.

It follows from Fig. 13 and Eq.~4.15! that in the late-
stage regime we find in the system two types of doma
large and elongated ones with contour length proportio
~roughly! to their area (l 1/0.88;s) and circular domains for
which l 2;s. The evolution follows a path along which th
elongated domains change continuously into circular
mains. In this way dissipation is reduced. In order to see
let us consider the local energy change per unit time and
length of the domain interface. This quantity is proportion
@2# to v2, where the local velocity of the interface,v
52H. Integratingv2 over the interface length of a doma
gives the dissipation per domain. For a circular domain t
dissipation is proportional to 1/l ~sinceH;1/L;1/l ), while
for the elongated domain it is 1/l 0.14. Therefore the change o
shape of the domains during this evolution follows the
netic pathway along which the dissipation is continuou
reduced.

FIG. 13. The scaling relation between the interface lengthL and
the domain areaA during the process of phase ordering in 2D sy
tem. On this plot we put the results obtained for about 330 0
domains collected for three different times (t5400,t5500,t
51100). The master curve consists of two straight lines@Eqs.
~4.14! and ~4.15!# indicating two types of domains in the system
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We have determined the distribution of sizes of the d
mains,p(s,t). Following the conjecture made by Jaynes@18#
we assumed that the distribution can be obtained from
maximum entropy principle with some additional co
straints. We have found that the entropy@18#

S~ t !52E dsp~s,t !ln p~s,t ! ~4.16!

is maximized at each instant of timet subject to the condition

E dsp~s,t !~s/ l !m5~fixed!, ~4.17!

wherem52 and the dependence ofl on s, which reflects the
system dynamics, is given by Eqs.~4.14! and ~4.15! . The
exponentm can be deduced from the LCA theory. Becau
s/ l;L(t) ~domain size! we conclude that the constraint se
the characteristic timet;„L(t)…m;(s/ l )m proportional to
the time needed to close the domain of sizeL(t). From the
LCA theory we havet;L2 and consequentlym52. Simi-
larly, for other systems undergoing phase transitions the
ponentm should follow from the growth of the average do
main sizes. In this sense our analysis is robust and
restricted to the specific system under study.

From the maximization of the entropyS(t) @Eq. ~4.16!#
subject to the constraint~4.17!, we find

p~s,t !5C~ t !exp@2l~ t !~s/ l !m#. ~4.18!

Using the scaling principle we find the distribution in th
rescaled form:

p~x!5C* exp@2l* ~x/y!m#, ~4.19!

where x5s/sav(t), y5 l / l av(t), C* and l* are constants
independent of time, andm52. Equation~4.19! is satisfied
in the late-stage regime as shown in Fig. 14, where the
tribution p(x) obtained from the simulations is plotted. Th
gives a strong support to the application of maximum e
tropy principle to the kinetics of phase transition. Other d
tributions such asp1( l ,t) can be obtained fromp(s,t) by the

-
0

FIG. 14. The distribution function for the domain area in t
late-stage regime. It is shown in the scaled formp(A,t);exp
@2a(x/y)m# with m52, x5A/Aav , andy5L/Lav for three different
times ~see Fig. 13!. This fit strongly support the MEP conjectur
with the entropy ofp(A,t) @Eq. ~4.16!#.
1-11
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MARCIN FIAŁKOWSKI AND ROBERT HOŁYST PHYSICAL REVIEW E66, 046121 ~2002!
change of variables, i.e.,p1( l ,t)5p(s( l ),t)ds( l )/dl. We
note that the choice of the distribution in Eq.~4.16! is not
trivial. For example, a possible choice ofp1( l ,t) would lead
to the disagreement with our computer simulations. T
analysis presented here for the kinetics of phase transit
leads additionally to the definition of the 2D morpholog
class that can be characterized by two exponents (m andn).
Equations~4.16! and ~4.17! form the basis of the genera
principle which governs the form of the distribution functio
while Eqs. ~4.14! and ~4.15! are characteristic for a give
system.

V. SUMMARY

We have investigated the phase separating/ordering
cess in the 2D and 3D systems with nonconserved sc
order parameter. In our studies we have applied tools ba
on the topology and geometry of the phase interface.
have found that the evolution of the 2D and 3D systems
be divided into three regimes: early, intermediate, and late
the early stage the evolution is diffusive and the dom
growth is characterized by the exponentn'0.5. The transi-
tion from the early to the intermediate stage is marked by
saturation of the order parameter inside the domains.
crossover timet1'8.6 is similar for the 2D and 3D system
In the intermediate stage the kinetics is driven by the cur
ture of the interface. It is slowed down, which manifests
the change of the effective growth exponentn from 0.5 in the
early stage to, approximately, 0.4 at the beginning of
intermediate stage. This effect is due to the morphology
the domain structure formed at the end of the early stage
the 3D system the phase interface possesses large patch
flat surfaces of minimal-like shape with zero local mean c
vature. In the 2D system the domains have mostly elonga
shapes with the borderline composed of a large numbe
almost straight lines. These immobile zero-curvature pie
of the interface are responsible for the slowing down of
phase separating/ordering kinetics taking place in 2D and
in the intermediate stage.

The observed scaling properties of the 3D system in
intermediate stage can be described in terms of two len
scales LH(t) and LK(t). They characterize, respectivel
scaling of the distributions of the meanH and GaussianK
curvatures.LH(t) varies with the time ast0.4 and is related to
the geometricalproperties of the system such as the aver
size of the domains, the surface area, and characteristi
dius of the curvature. The second length scaleLK(t);t0.3 is
associated with thetopological features of the system’s in
terface and determines its Euler characteristic and the Ga
ian curvature. The appearance of the two length scale
related to the domain-neck decoupling process and accom
nies the morphological transformation from the minimal-li
structure formed at the early stage to the constant-me
curvature-like structure, which is characteristic of the la
stage dynamics. Although both the early- and the late-st
morphologies are bicontinuos, they differ significantly a
the system cannot be brought from the early stage to the
stage by simple scaling. The topological changes can
monitored by the connectivity indexp(t) that remains con-
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stant in the early and late regimes, and grows with the ex
nent 0.2 in the intermediate stage.

In the 2D system the transition from the intermediate
the late stage is also associated with the transformation o
domain morphology. Namely, at the beginning of the int
mediate stage the elongated domains outnumber the circ
ones. In the process the elongated domains continuo
change into circular domains reducing in this way the ove
dissipation in the system. In contrary to the 3D system,
do not have two length scales in 2D. This is understood si
the GaussianK and the meanH curvatures reduce to on
curvature k in two dimensions and the scaling relation
~2.10! and~2.11! become equivalent. However, in the case
elongated domains forming a system of meandering fing
~dendrits!, two characteristic lengths are present, i.e.,
characteristic width and length of the fingers. Thus, the tra
formation of the typical domain shape from elongated
circular one~based on one characteristic length scale—
size of the domain! is linked with elimination of one of the
two length scales appearing in the intermediate stage.

The intermediate-late stage regime crossover is relate
the global breaking of the6 order parameter symmetry
which is marked by the appearance of the nonzero m
curvature but still zero average magnetization. Both the
and 3D systems reach the late-scaling regime att2'150.

The topology and the geometry of the interfaces in ph
separating/ordering systems are accesible in the laser s
ning confocal microscopy~LSCM! experiments~Refs.@41–
44#!. It shows that developing theoretical tools in this dire
tion is relevant for experiments.

The methods presented in the paper are complementa
the standard tools, such as determination of the correla
function. In principle, one can even determine from the sh
distance behavior of the correlation function the average a
per unit volume and the averaged curvatures. Such proce
has been already applied in light scattering experime
~standard technique! ~Ref. @52#!. We hope that in the future
one can combine both approaches and find more com
points, i.e., to see where the information about topology a
geometry of interfaces is hidden in the correlation functio

The methods presented in the paper are generic, i.e.
applicable to any system undergoing kinetics of phase tr
sition. In fact, we have decided to put on our web page@53#
the source code~free of charge! to be used for the determi
nation of 3D and 2D morphology in systems with intern
surfaces.

The use of the methods based on the geometry and to
ogy of the interface has revealed that our knowledge of
kinetic pathways by which the order-disorder transition p
ceeds is far from being complete, even in the case of w
studied system of a scalar nonconserved order paramete
believe that the application of the morphological metho
will be also fruitful in the study of phase transitions in oth
systems where the interface separating two phases exis
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