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The order-disorder transition is studied in a system of a scalar nonconserved order parameter. We use this
well studied system to show that the application of the methods of topology and geometry reveals that our
knowledge of the kinetic pathways by which the order-disorder transition proceeds is far from being complete.
We show that in two-dimension&D) and 3D systems there are three dynamical regimes in the evolution of
the system: early, intermediate, and late. In the intermediate regime two length scales govern the behavior of
the system, whereas in the early and intermediate regime there is only one length scale. The size distribution
of the domain area indicates the pathway by which the domains change their size. There are only two types of
domains in a 2D system: circular and elongated with well defined characte(staling of the area with the
contour lengthwhich in the late regime do not depend on time after rescaling by the average area and contour
in the system. The elongated domains continuously change into circular domains reducing in this way the
overall dissipation in the system. In order to reach a Lifshitz-Cahn-AL&A) late stage regime the number
of elongated domains must be strongly reduced. In the intermediate regime the number of elongated domains
is large and simple LCA scaling does not hold. In a 3D symmetric system we always have a bicontinuous
structure that evolves by cutting small connections. The late stage regime seems to be associated with the
appearance of the preferred nonzero mean curvature. The early-intermediate regime crossover is associated
with the saturation of the order parameter inside the domains, while the intermediate-late stage regime cross-
over is related to the global breaking of the order parameter symmetfynarked by the appearance of the
nonzero mean curvature but still zero average magnetizafitve times for the occurrence of these crossovers
do not depend on the size of the system.
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[. INTRODUCTION are equally likely to appear, the system consists of domains
of these two phases. During the phase ordering process the
Interfaces are ubiquitous in nature as they invariably formdomains coarsen and the system orders over larger and larger
during typical phase transitions, such as paramagnetidength scales. The coarsening process is associated with the
ferromagnetic, liquid-gas, liquid-solid, isotropic-nematic, topological transformation of the interface. In order to de-
uniform blend—separated blend, etc. In each case during theeribe quantitatively the latter one uses the Euler character-
transition the domains of one phase appear and together witktic and/or genus, because they describe quantitatively the
the domains an interface can be defined. Despite the fact thadpology of the surface. The gengsof a closed surface is
the kinetic pathways crucially depend on the curvature of thequal to the number of holes in it. The Euler characteristic is
interfaces present in the system, not much attention has beelefined asy=2(1—g). It is 2 for a spherdsinceg=0), 0
paid in the domain of phase transitions to the morphologyfor a torus ¢=1), and—2 for two tori joined by a handle
(topology and geometjyof these interfaces. This paper pre- (passage(g=2). The Euler characteristic for a system of
sents a thorough investigation of the system morphology inlisjoint surfaces is equal to the sum of the Euler character-
the simplest case of the phase transition, order-disorddstic of individual surfaces. If we join two surfaces by a
phase transition in the system of the scalar nonconservesassage the Euler characteristic of a system will change by
order parameter, and is a long version of our previous short2, which is easy to see. Let us take two spheres for which
paper[1]. Such system is a toy model for the paramagneticwe havey=4. If we join them by a passage we will get a
ferromagnetic phase transition. single closed surface withy=2. Therefore a passage
As we have already stated, the simplest example of @hangedy of the system by—2. If a droplet appears in a
system exhibiting the phase ordering kinefi2s-5] is a fer-  system the Euler characteristic changes-bg. Therefore
romagnet quenched from a temperature above its criticave have two typical topological elements: a droplet and a
temperaturel to a temperature belovi.. After lowering  passage. Finally, it is possible to define the Euler character-
the temperature, such a system is brought into thermodyistic for the flat interface in a periodic box. Such surface is
namically unstable, two-phase region. The two phases arequivalent topologically to a tori and therefore its Euler char-
characterized by positive and negative magnetizations, reacteristic is zero. In our case of phase ordering the interface
spectively. The system starts to evolve towards one of théetween the+ domains and the- domains has a large and
two equilibrium states. Since both the coexistingphases negative Euler characteristic at the beginning of the ordering
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process, as the interface is highly interconnected and the inte the local minima of the Landau-Ginzburg Hamiltonian
tial structure is bicontinuous. At the end of the process th¢19-22 for the surfactant systems. It has been also shown
Euler characteristic is-2 or 0, since either we have at the that the phase transitions in the systems of surfact@nts

end a disappearing droplet ef phase in the sea of phase general in systems with internal surfacese accompanied

or a flat interface betweett phases. by strong topological fluctuations that manifest themselves in
The systems undergoing phase transitigh as order- a large peak of the standard deviation of the Euler character-
disorder transitionoften exhibit scaling phenomen&-5|, istic at the transition and in the jump in the characteristic

i.e., a morphological pattern of the domains at earlier timestself [23—26. Such topological fluctuations have been also
looks statistically similar to a pattern at later times apartdetermined in the experiments for surfactant syst¢2Ts-

from the global change of scale implied by the growth of29] since they strongly affect the rheological properties of
L (t)—the domain size. Quantitatively it means, for example,such systems. Another application has been found in the
that the correlation function of the order parametiansity,  study of the droplet-bicontinuous morphological transforma-

concentration, magnetization, efc. tion in the homopolymer blendg30,31 and the spinodal
decomposition in mixture30,32,33. The summary of other
g(r,t)=g(r/L(1)), (1.1)  applications of the morphological measures can be found in
the review article§34—40. The morphological studies in
where the experiments have been hampered by the lack of adequate

methods for the reconstruction of three-dimensional images
during the phase transitions. A great progress has been done

the characteristic length scale in the system, scales algebrgqcently' Jinnagt al. [41-49 from Hashimoto group devel-

ically with time t with the exponenn different for different oped a technique for the direct visualization of the interface

: . : in the 3D polymer system undergoing spinodal decomposi-
un_lversallty_ cIas_seBZ]. The Fouf'er _transf(_)rm of the corre- tion. From the 3D image obtained by the use of the laser
lation function gives the scattering intensity that can be rep- . )
resented bv the following scaling form- scanning confocal microscogiSCM) the authors were able

y 9 9 ' to obtain the curvature distribution of the interface and the
1(k,t) =Lt Y(KL(t)) (1.3 scaling of the Gaussian and mean curvatures. The same au-

thors combined the methods for the 3D reconstruction devel-

wherek is the scattering wave vector antlis the scaling ©OPed in LSCM experiments with spinodally decomposing
function. Assuming the scaling hypothesis we can also deriv8l€nds and transmission electron microtomography to visu-
all the scaling laws for different morphological measures,alizé the 3D structure of the gyroid phase in the triblock
such as the Euler characterisji¢t), surface are&(t), the copolymer system and to measure its distribution of curva-
distribution P.(H,t) of the mean, and the Gaussian {Ureés[44l. Itis the purpose of this paper to show that topo-
P«(K,1). It is interesting to note that these morphological logical and geometrical mgthods are_lnd|spensable tools in
measures allow a very detailed test of the scaling as we shdff€ Study of phase transitions even in the simplest system
present in the paper. They also allow one to study the kinetigUch @s @ 2D and 3D phase ordering systems of the scalar
pathways by which various scaling regimes are achieved. nenconserved order parameter. _

Despite the fact that the two-dimensioraD) system of "€ paper is organized as follows. In the following sec-
scalar noncoserved order parameter has been studied for 42N We will discuss the equations for the scaling of various
most 40 year§6], surprisingly, its morphology has only been morphological quantities. In Sec. Il we will describe in de-

determinedquantitativelyrecently[7]. The domain structure tail the methodg that allow computat_ion of the interface area,
can be in a first approximation viewed as a cellular structureEUIer characteristic, and the Gaussian and mean curvatures.

Cellular structures in 2D are known in many areas of scienc&/€Xt We will present the results for the order-disorder phase
[8]. Whether we consider bee’s honeycomb, soap féam transitions in a 2D and a 3D system of the _scalar noncon-
froth) [9—11], defect condensation of charge density wavesServed order parameter using the Landau-Ginzburg free en-
[12], territory of fire ants[13], administrative divisions €9y @nd fully dissipative dynamics. The concluding remarks

[14,15, superclusters of galaxiéiarge scale structure of the a'€ contained in the summary.

universe [16], 2D sections of polycrystalline materials,

chemical patterns on surfaces or crack structure in ceramics Il. ORDER-DISORDER TRANSITION: GROWTH

[17], we find characteristic morphological patterns. Here we EXPONENT AND DYNAMICAL SCALING

show that the domain pattern of the phase ordering systems The gynamics of the system of the nonconserved scalar
in 2D obtained in our computer simulations defines a new, e, parameters(r,t) following a quench from the tem-

2D morphological class. Moreover, we will show how to peratureT=o to T=0 is governed by the time dependent

obtain this morphology from the Jaynes maximum entmpyGinzburg-LandaL(TDGL) equation[2,6,45;
principle [18] and show how to apply this principle to other Y

2D systems undergoing phase transitions. dP(r,t) OF[ ¢]
Some progress in the study of morphology has been done a 54 2.1
in recent years both in the theoretical and experimental stud-
ies. The topological methods have been used for the classwith the free-energy functional taken to have the form of the
fication of the extremely complex structures correspondingoarse-grained Ginzburg-Landau free energy,

L(t)~t", (1.2
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1 The scaling relation$l.1), (1.2), and(1.3) have been re-
F[(b]:f df{§|v¢(f)|2+f(¢(r)) : (2.2 cently supplemented by additional scaling relations for the
morphological measurdd]. Assuming the scaling hypoth-
The bulk potentialf(¢) has the Landau-Ginzburg double- esi_s, we can derive all the scaling laws for diffe_rent morpho-
well structure logical measures, such as the Euler characterigti¢, sur-
face are&(t), the distributionP(H,t) of the mean, and the

1 1 GaussianP(K,t) curvatures. The scaling hypothesis im-
f(p)= Z¢4— §¢2, (2.3 plies the following scaling laws for any phase separating/
ordering symmetric system irrespective of the universality
with two degenerate minima @t=+ 1. The TDGL equation  ¢1asS:
with the potential given by Eq2.3) leads to the following S(t)~L(t)"L 2.9
kinetic equation governing the time evolution of the field ' |
$(r,t): x(H)~L(t)~ 9, (2.9
J _
SGAD=A6 0+ D= (1), (24 Pu(H.O=PRHLOYL), (210

Pe(K,t) =P (KL(t)@ D)/ (t)@-D), (2.1
whereA stands for the Laplacian.

The early stage of the phase ordering kinetics is governedhered is the dimensionality of the system. The first law
by the saturation of the order parameter inside the domaingollows from the congruency of the domaif46]. We can,
The phase interface then follows the bulk evolution and thenamely, treat the domains as spheres of diametertouch-
exponentn=0.5 results simply from the linearized TDGL ing each other. The total number of domaims, is then
equation. If we drop thep® term in Eq.(2.4), the solution ng=[Lo/L(t)]%, whereL, denotes linear size of the system.

¢ (1) in the Fourier space reads Since the total area of the interface is proportional to the
) productnyL (t)?, the scaling relatior{2.8) is obtained. The
di(t) = ¢ (0)exd — (k== 1)t], (25  scaling law(2.9) results from the Gauss-Bonnet theorem,

_ . that relates the Euler characteristic to the Gaussian curvature
wherek=|k|; the function,(0) is assumed to be a con- and the surface area,

stant, and this corresponds to the initial conditions with the
uncorrelated fieldp(r,0). Since in the early stage the aver- B
age domain size is very small, we hak® 1 and the argu- x=v| K9S, (212
ment of the exponent in Eq2.5 can be approximated by . _
—k?t. The linearized equatiof2.4) describes then a purely Where /dS denotes the integral over the surface, ands
diffusive process and its real space solution is written as twice the inverse of the volume of al{-1)-dimensional
sphere of unit radiusy=1/27 for d=3). Since
r,t)~exp —ré/at)=exp{—[r/L(t)]%}. 2.6

B(r,t)~exp )=exp{—[r/L(t)]%} (2.6 K(t)~L(t)~o+1 2.13

In view of the above solution, it is clear why in the early

stage of the evolution the characteristic length sdae) densitiesP,,(H,t) andPy (K, ) are normalized to unity. The

grows ast ™ . . relation (2.10 is a simple consequence of the scaling of the
Once the domains are saturated the system is supposed 10 '

enter the late stage scaling regime, where the whole evoll'€an curvature

tion of the system is governed by one length s¢glB), the H(t)~L(t)" L. (2.14

size of the domains. It follows from Ed2.2) that, when

inside the domainp=*1, i.e., the domains are saturated, The last relation results from the scalif@j13 of the Gauss-
the coarsening of the domains is driven by the curvature ofan curvature. Note that fod=2, the scalingg2.10 and

the domaing2,6]. The interface is defined by(r,t)=0 and  (2.11) are equivalent. If true scaling exists in the system, all
the local velocity of the interface is given by the local meanthese scaling relations should be satisfied.
curvature of the interface:

and S(t)~L(t)"%, we find scaling(2.9. The probability

_ 5 Ill. MORPHOLOGICAL MEASURES
v=—H. (2.7) AND COMPUTATIONAL TOOLS

It follows that all convex domains decrease their size. The Since the 3D morphology is more complicated to de-
typical time needed to close the domain of slz@) ist  scribe, we will start by describing the methods for this case
~L(t)/v=L(t)/H¢har» Where Hep, is the characteristic and at the end we will briefly mention the methods for the
curvature in the system. Now iH.,,~21/L(t), we find 2D morphologies.

L(t)~tY?in the late stage regime. Please note that we need The scalar order parameter giving the magnetization,

a characteristic mean curvature scaling in order to have the(r,t) is represented on a cubic lattice. The functional
growth exponent 0.5. F[¢(r)] [Eq. (2.2)] becomes a functiofr ({¢; j «}) of N3
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variables, wher® = (N—1)h is the linear dimension of the .
cubic lattice,h is the lattice spacing, ang; ; .} stands for

the set of all variables of the function. Each variaidg;

represents the value of the fielgh(r) at the pointr

=(i,],k)h, wherei,j,k=1, ... N. In order to get rid of the ‘
boundary effects we impose the periodic boundary condi- “

tions 1 =bnjks  P2jk= Pniijks P3jk™ Pni2jks

boj k= DPN-1jk» P-1jk=Pn-2j K, and similar fory andz

directions. The points outside the unit cell, given by the pe-
riodic boundary conditions, enter the functional through the
calculations of derivatives of points at the boundary and near

the boundary of the lattice, i.e., when at least one of the
indicesi, j or k is equal to 1, 2N—1 or N. The periodic (a)
boundary conditions also simplify the computations of vari-
ous morphological measures. In the periodic box the surface
is, in fact, closed. For example, a plane is topologically
equivalent to a torus. Therefore the standard definition of the
genus as a number of holes in a closed surface can be used.
The surface separating domains is given by the follow-
ing equation

d(r=(x,y,2))=0, (3.1

the position of the surfacé(r)=0 is determined by inter-
polation between the neighboring points of different sign. It
is highly unlikely, because of numerical accuracy, that a
value of the fieldp(r) = ¢; ;  at the pointr = (i,j,k)h on the
lattice is exactly zero. Therefore the points of the surface
have to be localized by interpolation between the neighbor-
ing sites of the lattice. If¢(ry=(i,j,k)h)=¢; ; (<0 and
d(ro=(i+1j,K)h)=di;1;>0, then the pointry, for
which ¢(rog) =0, must lie between the pointg=(i,j,k)h FIG. 1. Two cases of the polygonal surface representation in a
andr,=(i+1,j,k)h. Moreover, the location of, depends single tetrahedron; a triangle@) and a tetragorb). The black and

on the values of the field at the pointg and r, in the  the white circles represent the points with the valuespdiigher
following way: and lower than the threshold,.

. |bi il .
=|li++——————,j,k|h. 3.2
0 |bij k= Pis1ju : 33

All points of the surfacep(r)=0 are found by the inter-
polation of the points located between the neighboring lattice X=Ng+Ny—MNg, (3.3
sites. Due to the discretization, the unit cell is divided in

(N—1)* small cubes of the size of the lattice spacmdhe  where Vi, A, and Ni are the number of faces, vertices,
surfaces(r) =0 passing through a small cube cuts a polygonand edges respectively, of all polygons cut by the surface.
out of it. The edges of the polygons are formed by intersecThe surface area is simply the area of all polygons covering
tion of the surface and the faces of the small c[2H. The  the surface. Finally we can use the same polygons to com-
edges can be approximated by straight lines. Unfortunatelyyute the curvatures. Before we do it we present another
the cube lattice decomposition scheme suffers from arbitrarynethod, which although imprecise, is frequently ugad.
choices, i.e., such representation of the surface leads to arFrom the differential geometry we have the following formu-
biguous situations. An alternative way to resolve the ambigutas for the curvatures.

ous surface approximations is to divide the original lattice

not into cubes, but into more primitive subunits. Each cube 1 1
can be divided into six five-vertex pyramidi40]. Here we H=-— EV-n= - EV (
use the simplest method based on the division of elementary

cubes into tetrahedrons. When the tetrahedron decomposition

is employed, the surface inside such simplex can be repré”

sented by only two casépolygons: a triangle or a tetragon,

as shown in Fig. 1. From the decomposition described above K= 1[(V 2= (ain)2] (3.5
we can easily get the Euler characteristic The practical 2 R '

way of computingy is related to the coverage of the surface
with polygons. Then, the calculation of the Euler character-
istic is straightforward when it is based on the Euler formula:

r

vé ) (3.9

Vol
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T=27T(N\/+N|:_NE). (39)

On the other hand, the total integral from the Gaussian cur-
vature can be expressed by using the Gauss theorem:

2’7T(NV—|‘NF_NE): J;K(S)ds. (31@
By using the fact that

LK(S)dS={E} K(S)dS (3.11)

j—th triangle and comparing Eq3.9) to Eq.(3.10, Eq. (3.8 is deducted.
Now, by assuming that the Gaussian curvature is constant

FIG. 2. A piece of polyhedron’s surface composed of trianglesyithin the region;, the formula(3.7) is obtained from Eg.
meeting at the vertey; ; o/ is the angle between two edges of the (3.9).

jth triangle shegring thg vertex and 0{ is the angle between the The integral of the mean curvatuté over the surface
faces of two adjacent triangles. region,; can be written as

wheren is the vector normal to the surface at paintwhere -
we calculate the curvatures, amd is its jth component. L H(S)dS=H;, (3.12
Thus using the whole distribution @ we can compute the !

distributions of curvatures. The errors produced by the use qf;nere

the approximate formulas for the derivativesdfare espe-

cially big if the spatial derivatives of the field have sharp _
peaks at the phase interface. This is a common situation in H=
the late-stage kinetics of the phase ordering process, when

the order parameter is saturated and the domains are sepa- . . i
b Ms the length of the edge gth triangle and¥! is the angle

i i i I
rated by thin walls. There is, however, a simpler method tha etween two adjacent trianglésndj + 1 (see Fig. 2 As-

involves the previously defined polygons. It comes from in- . ) e
tegral geometry and does not suffer from the problems mercUMiNg agamn the constancy of the mean curvature within the
tioned earlier. regions,;, its value can be evaluated as

Consider a polyhedron that is a discrete representation of
the phase interface(r)=0 obtained in the triangulation
procedure. For each vertex of the polyhedron we can defin
the angle deficit by

J_Z,l el (3.13

I

H,~H,/S. (3.14

Rote that in Eq.(3.13 the angles#! can have either sign,
depending on the orientation of the surface of the polyhe-

dron.
m
T=27—3 o (3.6) The curvaturek of the interface in two dimensions is cal-
' =" ' culated in a similar way. Consider a polygon consisting of

verticesv; connected by edgeds. Let us denote by; the
wherem is the number of triangles that meeti#ih vertex length of the edge between- 1)th andith vertex. The cur-
and«/ is the angle between the two edgesjtf triangle at  vaturek; at theith vertex can then be approximated as fol-
this vertex(see Fig. 2 The Gaussian curvature igh vertex  lows:
is given by
ki=~26;1(li+1;11), (3.19
Ki=Ti/S:, S where 6; denotes the angle between two edges that meet at
whereS; is one-third of the area of the triangles. To provethe vertexv; . Note also that the two-dimensional version of

this formula, let us first show that the integral of the Gauss{h€ Gauss-Bonnet theorem implies that the su; taken
ian curvature over the surface regidin (over triangles shar- OVer all vertices gives- 2, where the sign depends on the
ing the same vertéxs orientation of the polygon boundary.

IV. COMPUTER SIMULATIONS AND RESULTS
f K(S)dS=T,;. (3.8
3 Equation(2.4) has been solved on cubic 3D lattices of
N _ sizes 48, 50°, and 108 and quadratic 2D lattices of sizes
The total angle deficit of the polyhedrol=2,,T; is re- 5122 1024, and 2048. All the quantities computed in the
lated to the number of its vertice's,, facesNg, and edges simulations have been averaged over 150 runs. A simple Eu-
Mg (Cartesian theorejras ler integration scheme with time stept=0.05 and mesh
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o “

FIG. 3. Snapshot of the interface separating the 0 and
»>0 regions in the 3D ferromagnet undergoing the phase
separating/ordering process. During the whole evolution the systen
has a bicontinuos morphology with a single interface and two per-
colating* domains. The arrow indicates remainings of the passage
shortly after its breakage. FIG. 4. Snapshot of the domain pattern in the 2D ferromagnet

undergoing the phase separating/ordering process. The black and
size Ax=1 has been used. The initial conditions have beemwnhite colors represent, respectively, domains with positive and
chosen from the uniform distribution of fielg¢ with zero  negative magnetizations.
mean. In order to check the results against numerical artifacts
we have varied the mesh size betwekx=05 and 2 and System of size 100is shown in Fig. 5. The transition be-
also used different numerical approximations for the Laplacfween the early and the intermediate regimes was found to be
ian with no apparent changes in the obtained results. marked by the saturation of the order parameter inside the

At every time step we determine the position of the inter-domains. The crossover from the early to the intermediate
face separating the: domains. The interface given by the Stage occurs @§~8.5. The late-stage dynamics predicted by
equation #(r)=0 is located(on the cubic lattice by the the Lifshitz-Cahn-AllenLCA) theory Wlth the grovvth_ expo-
linear interpolation of fieldp between the lattice points. We Neéntn=0.5 was not observed by us in 3D due fo finite-size
find in 3D systems that after the initial transient time with €fféCts, but it has been only recently observed for the system
many separated interfaces we get into the regime where theff 700° size by Brown and Rikvold49]. The authors cited
is a single surface in the system separatiig0 domain that the late stage in the 3D system is reachedt¥t50.
from #<0 domain. Thex domains percolate and the sys- The growth of the domain size in the intermediate stage is

tem is bicontinuous in 3DFig. 3 and we have many closed Not based on a single exponent. The effective exponent in
domains in 2D(Fig. 4). this regime changes smoothly to 0.5 at the crossover time

To deriveL(t) and the growth exponemi, we determine 2~150 when the late stage begins. For the peripdt
the equal time correlation  function: g(r,t) <75, the effective exponent derived from the simulation is

=(sgn ¢(r,t)]sgrn ¢(0t)]) for which an approximate, ana- n=0.40+0.02.
lytical formula exists, given by Otha, Jasnov, and Kawasaki S —

[47]: I
24+ % 1
2 s 2 2 &
g(r,t)=—arcsifexd —r/L(t)“]}. (4.2 = &
o j 2 | /3/6 4
£ L A
Fitting the simulation data to E@4.1) we obtain the domain B |
sizeL(t). ) o
F o
A. 3D system: Domain size, curvatures, and the Euler 1'20_5 1I 115 é 215 é 3:5
characteristic Int

It was found in Refs[1,48] that the system described by  FG. 5. Log-log plot of the time dependence of the domain size
the TDGL equation exhibits two scaling regime$} the | (1) for the 3D system. The least-squares fit yields the effective
early regime where the characteristic domain &i¢g scales  growth exponent 050.01 in the early regime and G=0.02 in the
with t® and (i) the intermediate regime whete(t) ~t%4. intermediate regime. The crossover time,ks2.1 is marked by the
The functionL(t) obtained from the relatiori4.1) for the  saturation of the order parameter inside the domigas Fig. 7c)].
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0 : T ; T

L T
(b)

In —x(t)

2 L 1 . |- 1 ' |- 1 ' 1 . 1
0509 13 1.7 2.1 25 29 3.3

42 W S

3 3.2 34 36 38 Int
Int
12,75 —

FIG. 6. Semilogarithmic plot of the time evolution of the aver-
age mean curvaturgH) for a single run. The peaks correspond to 11.95 -
the breakages of single passages. Three subsequent stages of the )
breakage of the passage are indicated: narrowing of the passage’s = 1115
neck(a), splitting of the passage into two separated pigbgsand »n I
flattening out of the passage remainings towards the domain walls £ 1035 &
(©- 9.55

During the whole evolution the system habieontinuous I
morphology with a single interface and two percolatithg
domains in a 3D symmetric ordering system. At the begin-
ning of the process the interface is highly interconnected by
passages and has a large and negative Euler characteristic. As -0.2
the phase separation proceeds, the number of passages de-
creases, which results in the increasecoEventually, at the -1.2

end of the process, the Euler characteristic is equal to 0 since
in the final equilibrium state there is only one phase corre-
sponding to negative or positive magnetization.

The curvature on the passage’s neck is described by two
principal radiiR,, andRg, whereR,, is the radius of the neck
and R denotes radius of the axial cross section of the pas- _ e
sage’s surface. The radii have opposite signs and the magni- 0509 1.3 1.7 21 25 2.9 3.3
tude of R, is much smaller thals. The local mean curva- Int
ture on the necld = (1/R,+ 1/Ry) /2~ 1/2R,, tends to infinity FIG. 7. The Euler ch o ; b). and th
as the neck narrows. Thus, the breaking of a single passage s, G. 7. f yerdc ?r:ac;enst)_ﬁ](ei), ?u)r ace ?rest_( ), apt. tee
accompanied by a rapid increader rapid decrease— O'd€ parameterinside the omaifig|) (c) as a function o m

. ) . . for the 3D system. The symbols correspond to system dites
depending on whether the neck’s curvature RL2is posi- .
ii i f the total turedd. When th =50 (O), 80 (), and 100 ¢ ). The dashed lines show the least-
ive or negative o the fotal mean curva ur( )- en the sqalares fits in the two scaling regimes We find effective exponents
passage closes, its surface separates into two cone-shapg

; . - . =—3/2 and—1 for x(t), and—1/2 and— 2/5 for S(t). The cross-
pieces. They are shown in Fig. (Bdicated by the arrow  oyer time, Int;~2.1, is marked by the saturation of the order pa-

Since both pieces have pointed endings, according t0 EGameter inside the domains as is evident from the (it
(2.7), they flatten out quickly towards the domain walls. As a

result, the excess curvature caused by the breakage of tieder parameter£1) inside the domains. We have addition-
passage is abruptly reduced. In Fig. 6 the average mean cuglly analyzed the scaling of the principal curvatures obtain-
vature (H) is plotted as the function of time. The peaksed from the equationsH=(1/R;+1/R;)/2 and K
correspond to the breakages of single passages. =1/(R;R,) and found tha1/R;)=1/SfdS/R;~ —(1/R,)

In Fig. 7 we showy(t), S(t), and(|4(t)|) as a function =—(1/S)fdS/R,~1/L(t) in the early regime and-t~
of time for three system sizes, 580°, and 108. Aswe can in the intermediate regime. We have also determined
see there is a clear change in the slope of indicating the ~ (K)/\(1/R?)(1/R3)~const in the early regime angt ™2
change of the scaling regime. In the early regime the expoin the intermediate regime. We also find that)~(1/
nent for y is —3/2 (—1.53+0.05) and in the intermediate R;){1/R,)~1/L(t)? only in the early regime.
regime itis—1 (—1.04+0.05). ForS(t) we find the expo- In Fig. 8 the histograms for the me&hand the Gaussian
nent —1/2 (—0.51+0.01) in the first regime and-2/5 K curvatures are shown for the early regime. As we can see
(—0.40+0.01) in the second regime. The crossover timefrom this figure the scaling relation®.10 and (2.11) are
does not depend on the size of the system and from the platatisfied withn=0.50+0.01. Scaling of the distributions of
of In{|¢|) we find that it corresponds to the saturation of theH andK in the intermediate regime are shown in Fig. 9. As

In </0(t)}>
5
N
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(given in dimensionless unjtin the early regime. The distributions FIG. 9. Scaling of the mea (a) and Gaussiak (b) curvatures

obey the scaling relation@.10 and(2.11) with the growth expo-  (given in dimensionless unitin the intermediate regime. The scal-

nentn=0.5. The system size is 50 ing relations(2.10 and (2.11) are satisfied with the exponents,
=0.4 andn,=0.3, respectively. The system size is’50

seen, for different times the data collapse onto single master

curves. However, in contrast to the early regime, there is NPg|ated to thetopology of the system and characterizes its
single common length scale for the mean and Gaussian CUEyler characteristic and the Gaussian curvature.

vatures. The scaling relatiorig.10 and(2.11) are satisfied The existence of the two length scales in the intermediate
with ny=2/5 andny=3/10, respectively. Therefore, the cur- regime has a simple physical interpretation and can be ex-
vaturesH and K scale independently with two different pgined in terms of the LCA theory, that links the velocity of
length scaled (1) andL(t) that vary with timet as the interface with its local curvature. Below, we demonstrate
Ly (t)~t25 4.2 that it is related to the domain-neck decoupling procefkes
' ' taking place in the intermediate stage of the evolution. Let us
L (t)~t310 (4.3 denote byny(t) the average number of domains in the sys-
tem, which are assumed to be spheres of the diarmej@).
In terms of the two quantitiek,(t) and Ly(t) the scaling The Euler characteristic is then proportional to the product
relations(2.8)—(2.11) can be rewritten in the following form:

- x(t)~ng(t)p(t), (4.9
S(H~Ln(t) ", (4.4
72 4 wherep(t) is the number of necks or passages piercing the
xX(O)~Lg () "Lyt (4.5 surface of the spher@onnectivity. On the other hand, ac-
. cording to the Gauss-Bonnet theorem, the Euler characteris-
Pru(H, D =PLHLL (D)) L), (4.6) tic can be written as¢(t) ~K(t)S(t). Since the total area
. ) 5 S(t) of the interface is proportional to the product of the
Pr(K,t)=Pi(KLk (1)) Lx(t)*. (4.7)  surface of the sphere of radils(t) and the numbengy(t)

. of the domains, we get
Note that the second relation, E¢.5), expresses the Gauss- g

E(()tr;rftLgE(te)o_rgmjz.lz), with the average Gaussian curvature D~ Le(D) 2L (D)2, 4.9
In view of the four relationg4.4)—(4.7), we see that the

length scaleL(t) can be interpreted as thgeometrical

measure of the phase interface. It determines quantities such )

as the characteristic domain size, the area of the interface, p(t)~( LH(t)) (4.10

and the mean curvature. The second length stalg) is Le(t)) '

By comparing Eqs(4.8) and (4.9) we obtain
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In the early regime we havie,(t) =L (t)=L(t)~t*? and, -1.3 - - - -
therefore,p(t)~1 is independent of time. This means that
for each sphere of size(t) we have the same number of 14l i

passages. In the intermediate regime we hhayét)~t%/®

and L (t)~t¥*% which givesp(t)~t*® indicating the de-
coupling between the domains and the connections joining
them.

Since in the intermediate regime the average mean curva- 16 |
ture is equal to zero and its distribution is peakedat 0
[Fig. 9a@)], we deduce that the phase interface possesses
large patches of the minimal-likesaddle lik¢ shapg20,21] AT 2 s a4 s
with zero mean curvature. Furthermore, the apparency of the Int
domain-neck decoupling process indicates that these areas
are localized mainly at the necks connecting the domains. FIG. 10. Time evolution of the connectivity indexp(t)
This means that in the intermediate regime the necks are i ~X(1)/S(t)® plotted on a log-log scale.
“partially frozen” state and slow down the kinetics of the ] )
system. They evolve slowemwith the exponentng=0.3) d_oes not change durlng 'Fhe I_ate stdget observed in our
compared to the domains following the evolution with the Simulations due to the finite-size effets
growth exponentn,=0.4. Of course, the LCA argument It is worth noting here that the pa_rarnete(rt) calculated
does not work in the intermediate regime. However, duringfom Ed.(4.11) is related to some existing measures used to
the evolution, the morphology of the system changes an&haracterize features of minimal surfaces. Namely, the quan-
transforms successively from the “minimal-like” structure tity G=2S3/mxo, referred to as the dimensionless group,
[with the mean curvatureH(t) equal to zerd to the was applied50] to describe various types of triply periodic
“constant-mean-curvature-like,” where the average mearninimal surfaceq20,21 with respect to their topologys,
curvature is proportional to the inverse of the characteristi@nd xo denote here, respectively, the surface area and the
size of the domains, i.eH(t)~1/L(t). Once the morpho- Euler characteristic calculated for unit cell. Another quantity
logical transformation is completed the LCA argument worksused to characterize minimal surfaces is the so-called homo-
and the late scaling with the growth exponemt0.5 is  geneity indexi [51] defined asi=S¥%|2mx|"?V, with V
reached. To sum up, in the intermediate regime the evolutioReing the volume of the unit cell. The dimensionless group
of the morphology of the phase interface splits off and theand the homogeneity index are linked with the parameter
“geometry” and the “topology” start to evolve indepen- P(t) by the relationH~G¥2~p~2
dently with two different growth exponentsy=0.4 and
ng=0.3, respect.ively. This process manifests as the breaking B. 2D system: Scaling regimes
down of the scaling laws, Eq&2.8~(2.11). The existence of _In Fig. 11 the average domain size calculated from Eg.

the two length scales in the intermediate regime is a conse for th f i ) | foll
quence of the fact that the late-stage morphology and thf"l) or the 2D system of size 2048s plotted. It follows

early-stage morphology differ significantly and by no mean rom Fig. 11 that the evolution of the system can be divided
can be transformed one into another by scaling operations
based on a single length scale.

In order to monitor behavior of the connectivity index
p(t) during the phase ordering process we use the following
relation:

In p(t)
L
(<]

x(t)
S(t)3

p(t)= — (4.11

which follows immediately from Eqg4.4), (4.5), and(4.10.
In Fig. 10 the time evolution of the quantip(t), calculated
from Eq. (4.1)), is plotted. As seen, in the early stagé&)
hardly changes, which confirms the prediction thét) re- Int

mains constant before the order parameter has saturated. ,~ ;; Log-log plot of the time dependence of the domain size

Next, in the |ntermed|ate stage, Its v_alue starts to grow. Th‘ln’_(t) for the 2D system of size 2048The least-squares fit to the
growth exponent is roughly 0.2. This value of the growth yaia points in the early regime gives the growth expomen.49
exponent is in agreement with the predictionr=2(Ny  +0.01. In the intermediate regime, for the period of time 2.1
—nk)=0.2 following from Eg.(4.10. We see thatp(t)  <|nt<4, n=0.40+0.02. In the late stage, fae=150, the growth
starts to saturate fdrk 100 signaling the end of the topologi- exponent isn=0.49+0.01. The transition between early and inter-
cal transformation discussed above. We also expect that thRediate stages is marked by the saturation of the order parameter
valuep(t)~0.26 attained at the end of the intermediate stagénside the domaingsee Fig. 1%&)].
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into three scaling regimes: early, intermediate, and late. The
least-squares fit yields the growth exponert0.49+0.01 in
the early stage and=0.40*+0.02 in the intermediate stage
for the period of time 2.£Int<4. The transition from the
early to the intermediate stage is marked by the saturation of
the order parameter inside the domafeee Fig. 7c)]. The
late stage is reached when the growth expomesitains the
value of 0.5 (0.49:0.01) predicted by the LCA theory. The
crossover timet, from intermediate to the late stage is
roughly t,~150. Note that the same value of the crossover
time t, has also been found9] for the 3D system.

In Fig. 12 the total number of objectslosed contounsin
the systemN(t), the total length of the phase interfadmr-
der line C(t), and the saturation of the order parameter —— —
inside the domaing) ¢|), are shown. The number of objects, 2
N, plays here a role of the 2D version of Euler characteristic. 13.5
The scaling relations foN(t) and C(t) have the following

form in 2D: = 125
C(t)~L(t)" L, (4.12 o
£ 11.5
N(t)~L(t) "2 (4.13

10.5

We have found that in the early stage the number of con-
tours, N(t), grows with the effective exponeimty=—1.02
+0.01, and the length of the interface with the exponent
Nnc=—0.51£0.01. The scaling relation&.12 and (4.13 -0.5
with the growth exponenh=0.5 are therefore satisfied. In
the late regime, for Ib>6, we found thatN(t) scales with
the growth exponent-0.98+0.01 andC(t) scales with the
exponent—0.49+0.01. Thus, in the late stage the scaling
relations are satisfied with the growth exponert0.5. In
the intermediate stage the growth exponent changes gradu-
ally from the value of 0.4 at the beginning to 0.5 as the I
evolution enters the late regime. However, for the period of j’
time t;<t<55 the slope of the curves plotted in Figs(d?2 -3.5 _—
and 12b) do not change much and one may determine ef- 0 1.5 3 4.5 6 7.5

fective exponents foN(t) andC(t). Least-squares linear fits Int
to the data points yielahy=—0.84+0.02 andnc=—0.41 FIG. 12. The total number of objeck¢ (a), the total length of

+0.01. This means that the scaling holds with a good apthe borderlineC (b), and the saturation of the order parameter inside

proximation in the intermediate regime with the effective the domains(|¢|) (c), as functions of time for the 2D system of

growth exponenh=0.4. size 2048. The dashed lines represent the least-squares fits in the
The growth exponent 0.4 obtained for the intermediatethree scaling regimes. The crossover timg;42.1, between early

regime indicates slowing down of the evolution after theand intermediate stages is marked by the saturation of the order
garameter inside the domains. In the early stage the effective

early stage. As in the case of the 3D system analyzed in th - > e
preceding section, this fact can be explained by the morpho t'r:gm;tnrleer)r?e()c;}Z?cetssat‘;Ne‘_c) ] |1r;?2:|?,'?<1 4?n:ni_, Ooéiﬁ)odgla:;

. l N . f— .
ogy of the domain pattern formed after the order parametel _ —0.41+0.01: in the late stage, for k6, ny= — 0.98+ 0.01
has saturated inside the domains. In the early stage the evQ= .\~ 460 01 ’ PN ' '
lution of the system is diffusive and the exponent 0.5 follows ¢ T
from Eq. (2.6). Once the magnetization saturates and the C. Domain size distribution
domain walls get thin, further evolution of the system is | order to study the shapes of the domains we have tri-
driven by the curvature of the interface. As we shall demonyngylated them and computed for each domain its e
strate in the following section, at the beginning of the inter-length of the interfacé at each time step of the evolution.
mediate stage, the domains mostly have elongated shapegext we computed the average values of their area and in-
The phase interface is composed of great amount of immaerface lengths,,(t) andl,,(t), as a function of time. We
bile, almost straight linegof zero curvaturg that slow down  have found that the shape of the domains exhibit the follow-

the curvature-driven kinetics. ing scaling relation:

In <|¢(t)|]>

(c)
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FIG. 14. The distribution function for the domain area in the
late-stage regime. It is shown in the scaled fopfA,t)~exp
—a(xly)*]with u=2, x=A/A,,, andy=L/L,, for three different
imes (see Fig. 1R This fit strongly support the MEP conjecture
with the entropy ofp(A,t) [Eq. (4.16)].

FIG. 13. The scaling relation between the interface lehgamd
the domain are@ during the process of phase ordering in 2D sys-
tem. On this plot we put the results obtained for about 330 00
domains collected for three different times=(400f=500t
=1100). The master curve consists of two straight lipEsgs.

(4.14 and(4.19] indicating two types of domains in the system. We have determined the distribution of sizes of the do-

) mains,p(s,t). Following the conjecture made by Jay&8§]
/4y () ~[8/8,(1)]", (4.14 we assumed that the distribution can be obtained from the

. maximum entropy principle with some additional con-
where the exponent depends on whether the domain asea ir4ints. We have found that the entrdiig]

is above or below the averagg,(t):

0.50+0.01 if s<s,,(t) S(t)=—fdsp(s,t)ln p(st) (4.16

= 4.1
"710.88£0.01 ifs>s,(t). (419

is maximized at each instant of tilhsubject to the condition

This scaling relation is shown in Fig. 13, where we have
taken all the domain areas and interface lengths for three f dsp(s,t)(s/l)“=(fixed), (4.17
different times {=400,500,1100) and more than 330000
domains. It is remarkable that all the domains for all times

; . ; . hereu=2 and the dependence lobn s, which reflects the
fall onto a single master curve showing fairly high degree of”’ St
regularity in the morphology of the system. In principle, for system dynamics, is given by Eqel.14 and (4.15 . The

a highly irregular(chaotio morphology we would see, in- exponentu can be deduced from the LCA theory. Because

stead of a single curve, many points scattered all over th%ﬁlwl‘h(t) (dt"”.“";!” ?.'ZQBV\T Eopctlﬂge t/r:a;tLthe cont;tralrI]t tsets
diagram. This equation also shows that the system underg(T)-e characteristic timer~ (L (t))“~(s/I)* proportional to

ing the phase ordering kinetics exhibits scaling at the level the;"Ee neededhto cIosI(_azthe éjomam of shz(le) ._Fzrorg the
the shapes of the domains. It means that the shapes of tI | tf eor);] we haver— dan (.:onsehquent)u—. ; |mr|1-
domains at earlier times look statistically similar to the 'any for other systems undergoing phase transitions the ex-

shapes at later times, apart from the global change of thRonentux should fO.HOW from the growth.of .the average do-

average area and interface length. main sizes. In this sense our analysis is robust and not
It follows from Fig. 13 and Eq(4.15 that in the late- restricted to the s_pgmflg: system under study.

stage regime we find in the system two types of domains: Fom the maximization of the entropy(t) [Eq. (4.16]

large and elongated ones with contour length proportionafubiect to the constrairig.17), we find

(roughly) to their area *°®-~s) and circular domains for _ _ u

which I2~s. The evolution follows a path along which the P(s,0)=C(exp =N/ ]. (4.19

elongated domains change continuously into circular doyging the scaling principle we find the distribution in the

mains. In this way dissipation is reduced. In order to see it;ascaled form:

let us consider the local energy change per unit time and unit

length 01‘2the domain interface. Thi; quantity i; proportional p(x)=C* exgd —\* (x/y)*], (4.19

[2] to v4, where the local velocity of the interface,

=—H. Integratingv? over the interface length of a domain where x=s/s,,(t), y=I/I,,(t), C* and \* are constants

gives the dissipation per domain. For a circular domain thisndependent of time, angd=2. Equation(4.19 is satisfied

dissipation is proportional to Ll{sinceH~1/L~1/), while  in the late-stage regime as shown in Fig. 14, where the dis-

for the elongated domain it is|?*4 Therefore the change of tribution p(x) obtained from the simulations is plotted. This

shape of the domains during this evolution follows the ki-gives a strong support to the application of maximum en-

netic pathway along which the dissipation is continuouslytropy principle to the kinetics of phase transition. Other dis-

reduced. tributions such ap,(l,t) can be obtained from(s,t) by the
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change of variables, i.ep.(l,t)=p(s(l),t)ds(l)/dl. We  stantin the early and late regimes, and grows with the expo-
note that the choice of the distribution in E@.16 is not nent 0.2 in the intermediate stage.
trivial. For example, a possible choice pf(l,t) would lead In the 2D system the transition from the intermediate to
to the disagreement with our computer simulations. Thehe late stage is also associated with the transformation of the
analysis presented here for the kinetics of phase transitiordomain morphology. Namely, at the beginning of the inter-
leads additionally to the definition of the 2D morphology mediate stage the elongated domains outhumber the circular
class that can be characterized by two exponeatar{dv). ones. In the process the elongated domains continuously
Equations(4.16) and (4.17 form the basis of the general change into circular domains reducing in this way the overall
principle which governs the form of the distribution function dissipation in the system. In contrary to the 3D system, we
while Egs.(4.14 and (4.15 are characteristic for a given do not have two length scales in 2D. This is understood since
system. the GaussiarK and the mearH curvatures reduce to one
curvaturek in two dimensions and the scaling relations
(2.10 and(2.11) become equivalent. However, in the case of
elongated domains forming a system of meandering fingers
We have investigated the phase Separating/ordering prédendrits, two characteristic |engthS are present, i.e., the
cess in the 2D and 3D systems with nonconserved scalaharacteristic width and length of the fingers. Thus, the trans-
order parameter. In our studies we have applied tools basd@rmation of the typical domain shape from elongated to
on the topology and geometry of the phase interface. Wéircular one(based on one characteristic length scale—the
have found that the evolution of the 2D and 3D systems cagize of the domainis linked with elimination of one of the
be divided into three regimes: early, intermediate, and late. 1fWo length scales appearing in the intermediate stage.
the early stage the evolution is diffusive and the domain The intermediate-late stage regime crossover is related to
growth is characterized by the exponert0.5. The transi- the global breaking of thet order parameter symmetry,
tion from the early to the intermediate stage is marked by th&vhich is marked by the appearance of the nonzero mean
saturation of the order parameter inside the domains. Theurvature but still zero average magnetization. Both the 2D
crossover time;~8.6 is similar for the 2D and 3D systems. and 3D systems reach the late-scaling regimeyat150.
In the intermediate stage the kinetics is driven by the curva- The topology and the geometry of the interfaces in phase
ture of the interface. It is slowed down, which manifests inSeparating/ordering systems are accesible in the laser scan-
the change of the effective growth exponaritom 0.5 in the ~ ning confocal microscopyL SCM) experiments(Refs.[41—
early stage to, approximately, 0.4 at the beginning of thé4])-_|t shows that develqping theoretical tools in this direc-
intermediate stage. This effect is due to the morphology ofion is relevant for experiments.
the domain structure formed at the end of the early stage. In The methods presented in the paper are complementary to
the 3D System the phase interface possesses |arge patcheéhﬂ S_tandal’d _tOO_|S, SUCh as detel’mination Of the Correlation
flat surfaces of minimal-like shape with zero local mean curfunction. In principle, one can even determine from the short
vature. In the 2D system the domains have mostly e|ongategistance behavior of the correlation function the average area
shapes with the borderline composed of a large number d?€r unit volume and the averaged curvatures. Such procedure
almost straight lines. These immobile zero-curvature piece§as been already applied in light scattering experiments
of the interface are responsible for the slowing down of thelStandard techniquegRef. [52]). We hope that in the future
phase separating/ordering kinetics taking place in 2D and 3©ne can combine both approaches and find more common
in the intermediate stage. points, i.e., to see where the information about topology and
The observed scaling properties of the 3D system in th@eometry of interfaces is hidden in the correlation functions.
intermediate stage can be described in terms of two lengths The methods presented in the paper are generic, i.e., are
scalesLy(t) and Lg(t). They characterize, respectively, a@pplicable to any system undergoing kinetics of phase tran-
scaling of the distributions of the meah and Gaussiat  Sition. In fact, we have decided to put on our web ppgfs
curvaturesL (t) varies with the time a4 and is related to  the source codéree of charggto be used for the determi-
the geometricalproperties of the system such as the averagdation of 3D and 2D morphology in systems with internal

size of the domains, the surface area, and characteristic raurfaces.
dius of the curvature. The second length sdaét) ~t°3 is The use of the methods based on the geometry and topol-

associated with théopological features of the system’s in- 09y Of the interface has revealed that our knowledge of the
terface and determines its Euler characteristic and the Gausénetic pathways by which the order-disorder transition pro-
ian curvature. The appearance of the two length scales &€eds is far from being complete, even in the case of well
related to the domain-neck decoupling process and accomp@tudied system of a scalar nonconserved order parameter. We
nies the morphological transformation from the minimal-like Pelieve that the application of the morphological methods
structure formed at the early stage to the constant-mea\Vill be also fruitful in the study of pha_lse transitions in o?her
curvature-like structure, which is characteristic of the late-Systems where the interface separating two phases exists.
stage dynamics. Although both the early- and the late-stage
morphologies are bicontinuos, they differ significantly and
the system cannot be brought from the early stage to the late
stage by simple scaling. The topological changes can be This work was supported by the KBN through Grant No.
monitored by the connectivity indeg(t) that remains con- 5P03B09421.
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