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Fractional Langevin model of memory in financial markets
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The separation of the microscopic and macroscopic time scales is necessary for the validity of ordinary
statistical physics and the dynamical description embodied in the Langevin equation. When the microscopic
time scale diverges, the differential equations on the macroscopic level are no longer valid and must be
replaced with fractional differential equations of motion; in particular, we obtain a fractional-differential
stochastic equation of motion. After decades of statistical analysis of financial time series certain “stylized
facts” have emerged, including the statistics of stock price fluctuations having “fat tails” and their linear
correlations in time being exceedingly short lived. On the other hand, the magnitude of these fluctuations and
other such measures of market volatility possess temporal correlations that decay as an inverse power law. One
explanation of this long-term memory is that it is a consequence of the time-scale separation between “mi-
croscopic” and “macroscopic” economic variables. We propose a fractional Langevin equation as a dynamical
model of the observed memory in financial time series.
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I. INTRODUCTION for such a measure. However, in the absence of a satisfactory
theoretical model of price dynamics, the underlying PDF’s

Statistical features of financial time series, which appeaare not known and their relevant parameters can at best only
to command sufficiently wide consensus among investigatorbe estimated from the data.
and practitioners alike, are generally known as “stylized Financial time series are notoriously erratic, but not quite
facts” [1]. Notable among them is the exponential decay ofstructureless: even a cursory glance at a sufficiently detailed
the two-time correlation function of asset returns, with a timechart of price movements reveals that asset prices appear to
constant on the order of a few minutes for liquid markets.suffer periods of relatively low variability interspersed with
This fact, known for decadd®] and confirmed recently by periods of much higher variability. This stylized fact is
sophisticated analys¢8], is often interpreted as compelling widely referred to as “volatility clustering” and intriguingly,
evidence that asset prices are essentially unpredictable. Thisems to be independent of the specific nature of the asset. A
means that asset prices cannot be predicted beyond a fewenstant value oé would fail to capture this aspect of mar-
minutes using their past behavigt]. ket data and thus would be of limited utility for the purposes

However, the autocorrelation function of a stochastic vari-of long-term risk management. A suitable compromise is to
able is only sensitive to its linear temporal correlations, anchllow for a time-dependent, to be properly defined, thus
thus the rapid exponential decay of such correlations doegiving rise to a class of models known as “stochastic vola-
not preclude the possibility of more subtle nonlinear long-tility models.” The operational definition of “local” volatil-
range correlations among the data. In fact, some nonlineadty we consider here is the one adopted in Réf.
functions of the returns are known to be long-range corre- Let the return at time be
lated[1], which indicates that the stochastic processes under-
lying financial time series do possess long-range memory p(t+At)}

[5]. The aim of this paper is to propose a model of such p(t) |’
memory effects based on a fractional Langevin equation.

Perhaps the simplest nonlinear function of the returns tavherep(t) is the price of the asset at timeand At is the
exhibit long-range correlations is the absolute value, as, ofnterval at which prices are sampled. Given the total time
course, do all the powers of the absolute vallie Such a  =nAt, with n an integer,v(t), the volatility at timet, is
function, or its square, is often used as a quantitative meadefined as the average of the absolute valug(bf over the
sure of thevolatility, one of the most important parameters time windowT,
for risk-management purposgk,6,7], and one that has been ne1
the object of numerous theoretical models in the literature

1
[8]. or()== 2 [g(t")]. (1.2
t

t'=

g(t)=In (1.1

One is to choosd long enough so that the averages are
statistically meaningful but not so long as to lose the tempo-
In finance, volatility is generally understood as a measurgal “resolution.” The authors of Ref[6] reported their re-
of the size and frequency of the fluctuations of asset pricesults with time windows varying between tens of minutes to
thus leading to the standard deviatierf the corresponding several days, with their data analysis confirming long-range

probability distribution functiofPDPF as a natural candidate correlations in the volatility.

A. Econophysics
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Herein we are primarily interested in identifying a mecha-Gaussian statistics emerge for the sum variable. In a dynami-
nism that may be responsible for such long-term memory ircal system the CLT applies if the time scales for the micro-
financial time series, rather than merely devising an algoscopic processes are much smaller than the time scales for
rithm capable of reproducing the observed statistical feathe macroscopic processes. This separation of time scales
tures. In another recent empirical stu} compelling sta-  implies that the microscopic dynamics are stable, since dy-
tistical evidence is presented that long-range correlations igamical instabilities can have arbitrarily long time scales.
volatility are due to corresponding long-range correlations inonce a condition of time-scale separation between the mi-
market activity as measured by the time-dependent numbeg,oscopic and macroscopic is established, in the long-time
of transactions per unit time of a given std&9]. The size€ ;i the memory of the details of microscopic dynamics is

of individual transactions, on the other hand, turns out to bgqg; 50y Gaussian statistics result. This separation of time
essentially immaterial to memory effects. With such empiri-

cal evidence in mind, we therefore choose to focus on marke%Cales also means that the macroscopic dynamics can be de-
’ Scribed by the ordinary differential calculus, even if the mi-

activity, as the variable that by and large incorporates the roscopic dvhamics are incompatible with the methods of
memory contents manifested in financial time series througﬁ pic dy P

the volatility. This is also the viewpoint adopted in REf0], ordln?ry c?lculus_{lliﬂ. Itk's u§e:‘jg| to p0|rr]1t Olrj]t here that th
in which a microscopic mechanism is sought for Iong-rangéjata rom financial markets indicates that the price statistics,

correlations in the volatility, even though market activity is the dynamical process of interest, are not GausisidnL 3.

the quantity that appears explicitly in the mathematical ©n the other hand, in the case where a time-scale separa-
model proposed therein. tion between the macroscopic and the microscopic level of

description does not exist, the memory of the nondifferen-
tiable nature of the phenomenon at the microscopic level of
B. Statistical physics models description is not suppressed. In this case the transport equa-

Market activity is a stochastic process and in statisticaf'©"S cannot be expressed in terms of ordinary differential

physics there have been two approaches to describing Stgglcqlations, even if we limit our observ_ation to the macro-
chastic phenomena. One uses dynamical variables, as dxgopic Ievell. This inability to use the olrdln.ary'calculus at th_e
Langevin. The existence of a separation between the micrghacroscopic level forces the time derivative in the Langevin
scopic and macroscopic time scales leads to a stochastic df¢guation to be replaced with a fractional time derivative.
ferentia' equation to describe the macroscopic dynamicsThUS, we obtain a fractional stochastic equation to describe
This is the Heisenberg representation in which the focus i¢he dynamics of the physical observables. Another conse-
on the time evolution of the physical observabjég]. The  quence of this nondifferentiability is that the Laplacian op-
second approach uses the Sclinger perspective corre- erator of normal diffusion is replaced with a fractional La-
sponding to the time evolution of the Liouville density in the placian, yielding a fractional diffusion equation in the phase
phase space for the system. In the former case, the ususpace for the system. The arguments leading to these equa-
outcome is the “derivation” from mechanics of an ordinary tions in a physical context have been developed by a number
Langevin equatiof12]. In the latter case, the evolution of of investigators, see, for example, Ref$6,17, and for a
the system is described by a master equation for the prolreview[18].
ability density. The latter approach usually leads to the con- In the present case, the stochastic variable constituting the
ventional diffusion equation, with the diffusion process de-macroscopic process is market activity, whereas the micro-
scribed by a second-order derivative in the phase spacgcopic processnoise term driving the latter, can represent
variables and first-order derivative in tili&2]. the flow of information made available to agents. Uncer-
In the Heisenberg perspective, after averaging over an enainty is a fact of life, and controlling its influence or, more
semble of realizations of the stochastic force, the relaxatiotechnically, managing risk, is the ultimate motivation for
of a physical observable is described by an exponential fundrading activity to occur at all. The very“natural” desire for
tion. In the Schrdinger perspective, the mathematical repre-making profit can be viewed as an extended, less defensive,
sentation of the diffusion process is given, as we have saidorm of risk management. Agents respond not to uncertainty
by a second-order spatial derivative of a probability densityitself, which is an ever-present background in everyday life,
function. Therefore, the mathematical description rests omut rather to perceived variations in its intensity, which are
either ordinary analytical function@exponential functions ultimately triggered by information, to be intended in the
describing the dynamics, or on conventional differential op-broadest sense of the word. Individual trades take place over
erators(first-and second-order partial derivatiyeescribing a time scale of minutes, and the time scale for the flow of
the phase space evolution. information, however one would choose to quantify it, is
There is a relation between the nondifferentiability of mi- unlikely to be much smaller than that. It seems to us, there-
croscopic processes, the differentiability of macroscopic profore, that market activity constitutes a case in which the time
cesses and the conditions of the central limit theo(€r). scales for the macroscopic and microscopic processes cannot
Recall that in the CLT the quantities being added together arbe clearly separated, thus leading, according to our preceding
statistically independent, or at most weakly dependent, imiscussion, to the propagation of the nondifferentiable as-
order for the theorem to be applicable. When there is a largpects of the noise term all the way to the macroscopic vari-
number of statistically independent, identically distributedable, and ultimately to the need for a fractional stochastic
random variables, with a finite variance, added togetherlifferential equation to model that variable.
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In Sec. Il we provide physical motivations for a differen- where each step size has the vaiu¢22,23. We generalize
tial equation with a fractional, rather than integer, index ashis simple random walk by considering the fractional differ-
our mathematical instrument of choice. We introddicc-  ence equation
tional random walks and illustrate how even short-range
correlated noise can yield a long-range correlated process (1-B)?Y;j=§, 23
provided we adjust the fractional index appropriately. By h . .
taking the continuum limit of a fractional random walk we wheree is not an integer.

obtain a fractional differential equation that can serve as % n(lj\l?(;/v dg?hgﬁé ]:‘I()rll(ljow?nprgftertr:gtgirg;ﬁtsegilgr? ;ftﬁg'g) era-
model of anomalous diffusion. In Sec. Ill we introduce our I part, P

fractional Langevin model of memory, and elucidate theT[Or (1~ B)* given by Wes{24], based on the work of Hosk-

physical meaning of each term of the equation by first exam'zggs)[zﬂ' 'Lhe SF::U'[IOI’] to the fractional difference equation
ining particular cases of it and deriving their solutions. We**" can be written as
then proceed to solve the complete equation and interpret the Y. =(1-B) ¢ (2.4)
. . . . J b "
absolute value of the solution as the quantity describing mar-
ket activity. Finally we calculate the autocorrelation functionwhich in terms of the binomial expansion, fo¢|<1, be-
of the latter variable and show how it can agree quite favorcomes
ably with empirical data by a suitable choice of the fractional

index. In Sec. IV we draw some conclusions and based on a iy Kok
physical interpretation of the model, comment on the pos- Yi:gfo k (=1)'B%;,
sible underlying causes of long-range memory in market
data. = .
=k20( K )(—Dkg,-k. (25

Il. FRACTIONAL STOCHASTIC EQUATIONS

We mentioned the possibility that the fractional calculusThe difference between E@2.5 and the standard random
can be of value in describing the changes in fractal processegalk is that the memory extends infinitely far back in time.
over time[19], and that the dynamics of market activity In the ordinary random walk, whereis an integer, thd”
might be described by such a process. However we should danctions have simple poles and the binomial coefficient
cognizant of the fact that there is not just one fractional calvanishes aftee+ 1 time steps, thereby cutting off the sum.
culus, rather there is a collection of fractional differentialsin the present case this does not happen, and using some
and fractional integrals that have been found to reduce to thielentities amond” functions we obtain
standard calculus when the appropriate fractional index be-

comes integer and the functions being acted upon have the| —€| I'(1—e) (1) I'(k+e)

specified properties. We use the Riemann-Liouville fractional | k /|  T'(k+1)I'(—e—k+1) =(=1) F'k+1)I'(e)”
operators, which are, by far, the most popular formalism (2.6)
among those that use the fractional calculus to describe com- ) ) . )

plex phenomena, see, for example, RE1S,20). The solution to the fractional-difference stochastic equa-

tion (2.3) given by Eq.(2.5 clearly couples the present re-
_ sponse of the systen; to fluctuations that occurred infi-
A. Fractional random walk nitely far back in time througlg; _ ask—c. The size of the
We find that in order to model long-term memory in com- influence of these infinitely remote fluctuations is determined
plex, nondifferentiable, phenomena we need to generalizBy the magnitude of the binomial coefficients, since these
the concept of differencing to include fractional values. Incoefficients are essentially the coupling strengths of the fluc-
the same spirit as the random walk model, this approach t8/ations to the system. We can estimate the strength of the
modeling long-time memory provides us with a conceptuallysystem-environment coupling using Stirling's approximation
straightforward mathematical representation of rather comfor I' functions
plex processes. This kind of random walk was introduced

into economiqs by Ho;kin&l]. _ . I'(kte) kB, ke B. 2.7
Let us define the discrete shift operat®rsuch that its I'(k+p)
operation on a discrete data sétshifts the index by one . ,
unit, so that the coupling strength in E@.6) becomes
e—1
BY,=Y, i, (2.1) B k( —6) k

thereby shifting the data value to one unit of time earlier. Af
simple random walk can be written in terms of the shift
operator as

or k— o sincek>|e|. Thus, the strength of the contribution
to Eq. (2.5 decreases with increasing time lag as an inverse
power law as long ake|<1.

We see from the infinite series representation of the
(1-B)Y;=¢;, (2.2 fractional-difference process that, since EB.5 is linear,
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when the statistics of thé fluctuations are assumed to be ) (€2)
Gaussian, so too are the statistics of the observed process. o= PHT(H+1/2)2" (2.14

However, whereas thé spectrum is flat, characteristic of
white noise, thef spectrum is an inverse power law, charac-consequently, the statistics of the solution to the above
teristic of fractal stochastic processes. From t_hese analytigactional-differential stochastic equation, driven by a
results we conclude that the process defined by th§yiener process, are Gaussian with a variance that increases
fractional-difference stochastic equation is analogous to fracyg 5 power law in time. Far >} these fluctuations diffuse
tional Gaussian noise. The analogy is complete if weeset faster than a normal diffusion process and are persistent. For
=H—3 so that the spectrum reaf81,25 H<1 the fluctuations diffuse slower than normal diffusion
and are antipersistent. The fractional integral therefore trans-
forms a Wiener process into an anomalous diffusion process
[24,26. Recall thatH=a— 3 and 1=« >0 so that the above
process is always antipersistent when resulting from the so-
In the language of random walks the inverse power lawlution to a fractional-differential stochastic equation.
(2.9) for 1=H>3, or equivalently for 6<e< 3, implies per-
sistence. In the same way fge=H>0, or equivalently for IIl. FRACTIONAL STATISTICS
—1<€<0, the spectrum increases as a power law in fre- . . )
qguency and the process is antipersistent. In 1981 Hoskin The modeling of complex phenomena using a simple ran-
[21] recognized that fractional-difference processes exhibilom walk model of normal diffusion leads to Gaussian sta-
long-term persistent and antipersistent behavior. Thus, thBStics and a mean-square displacement that increases linearly
long-time memory that wasssumedn the preceding section with time. The most complex phenomena we modeled above

is here a consequence of the fractional dynamics describinfvolved the limit of fractional differences becoming frac-
the evolution of the process. tional derivatives, so that a stochastic process with long-term

memory can be generated by taking the fractional integral of
a Wiener process. We saw that such processes have Gaussian
statistics, but they also have inverse power-law spectra. The
Let us consider a continuum version of the fractional-system response is therefore a fractal function with fractal

1
w2H-1

S(w)=~ as w—0. (2.9

B. Fractional stochastic equations

difference stochastic equatidg.3), dimension given byp=2—-H [24,27,2§.
N We now want to shift our focus from random walks to non
DY) ]=4(1); O0<as1l. (2.10  (ifferential or more accurately fractional differential, sto-

] . ) . ) chastic phenomena. We generalize the standard approach for
'I_'he proper interpretation of thls'fracuonal stochastic equamodeling complex, statistical, physical phenomena, first pre-
tion, is actually an integral equation of the form sented by Langevin. The Langevin equation for the simple
_ one-dimensional Brownian motion of a unit mass particle is
Y ()=D “[&1)],

dov(t)

which can be written explicitly in terms of the Riemann- d—(t+>\v(t)=§(t). (3.2
Liouville fractional integral18,20

This is often referred to as an Ornstein-Uhlenbeck process,
1 [t &ndr (217  duefoits dependence on the dissipation paramietand the
(a) Jo(t—7)t ‘ fact that these two scientists gave the first complete math-

ematical description of the solution to this equati@®].
Using the power-law indekl = a— 3 we write Eq.(2.11) as  Physically the dissipation parameter is a consequence of the

Stokes drag on Brown’s pollen mote. The proper interpreta-

B 1 t W1/ f[ion of Eq. (3._1) is not as a differential equation, but as an
- mfo(t_ﬂ &(ndr, (212 integral equation of the form

Ya()=F

Yr(t)

o . . + = .
which is one choice for the continuum analog of the do(t)+rv(t)dt=dB(t) 3.2
fractional-difference stochastic process. Note that our choicgnered B(t) is a differential Wiener process. We now gen-
of Eq. (2.1 differs from the one made by Mandelbrot and grgjize Eq.(3.2) to account for nonlocal influences, that is,
van Nesg26] to describe fractional Brownian motion. for the kind of relaxation that occurs in polymers and in
The distribution function is the same as that of the random,igcoelastic material§30]. In an economic context the ana-

force, since the integral operat@.11) is linear. Thus, if(t) logs of those influences are war, unemployment, inflation
is a &function correlated Gaussian process, the system rgxieg political scandals, and so on.

sponse will also be Gaussian, but with a variance given by
Uﬁ(t)zaﬁtZH (2.13 A. Fractional Langevin equation
Note that the Langevin equatidB.2) is phenomenologi-
and cal in character, so that it is reasonable, in the case of physi-
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cal phenomena with memory, to replace Newton’s force law (E(t))E(th))=2D (1) —t5). (3.7
with a fractional derivative of the velocity. Physically, this

replacement means that the force is only defined on a fractal The integral(3.6) is completely symmetric in the times

set of points. To ensure the physical reasonability of thisandt,, but we know that thes function will restrict the
model, the fractional force law ought to include a depen-integration to the earlier of the two times, since this is where
dence on the initial velocity to ensure a proper interpretatiomoth variables can be equal. Therefore, we introduce the no-
of the initial value problem. In addition the diSSipatiOI’] pa- tationt> for the greater time an'd< for the lesser time, and

rameter should have the appropriate scaled units. This line Giplementing thes function (3.7) under the integral3.6)
approach has been takgtB,30 in physical systems, so the yje|ds

fractional Langevin equation is

. 4D [t )
t <[U(t>)—vo][v(t<)—vo]>:WJO di(t. — )=

D?[v(t)]—vom: —N*v(t)+&(t1), a=a>0

3.9 X (to—t)* L. (3.9

whereg(t) is, for the moment, chosen to be a Wiener procesgnoqycing the normalized variable=t/t we obtain, after
and the initial value for the process is given by. The  ¢jme algebra

question is:ls Eq. (3.3) a reasonable generalization of the
usual Langevin equation given by Eg. (3.1) to provide a dy'([v(t>)—vo][v(t<)—vo]>
namical model of the temporal evolution of financial market
activity? 4Dt* 't (1 t. \et .
Here we adapt the above physical arguments to financial =~ (42 fo d§( 1- EZ) (1=~ (3.9
markets and write the fractional-dynamical equation of mo-

tion for the normalized number of trades in a given mtervalUsing the following integral representation of thgpergeo-

of time, n(t). Of course, with this definition of the dynami- h : .
cal variable the initial value vanishes in E@.3), but we [rggirlocrflgr;?tl[ogri]see for example Miller and Rogpage 304

shall not use that fact for a while. We first of all examine the
solutions to equations of the for(83.3).

I'(c) Lo e e
N . B Fu(@bicz)= g—r—s fdzza 1-pe et
1. Stochastic fractional differential equation — no dissipation (@)I'(c-a) Jo

Before we work on solving the full fractional Langevin X(1—¢2)7b, (3.10
equation(3.3), let us look at a somewhat simpler version of
this equation, one without dissipation, where Re&e>Rea>0, and equating coefficients in E.10
- with the terms in Eq(3.9) we obtain
Do vopm gy =€), G4 ([o(t-) ~vollv(to)—vol)
4Dt* 1o

and for the moment we disregard the fact thgt=0 for the _ =
market variable. The solution to E¢3.4) can be written in al'(a)?
terms of a fractional integral operator

to
11— a1+ a:—) , (3.1)
t-

where we have suppressed the suffixes on the hypergeomet-
v(t)—ve=D; “[&(1)]. (3.5 ric function and which is only valid fore>0.5 whent.

=t_. Note that the statistics of the solution to Eg.4) are
We also know that the statistics of the solution to this equanonstationary, since the correlation function depends-on
tion are Gaussian whe#(t) is a Wiener process and the andt. separately, and not just on the differerice-t_ .
spectrum of the solution is an inverse power law, as we We know, from the linear nature of the differentiation
found in the preceding section. However, we did not explic-procedure, that the statistics of the fractional-dynamical pro-
itly calculate the correlation properties of the system re-cess described by E¢3.4) would be Gaussian, if thé fluc-
sponse. Let us now evaluate the two-point correlation functuations are assumed to have Gaussian statistics. On the
tion using the formal properties of the Riemann-Liouville other hand, we know from the data analysis of Gopikrishnan

fractional integral to obtain et al. [32], among others, that the dynamical financial vari-
ables do not have Gaussian statistics. In fact, market activity
([v(t) —vollv(ty) —vol) has a PDF with power-law tail8], whereas the volatility is
s log-normal in the central region with an inverse power-law
_ 1 ftldt’ ftzdt’ (&t E(ts)) (3.6) tail [6] and market activity also has inverse power-law time
T(a)?)o o 2t—tHl o (t,—tp) T ' correlations with exponent=0.85+0.01[9,15].

Therefore we do not make the assumption that&flec-
where the fluctuations are assumed to dRinction corre-  tuations are Gaussian, but we still assume them to have a
lated in time S-function correlated character. In this way, if we identify the
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FIG. 1. We graph the logarithm of the autocorrelation function ki 2. The auto-correlation function far=0.6. 0.7. 0.8. and
from Eq. (3.16 versus the logarithm af for power-law indicesx (g is fit with the empirical equatiof8.18 using a least-squares fit
=06, 0.7, 0.8, and 0.9. to the parameters. The entire range of the data was used in the

fitting.
system variable with the normalized number of trades and

introduce the normalized variabie=t_ /t-. , we obtain We can see from the figure that each curve has a dominant

power-law form, but with differing slopes. So we can write

2a—1 .. .
the empirical relation

(n(t=)n(to))= TZ)ZZ“F(l;l—a;l-‘r alz).
(312 C(z)ocz". 3.19
Of course, we can also use E@®.11) to write the second
moment at time=t. =t_ The exponentu is a function of the fractional derivative
parameterx, and we obtainw=1.5 for 0.6=«=<0.9.
n ) ] ) However, data that have been processed and published in
(n(H)= WF(l’l_ a;l+a:l) (313 the literature are in a form that can be directly compared with
the scaling resul{3.17). Therefore we introduce.=t- — 7
and using31] andt=t. into the autocorrelation function and graph the
resulting function versus the normalized time separation
I'(c)[(c—a—b) variable 7/t in Fig. 2. What we find is

I'(c—a)I'(c—b) (314

2a—1

F(a;b;c:1)=

r
aF(l;l—a;1+a:1—?

provided Re&e>Rda+b] andc is not a nonpositive integer, T
we obtain for the second moment Ca(T!t):(l_ t] Flil-altal
4D Ala)
2\ _ 2a-1 ~— 1
()= DTzt (319 ( mro) (318
1+ n

This result, Eq(3.15, agrees with that obtained for anoma-

lous diffusion, if we make the identificatiod =a— 3, but o )

this identification can only be made for-la=1/2 in order ~Where the empirical parametefsandB are functions of the

to satisfy the condition on the hypergeometric function. Infractional-derivative indexx and are obtained by a least-
this case we havé=H=0, corresponding to an antipersis- Squares fit of the indicated phenomenological equation to the

tent process. In Fig. 1 we graph the autocorrelation functioffutocorrelation function. _
as a function of the normalized variable for a variety of The values of the parameters in £g.18 for each value

fractional-differential indicesy, of « obtained by least-squares fitting the entire range of the
correlation function is depicted in Fig. 2. The parameter val-
(N(t=)n(t-)) ues obtained by fitting the data are recorded in Table I. The

> <

values of the empirical power-law index recorded in Table |

Calts to)=————"—5-
T (n(t+T)%) are fit to the linear equation ia,
aF(l;l—a;1+a:z)

Y li—airan (510 B(a)=—2.52+6.78. (3.19
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TABLE I. The least-squares fit of the parameters in the phenomby taking the Laplace transform of the dynamical variable.
enological equatior{3.18. A and B are recorded for each of the Denoting the Laplace transform of a variable by a tilde over
values of the order of the fractional derivative. the function,?j(s)z’]i{v(t);s}, we obtain after some a|ge-
bra, from Eq.(3.20)

@ A B
0.6 0.67 1.53 3(s) bos” (3.22
: : : U(S)= o car :
0.7 0.95 2.22 \its
0.8 1.00 3.03 wheres is the Laplace variable conjugate to the time. The
0.9 101 3.50 inverse Laplace transform of the right-hand side of Eg.
(3.22 is
We can see that the range for the power-law index is . se1 C+io ts“flds
0.87<B(a)=<4.26 for the fractional-derivative index inter- g Wit = jc—' e’ N (3.23
val 0.5<a=<1. By comparing Eq(3.19 with the data fit '
[32], should have which we calculate using Fox functions to gil&0,1§
—2.52+6.782=0.3, Z(—1)k )
U(t)—vokgom()\t) . (3.29

which implies «=0.42. However, this value of the
fractional-derivative index is outside the range of validity of The solution to the homogeneous fractional-differential
our solution. Thus, the present model of the fractionalequation is therefore given by the Mittag-Leffler function
Langevin equation does not satisfactorily describe the central

moment properties of the price fluctuations in financial mar- v(t)=voEl(=(AD)Y). (3.29
kets. However, it should be noted that we have not taken into
account market retardation forces, that is, dissipation. W%a
now turn our attention to the modeling of such forces.

Thus, the fundamental process is not that of an exponen-

| relaxation, as it is for the Ornstein-Uhlenbeck process;

rather the relaxation properties are determined by the

asymptotic properties of the Mittag-Leffler function. At early

times it is not difficult to show that the Mittag-Leffler func-
Let us examine the solution to the homogeneous fraction has the form of a stretched exponenfz0]

tional differential equation, and once we understand that so-

lution, consider the inhomogeneous case. The homogenous lim E_(— (\t)¥)~e~ A0, (3.2

fractional Langevin equation does not contain “thermal” t—0

fluctuations,

2. Fractional differential equation—no fluctuations

At late times it is also not difficult to show that the Mittag-
W Leffler function has the form of an inverse power 1&80]
Dilv]—vopr—gy = —A"®. 320 lim E,(— (\)H~(A) . (327
t—o
Equation (3.20 is mathematically well defined, but what o yansition time between the two relaxation domains,

does it mean physically? From statistical physics we knOWsetched exponential, and inverse power law is determined
that the fluctuations in the equation of motion are |nt|matelyby the parameten,

related to the dissipation, and that in fact they have the same
source. This is what gives rise to the fluctuation-dissipation 3 siochastic fractional-differential equation—with dissipation
relation, relating the strength of the fluctuations to the ratio ) )

of the temperature to the dissipation parameter. However, in L€t Us now look at the solution to the complete fractional
Eq. (3.20 we have a dissipation without a corresponding seﬂfangeVln equaupn. Again we begin by. repla'cmg this equa-
of fluctuations. Since all the operators in E§.20 are linear 10N, Ed.(3.3), with the equivalent fractional integral equa-
we could interpret this equation in terms of the average vellon
locity.

For now we treat Eq(3.20 as a mathematical expression
with the initial velocity given by, the time dependence is e | apjace transform of this equation yields after some
included so as to have a well-defined initial value prOblemaIgebra
and the dissipation parameter is appropriately scaled to have
the units corresponding to the order of the fractional deriva-
tive. The solution to this equation is obtained from the cor- D(s)=
responding fractional integral equation

v(t) —vo=—ADy “To()]+D “T&M].  (3.28

ves* t &9
AN¥+s* N*+s*]

(3.29

R We note the difference in thedependence of the two coef-
v(t)—vo=—ADy “[v(t)] (32D ficients on the right-hand side of E¢3.29. The inverse

046118-7



S. PICOZZI AND B. J. WEST PHYSICAL REVIEW 66, 046118 (2002

Laplace transform of the first term on the right-hand side ofWe can calculate these quantities using the solution to the
Eqg. (3.29 is the Mittag-Leffler function that we found in the fractional Langevin equation(3.34). The autocorrelation
homogeneous case. The inverse Laplace transform of thfenction is
second term is the convolution of the random fluctuations t .
and a stationary kernel. The kernel is given in terms of a Fox _f / , ailf 2 ra—1

. n(tyn(ty))y= [ dty(t;—t dtj(t,—t
function [18] < ( 1) ( 2)> 0 l( 1 l) o 2( 2 2)

T,]_ 1 i ] _ ()\t)a_l Hll M (Oilla) X Ea,a(_)\a(tl_ti)a)Ea,a(_)\a(tZ_té)a)
L )\a+sa' - 12 0,1/(1 y 1_6(,1 ’ 2
(O« ()3_30) X(E(tDEty), (3.36
as we obtained for the second term in E829. The series where the meaning of this equation is tied to the statistics of
expansion for this Fox function can be written[86] the random force driving the system and we have set the
initial value to zero as it would be for a financial market
1 (0,1/e) Z (—1)k variable. The traditional assumption is that the random fluc-
;Hﬂ At (0,1/),(1— a,1) =k2 m()\t)k“, tuations have Gaussian statistics and no memory, that is, they
’ ’ ’ =0

33 are &-function correlated in time, see E@.7), andD is the
(3.39 strength of the fluctuations. We make the latter assumption

where the series is a representation of the generalized€re, but not the former; that is, we assushtunction cor-

Mittag-Leffler function, and is defined in general by related fluctuations, but we do not specify the statistics.
« 7K 1. Evaluating the integral term
Ea,B(Z)EkZO T(ka+pB)’ «>04>0. (3.3 Here again we observe that the correlation integral is

completely symmetric in the timetg andt,, so that intro-
The generalized Mittag-Leffler function reduces to the famil-ducing the greater and lesser times,andt_, and imple-

iar form for =1, menting thed function, the integral term in E¢3.36 re-
duces to
=3 % (@, (333
E,i(2)=2> ————=E(2), _ to
T & Tkatl) 1=2 f dt(te =) Kt =) B (At~ 1))
0

so that both the homogeneous and inhomogeneous terms in
the solution to EQq.(3.28 can be expressed in terms of
Mittag-Leffler functions.

We now write the general solution to the fractional Lange-
vin equation, using the inverse Laplace transform of Eq.

XEa,a(_)\a(t<_t)a)' (337)

Making use of the series expression for the generalized
Mittag-Leffler function in Eq«(3.37) and changing the initial

(3.29, as value on the sums yields
t *o® (_)\a)k+|—2
0O =00E,(~ () + [ (1=t =23 B e, (338
XEq,o(—(A[t—=t"])E ) dt. (3.349  where we have introduced the integral

This result was obtained by Kobelev and Romah®8] us- to
ing standard techniques for solving Volterra integral equa- IkI:f dt(t. —t)k Lt —t)leh (3.39
tions. In the caser=1, the Mittag-Leffler function becomes 0
an exponential, so that the solution to the fractional Langev"?:actoring the times-
equation becomes identical to that for an Ornstein—d
Uhlenbeck process

andt_ out of the integral and intro-
ucing the scaled variable=t/t_ allows us to write

ka—1

(1-9'e Y,

1
t _tka—1ila _ _<
v=vge N+ [[e M Vgyar (339 =tz t<Jod§(l (e
° (3.40

so that we can again use the integral representation of the

o hypergeometric function, E¢3.10), to evaluate this integral
B. Market activity as a fractal processes as

as it should.

The traditional quantities calculated from the normalized
number of trades time series are the autocorrelation function | = ka—1¢la I'(le) Fl 11— ka 141 e
and the standard deviation of the time series. The latter is K™= <T(a+1) ’ R
often referred to as the market activity as we mentiorégd (3.4

046118-8



FRACTIONAL LANGEVIN MODEL OF MEMORY IN . .. PHYSICAL REVIEW E 66, 046118 (2002

Thus, the integral term in the trade autocorrelation functiorwhich clearly integrates to

becomes
* at/a) dt,
o N (ATETERE = J{E T(k }—,2‘
B 1T Ka, e k=1 a) t
221;1 I'(ka)T'(la+1) Fl 11 ka,l-f—la.t>

(342 we can also take the derivative of the Mittag-Leffler function

and the entire autocorrelation function is
_ )\ata)k

dEa( )\t)“) =
(_)\a)k+|72t|;afltl<a gl T(ka) T (3.49

[’

<n(t>)n(t<)>:4Dk21 ;1 TC(ka)[(la+1)

where thek=0 term vanishes due to the pole of thdunc-
tion, so that the second moment of the velocity can be re-

to
X F 1,1—ka.1+|a-t— ; (3.43 written [33]

>

which clearly, is a nonstationary result, due to the depen- dE,(—(\t")®)
dence on both times, independently of one another. There is (n(t)?)= 4Df [T} dt’. (3.46
not much more that we can do analytically with £§.43

due to its generality; let us therefore simplify the expression We can determine the early time properties of the second

somewhat. moment in Eq.(3.46), by keeping the lowest-order term in
the series expansiof8.45. Thus, the leading terms in the
2. The time dependence of the market activity early time analysis of the market activity as measured by the

The second moment of the dynamical variable is obtainegt@ndard deviation is
by settingt.=t_=t in Eq. (3.43 to yield

(—na@yktl-2p(ks a1 lim \(n(t)?)~

-0 F( )

T V2. (3.47)

2 =
(NM%)=4D2 2 it D)
This is consistent with the results obtained earlier, see Egs.

XF(1;1-ka:1+la:1), (3.44 (3.13—(3.15.

where we can use E@3.14) to replace the hypergeometric
function by ratios ofl” functions. After some cancellation of
terms, Eq.(3.44) reduces to We can use the results of the Secs. 11IB2 and IlIB3 to
define the autocorrelation function as the ratio of B343

to Eq.(3.44 with t. =t andt_=t—7

3. The autocorrelation function

2 (—A9k—2 (k+Da—1 la
(n(®)%= 4DE E  T(ka)T(lat 1) " latka—1'
(n(t)n(t—17))
Culrt)=—r. (3.48
where, if the second term on the right-hand side of this equa- (n()?)
tion is denoted byZ, we can write[33]
Here again we can plot the autocorrelation function versus
the dimensionless time difference= 7/t, to see the depen-

- E E (—t(k+ a2 dence of this quantity on the fractional derivative index. The
dt &= Tka)(la) ' form of the auto-correlation function is
% ® (_1)k+|72()\t)ka+|a71(1_n)la
F(1:1-ka;1+la:1-
22 T(ka)T(la+ 1) ( ailtlal=g)
C(r,t)= AN , (3.49
E E ——————F(1:1-ka:1+la:1)
k=1 =1 I'(ka)T'(la+1)
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TABLE Ill. The least-squares fit of the parameters in the phe-
nomenological equatiof8.51). A andB to all the data are recorded

0.7¢ for each value of the order of the fractional derivative.
0.5

a A B
0.3

0.6 0.077 0.278
0.2 0.7 0.20 0.209
0.15 0.8 0.358 0.147
0.1f 0.9 0.509 0.102

: ' above least-square fit, we write for a fixed length time series
0.005 0.01 005 0.1 0.5

the autocorrelation function in the interval 0.0&lr
Normalized Time Difference <0.02 as
FIG. 3. The auto-correlation functid.48) is plotted versus the A
dimensionless time intervalt on log-log graph paper and a least- C.(m)=—5, (3.5)
squares fit to all the data using the phenomenological equation 7

(3.50. The fits for the values of the fractional derivative index

20.9, 0.8, 0.07, and 0.6 are shown. where agairA andB are functions ofe. Here we employ a

lower limit on the range of the correlation function, as well
s an upper limit, to simulate the discrete nature of the finan-
ial data. In Table 11l we record the values for the parameters

obtained using Eq.3.5)) as the fitting function. In Fig. 4 we

Hepict the fit of Eq(3.5)) to the theoretical correlation func-

which does not have the apparently simple form observe
earlier.

In Fig. 3 we observe the decrease in the autocorrelatio
function. We attempted to fit this decrease, as we did earlielﬁon.

with a simple inverse power-law equation, usirig= 10, but Here we can use the data analysis of Gopikrisheial.

this yielded power-law indices greater than 10. As an alteryzo] for the correlation function of the absolute value of the
native, we decided on the phenomenological equation price returns in their Fig.®) or that of Liuet al.[6] in their
Fig. 8b). By comparing the inverse power-law indices with
A those in their figures, we obtain
Ca(m)=—gexg—nC|, (3.50
g 0.81— 0.84a=0.30+0.08, (3.52

where the empirical paramete#s B andC are functions of indicating a fractional-derivative index of=0.60+0.10.

the fractional-derivative indexx. The parameters in Eq. This index is consistent with the fractional Langevin model
(3.50 are obtained by a least-squares fit to the autocorrelaand with an antipersistent random walk interpretation with
tion function (3.49, using\t=10 and restricting the range H=0.40+ 0.10. Further, using a Tauberian theorem, we con-
on the sums to £k, |=<50. The values of the parameters for clude that the high-frequency form of the spectrum is given
four values ofe are recorded in Table Il using all the data to by the inverse power law
fit the coefficients. Again we can use the df32] to fit the

inverse power law and from this we fingd=0.05 which is 1

again outside the domain of our solution.

The problem is that we are fitting the theoretical correla-
tion function over its entire domain, whereas the correlation 9-8
function for the data is only fit over very early times. It is no
wonder that the parameters we obtain from such a fit do not %3
match with those obtained from the data. Therefore let us gt
reduce the domain over which we fit the data. Using the g 4g

0.7

TABLE Il. The least-squares fit of the parameters in the phe- o1
nomenological equatiof8.50. A, B andC to all the data are re-
corded for each value of the order of the fractional derivative.

0.005 0.01 005 0.1 0.5
@ A B C Normalized Time Difference
0.6 0.23 0.12 23.42 FIG. 4. The auto-correlation functia®.48 is plotted versus the
0.7 0.52 0.06 17.48 dimensionless time interval't on log-log graph paper and a least-
0.8 0.76 0.03 14.00 squares fit to the time interval (0.000.02) with the phenomeno-
0.9 0.91 0.01 11.60 logical equation(3.50. Only the valuesx=0.9, 0.8, 0.07, and 0.6

are shown.
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1 cesses in which a constant, or nearly constant energy input is
So(®)* —519r088 (3.53  stored in a system and then released in “fits and starts,” that
@ is, in an intermittent fashion, thus exhibiting an alternation of
as long asx<1. periods of low to moderate activity interspersed with intense

We point out that we have assumed the equivalence of ou@nd sudden “bursts” of activity with no preferential time
theoretical autocorrelation function and that calculated byscale involved. Examples of such processes are earthquakes
Gopkirishnanet al. [32] which uses the absolute values of [37], rainfalls [38], turbulent fluid flow[39], relaxation of

the price fluctuations. stress in viscoelastic materidl30], microcrack propagation
[40], and other processes with stick-slip dynamics. The
IV. CONCLUSIONS “economic analog” of the above picture would be the nearly

steady input of information which builds up in the market

We have presented here a model of long-range memory iontil the different pieces come together to form, in the
market data. Empirical studies have identified market activagents’ mind, a sufficiently coherent signal, thus rousing
ity, as measured by the number of trades per unit time, as thilaem to action.
likely candidate for the macroscopic stochastic process from The interpretation of the flow of information as the driv-
which long-term memory originates and, mediated by markeing energy source in an economic context is not new. It was
impact, is then transferred down to certain nonlinear funcadvanced a few years af41] to suggest possible similari-
tions of price fluctuations, including measures of volatility. ties between the price-formation process and the energy cas-
This explains our choice of market activity as the stochasticade in turbulencg39]. However, our model has its point of
variable to be modeled. We hypothesized that market activitgleparture with the observation of the lack of separation of
constitutes a macroscopic stochastic process driven by a mike scales pertaining to the information flow as a microscopic
croscopic random noise representing the flow of informatiorprocess and those relative to an empirically observable mac-
available to agents. No further hypothesis is present in theoscopic process, such as market activity. All analogies with
model, as no temporal correlations were assumed in thether physical systems are here invokegosteriorito inter-
noise term. pret the model’s solution. Moreover, the same equation can

We have shown that a fractional-differential operator cardescribe slightly different power laws observed in different
couple a short-term memory process to a long-term memorgssets, by simply adjusting the corresponding fractional in-
one and that the exponent found in the empirical power-lawdex, without modifying the driving noise terms, which would
can be successfully reproduced by suitably adjusting the inbe desirable, as presumably different stocks may be affected
dex of the fractional derivative. However, the questions whatlifferently by the same pieces of information with common
is the physical meaning of the model and how can its resultsemporal correlations. We had previously used an identical
be interpreted in economic terms remain. model to describe long-term memory effects exhibited by the

In physical systems, the emergence of power laws is genvolatility [42], whose empirical autocorrelation function de-
erally associated with an underlying scale invariance, so it igays as a power law with a different exponp#-45]. How-
tempting to put forth the working hypothesis that the samesver, we believe the connection between information flow
principle may be at work in economic systems as W@ll—-  and trading activity to be more direct, thus rendering the
36]. In particular, power-law behavior arises in physical pro-“physical” interpretation of the model more transparent.
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