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Open boundaries in a cellular automaton model for traffic flow with metastable states
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The effects of open boundaries in the velocity-dependent randomiZ&tisR) model, a modified version of
the well-known Nagel-SchreckenbefyaSch cellular automaton model for traffic flow, are investigated. In
contrast to the NaSch model, the VDR model exhibits metastable states and phase separation in a certain
density regime. A proper insertion strategy allows us to investigate the whole spectrum of possible system
states and the structure of the phase diagram by Monte Carlo simulations. We observe an interesting micro-
scopic structure of the jammed phases, which is different from the one of the NaSch model. For finite systems,
the existence of high flow states in a certain parameter regime leads to a special structure of the fundamental
diagram measured in the open system. Apart from that, the results are in agreement with an extremal principle
for the flow, which has been introduced for models with a unique flow-density relation. Finally, we discuss the
application of our findings for a systematic flow optimization. Here some surprising results are obtained, e.g.,
a restriction of the inflow can lead to an improvement of the total flow through a bottleneck.
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I. INTRODUCTION tered in real traffic, e.g., the occurrence of phantom traffic
jams[15]. On the other hand, the NaSch model cannot ex-
In recent years, cellular automat@A) models[1] have plain all experimental results. Therefore, modifications have
attracted a huge attention in statistical phydiasd far be- been suggested. Here we concentrate on the NaSch model
yond). The so-called driven lattice gas models, i.e., a latticewith velocity-dependent randomizatiotVDR) [16,17,
connected to particle reservoirs at its boundariepen  Which exhibits metastable states and phase separation be-
boundary conditionswhereby the particles have a preferred tween jams and free-flowing vehicles. It is remarkable that,
hopping direction, are of special interésee Refs[2,3] for by taking into account further interactions among vehicles on
an overview. The key feature of this class of nonequilibrium a more detailed level, even empirical single-vehicle data can
models is their simplicity. Albeit the dynamics is based onbe reproduced with CA mode[48].
simple local rules, a rich and nontrivial behavior with a sig- So far most studies on CA models for traffic flow were
nificant relevance to various real world applicati¢2s3] can ~ done for systems with periodic boundary conditions. How-
be observed. One of the most interesting effects of driver@ver, open boundaries are relevant for many realistic situa-
lattice gases are boundary-induced phase transitjdhs tions in traffic where the number of vehicles can change, e.g.,
These have been extensively studied so that even exact réue to ramps. The special bulk dynamiesth the existence
sults exist for some models, e.g., the asymmetric simple exof metastable states and hysterpsimakes the VDR model
clusion process(ASEP (see Ref.[3], and references an interesting candidate for investigating the influence of
therein. The ASEP has originally been introduced to provideopen boundaries. For models wittuaiqueflow-density re-
an explanation for the kinetics of protein syntheld$ but  lation (fundamental diagram a rather general phenomeno-
several extensions were proposed to enlarge the potentilfigical theory of boundary-induced phase transitions was de-
field of applications. For instance, in R¢6] multiple occu-  veloped in Refs[4,19-23. This theory is able to predict the
pation of sites allows us to reproduce the complex dynamichase diagram of open systems even for complex models. It
of data transport in the Internet. However, in this paper wecan be summarized by the extremal principle,
will concentrate on driven lattice gases in the context of ve-

hicular traffic flow. Also in this area of transportation theory, ma&E[pR’leJ(p) for p_.>pgr
generalized ASEPs have been used succesgfii#i3]. =5 . (1)
A few years ago, Nagel and SchreckenbévgSch [14] MiNy e o d(P)  fOr pL<pg,

proposed a probabilistic CA model for traffic flow based on

the ASEP. As an extension, velocitieg,,>1 are allowed in  which relates the currertin the open system to the funda-

the NaSch model with the aim of mimicking effects of ac- mental diagramJ(p) of the periodic systemp ,z are the

celeration and deceleration. This model is the simplestypical densities at the left and right boundaries, respectively.

known CA that can reproduce the basic phenomena encourks pointed out in Refs[23,24, the phase diagram of the
NaSch model is similar to the one of the ASEP supporting
the predictions of Ref[19]. Contrary to these results,
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dition considered, and that the phase diagram of the NaScl 1 .
model is well comparable to the one of the ASEP. I
The fundamental diagram of the VDR model shows a I
density regime in which the periodic system can be intwo 08 | |
different states. One is a metastable homogeneous state ai ! \ 02 ]
|
[
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i 04 ——
|
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the other one is a phase separated state with a large jar

; ) . X 0.1
between free-flowing vehicles. Such models with nonunique 0.6 | b
flow-density relations have not been discussed in the contexg 5% S 02 04 06 0.8
of the above mentioned phenomenological theory. Therefores | : _ periodic' o
itis interesting to analyze which results can be transferred tc 0.4 4 - ©>0pen : q,,=0. .

G--©open:q,=q,=046

models with metastability and how many additional effects :
*= - Open:q,>q,

[
can be observed due to the metastability. In R&8], a !
special case of the VDR modé&ee Sec. Il for detailsi.e., 02 ¢ |
vmax= 1 and suppressed fluctuations, was studied. An inter- |
esting striped microscopic structure appears and the exis |
tence of high flow states instead of a maximal current phase |

) . ¢ 0 1 1 1 1
which occurs in the ASEP as well as in the NaSch model OP/ Bﬂxp 0.4 06 0.8 1
under open boundary conditions, are observed. We will show ' : p
in this paper that these results are transferable twihg FIG. 1. Fundamental diagraD) of the VDR model and the

>1 case. Furthermore, a phenomenological approach Cagasch modeiinse. The full lines correspond to periodic boundary
pable of explaining this occurrence of high flow states isconditions while the symbols represent states obtained using open
given, in good agreement with numerical results. Allowingpoundaries. The fluctuation parameter is sepge:0.5 for cars at
fluctuations of free-flowing vehicles can lead to interestingrest, andp=0 for driving cars. In the NaSch modginsed, p
effects due to spontaneous jamming. In this context a surpris=0.5 for all velocities. For high inflows), the FD shows a very

ing application will be given, namely, the flow optimization interesting shape, i.e., there are densities where the system can take

by a systematic reduction of the inflow. on three different states.
Besides the modeling aspects there is much evidence
[24,29 that nonequilibrium phase transitions occur in traffic maxv,—1,0) with probability p,,,
flow on highways in the vicinity of on and off ramps. From Un— . .
[vn with probability 1-p,,,

the modeling point of view, such highway segments can be
treated as open systems. Hence the understanding of the o
model dynamics under open boundaries is indispensable i) SteP 4: drivingix,—x, +v,,.

respect to realistic computer simulations of real traffic sys- €r€dn=Xn.1~x, denotes the distance from the next car
tems. ahead, where the numbeyg— 1 of empty cells in front of the

nth vehicle is usually called “headway.” One time step cor-
responds to approximately 1 s in real tifried].
II. DEFINITION OF THE MODEL For simplicity we study the case with two stochastic pa-

. . rameters only:
For the sake of completeness, we will now briefly recall y

the definition of the VDR mod€l16,17]. Afterwards, a dif- _
ferent insertion strategy is introduced, which is able to elimi- _|Po for v=0
ay » Whi _ p(v)=
nate large holes due to hard-core exclusion, occurring when p for v>0.
considering the standard insertion proceduamd therefore
allowing us to investigate the whole spectrum of possibleHere, p, controls the fluctuations of cars that have not
system states. Throughout the paper we assume that the pareved in the previous time step, and thus determines the
ticles move from left to the right. Particles are therefore in-velocity of a jamp controls the velocity fluctuations of mov-
serted at the left end of the chain. The model is defined on ang cars. Equation2) includes the so-called slow-to-start
lattice of lengthL, where every single cell can be empty or casep,>p, where the model shows phase separation and
occupied by just one particlevehicle. The speed of each metastable stategl6]. It is interesting that an alternative
vehicle can take on one of thg,,,+ 1 allowed integer val- choice ofp(v), €.9.,po<<p leads to a completely different
uesv=0,1, ... pnhax. The state of the road at time-1 can  (even contrary behavior. Note that fopy=p, the original
be obtained from time stefpby applying the following rules NaSch model is recovered. For further details on the model,
to all cars at the same timgarallel dynamick (1) Step 0: see Ref[17]. As mentioned before, the special case with
randomization parameter; determination mf=p(v,). (2) Umax=1 andp(v=1)=0 with open boundaries is analyzed
Step 1: accelerationy,—min@,+1, vmay. (3) Step 2: in Ref.[28].
braking;v,— min(,, d,—1). (4) Step 3: randomization; In Fig. 1, a typical fundamental diagram of the periodic
VDR model(full line) is shown. It can be divided into three
different regimes according to the jamming properfi&6].
tusually, the first cell of the system is occupied with a certainFor densities up t@; no jams appear, and jams existing in
probability. the initial conditions dissolve very quickly. Aboys in con-

@

046113-2



OPEN BOUNDARIES IN A CELLULAR AUTOMATON.. . . PHYSICAL REVIEW E66, 046113 (2002

from the right to the left end. This is due to the fact that
inserted vehicles will occupy a positian, .4 cells ahead, so
that the initial position of the next vehicle must be shifted
about one cell back to satisfy conditidi. After a while all
vehicles move with maximum velocity,,,x and the minimal
headway ofv ., cells. This corresponds to the maximum
flow pattern of the model. For smaller values @f,, the

FIG. 2. Schematic representation of the analyzed system. Ca@&yStem is adjusted into states with lower densities and flows.
move from left to right, and are represented by dark cells, whereas At this point, we want to stress that the maximum flow
empty cells are white. The left boundary is given by a small systenstate of the VDR and NaSch model with,,,> 1, and more-
consisting ofv ..+ 1 cells. This particle reservoir is occupied by at over even a large spectrum of system states cannot be ob-
most one car with probability;, . The right boundary consists of a tained with the help of the standard insertion procedure
single cell occupied with probabilitg, . where just the first cell of the system is occupied with a

certain probability. For example, fay,,=1 and only one
trast, no homogeneous state without a jam can exist. Thisingle cell used as boundary, the velocity of inserted ogfs
jammed state is characterized by a wide phase separated jdatms a sequence corresponding to a circulating pattern, i.e.,
and free-flowing vehicles. However, between the two densivin=(5,4,3,2. . .), instead of the circulating positions in the
tiesp, andp,, the system can be in two different states. Onecase of the enhanced boundary. As a consequence, one finds
is a metastable homogeneous state with a high flow and a@n artificial phase diagram and unusual dynamics especially
extremely long lifetime. Jams can appear due to internafor small p. Further, there is a lack of obtainable system
fluctuations or external perturbations, i.e., by stopping carsstateshigh flow) since continuous small gaps cannot be gen-
The other state is a phase separated state with a wide jarated within this standard strategy. For details see Refs.
which can be reached by the decay of the homogeneous stdfb,26, where the NaSch model,,,,>1 is studied in the
or directly owing to the initial conditions. For large systems, context of the standard boundary condition.
the differencep,— p, strongly decreases and vanishes in the The right boundary is realized by a single cell linked to
thermodynamic limit. The metastable states of the VDRthe end of the system. Here the update is applied similar to
model are found to be very sensitive against perturbations. lthe case of the left boundary before the general vehicle up-
Ref. [30], this sensitivity is studied analytically on the basis date procedure. First, the right boundary is clediedeces-
of random walk theory. Moreover in Reff31], it has been sary and then occupied with probabilitg,,. This corre-
observed that the strong phase separation of the model csjponds to an outflow probability of-1q,,. At last, cars are
be broken by local lattice defects, i.e., stop-and-go traffic thatemoved if their velocity is large enough to reach at least the
does not occur without lattice defects being found. (empty boundary cell.

A schematic representation of the analyzed system is de- Next, an analytical expression for the inflde(d;,) for
picted in Fig. 2. We expanded the width of the left boundarythe present insertion strategy is given. This expression is
from one single cell to a minisystem of width,,,+ 1. This  valid for all cases investigated in this paper, even for the
is done to provide a proper insertion strategy allowing us tdNaSch model. Note that the inflow into the system is equal to
investigate the whole spectrum of possible system state#he flow in the free-flow phase. As shown above, the initial
That is, the maximum inflow into the system should corre-position of vehicles circulate from the right end of the
spond to the maximum possible flow of the deterministicboundary to the left end fax;,=1. Finally, if the last cell of
VDR model? The allocation of the minisystertieft bound-  the boundary is occupied, this vehicle is not able to enter the
ary) has to be updated every time step before the vehicles ofystem anymore, but will move to the first cell within the
the complete system. The update procedure consist of twbhoundary instead. Therefore, the first cell has to be refreshed
steps. If one cell of the minisystem is occupied, it has to ben the next update step before a new vehicle may be inserted,
emptied first. Then a vehicle with initial velocity,,.. is SO that effectively five cars are inserted in six time stéps
inserted with probabilityq;,. Its position has to satisfy the vmax=5). In general, one has to consider an arbitrary inser-
following conditions:(i) The headway to the first car in the tion rateq;,. Obviously, when calculating the inflow, one has
main system is at least equal to the maximum veloejty, to subtract from the vehicle insertion raig just the events
and (i) the distance to the main system has to be minimalthat lead to an occupation of the last cell of the boundary.
i.e., if no vehicle is present in the main system within theThese are all events whete,,,+1 vehicles are inserted
first v .« Cells, the first cell of the boundary is occupied.  consecutively into the boundary. Note, that if a series of in-

We illustrate the benefits of this insertion strategy for thesertion events is interruptegho insertion, the process re-
case of the maximum insertion rajg=1, i.e., in every time  starts at the first cell of the boundary. In the language of a
step one vehicle with velocity . iS inserted. The initial stochastic process, this can be formulated as follows. The
position of these vehicles will circulate within the boundary vehicle insertion can be seen as a sequence of Bernoulli tri-

als, i.e., an insertion of a vehicle corresponds to a “success”
S (probability g;,) while a nonoccupation corresponds to a
2This is also equal to the maximum flow in the deterministic “failure” F (probability 1—q;,). Now a “success run” of
NaSch model. The maximal flows in the stochastic versions of thdength r within a sequence of trials will be defined as fol-
models are always smaller. lows. A sequence oh letters S and F contains as many

Vmax+ 1

munliEsEn(EES

(7

qin qom
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“success runs” of lengthr as there are nonoverlapping un-
interrupted blocks containing exacthletters ofS each. For
example, the sequende|SS$SFSS$SSSSSF contains
three success runs of length 3. The probability that a succes

1
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— - P,=00,p=00
_— p°=0.5,p=0.5

run occurs at thaeth trial will be denoted asi, in the fol-
lowing. Obviously, the probability that a seriesro§uccesses
occurs at the trials,n—1, ... n—r+1 is equal to ¢;,)". In
this case the success run occurs at one among these’trials 3 | '\ ]
Then the probability that a success run occurs at trial numbe© .
n—k(k=0,1,...r—1), and the followingk trials are suc-
cesses is equal 10,_,(g;,)". These events are independent,
and one gets the following relation:

qout

a) Free .

Fi s
3) ow | ¢c) MC "~

0
0g—

/

1

UptUp—1Qjpt+ - - - +unfr+1(qin)r_1:(Qin)r-

with u;=u,=---=u,_,=0. This relation can be solved

with the help of a generating functiofsee Ref.[32] for q

detailg. The following solution for the probability that the in

considered trial corresponds to a success run can be derived: F|G. 3. Phase diagram of the NaSch model derived from Monte
Carlo simulations. In the free-flow pha&s the flow is determined

(Qlin)" (i) by particle injection at the left boundary, whereas in the jammed

= T =11 . (4 phase(b) the particle outflow at the right boundary is the determin-
1+ 2 ()" E ()" ing factor. On the contrary the flow in the maximum curréviC)

= = phase(c) is given by the maximal possible flow due to the model

dynamics. The full lines correspond to the parameter combination
po=p=0.5, while the dotted line represents a deterministic system
po=p=0. Note that the maximum current phase vanishes for the
deterministic case.

Returning to the considered boundary with a lengthy gf
+1 cells(wherebyv .y is set to 5), the following expres-
sion for the inflow into the systenfflow in the free flow
phase is obtained:

movement such that phase separation is still ensured. For this
parameter combination, we point out characteristic additional

a,  din(ap—1) int ou
= . features due to spontaneous jamming.

5 6 (5)

n an—1
2 qin "
n=0

Jtree(Qin) = Uin—U=Qin—

A. NaSch model:py=p
Note that an analogous analytical expression for the inflow

can be used for any, ... As already mentioned in Sec. Il, the special cpge p of

the VDR model is equal to the NaSch model. The corre-
sponding phase diagram obtained by numerical simulations
IIl. SIMULATION RESULTS is plotted in Fig. 3(see also Refd23,24)). In the free-flow

Now, the most relevant results of the investigated systenhase, the system is jam-free except for some small jams
are discussed on the basis of numerical simulations. Thref@rmed at the right boundary. Hence the flow is given by the
different cases of the model dynamics are considered. At firs‘?""rt'de5 inflow. GFor Umax=95, this is equal t0Jsree(qin)
we take a look at the standard NaSch model, which can b& din(din—1)/(qin—1) in correspondence with E¢S). On
viewed as a special case of the VDR model wig=p. It ~ the contrary, in the jam phase the system is dominated by
provides a point of reference for the cases with metastabilit)l;rge jams of various sizes mostly generated at the right
and helps to clarify whether the phase diagram of the NaScRoundary due to the restricted outflow. Consequently, the
model is comparable to the one of the ASEP. Then generiflow is determined by the outflow parametgs,. On the
parameter combinations of the VDR model, including slow-contrary, in the maximum curreWIC) phase, the flow is not
to-start behavior and thus metastability, are treated for twéestricted by the boundaries but rather by the maximum pos-
different cases. In the first case, fluctuations in the movemeritible bulk flow of the given model. The MC phase spans a
of vehicles are suppressed, so that only the jam outflow i§ectangle in the phase diagram. The boundaries are given by
stochastic. This case is comparable to the system investibe outflow parameteqg,, corresponding to the density in
gated in Ref[28], except for the higher velocity ,,>1.  the jam outflow are@r(q3,,), and the probability;, accord-
Moreover, we investigate the case of stochastic vehicléng to the maximum flow of the mod@ls,ec(ai) = Imax- If

the inflow Jf.¢(Qin) SUrpasses this value, jams are formed

most likely direct in front of the boundary, so that the inflow

30ne has to take into account here that successes may occur beto the system is hindered. Given that the maximum flow in
fore trialn—r+1. the NaSch model is restricted by the fluctuation parameter, it
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1 . stochastic parameter for standing cars is seite 0.5 in the

b) Jam | following. As in the NaSch model, three different phases can
be distinguished. The free-flow phase is very similar to the
free-flow phase of the deterministic NaSch model since the
vehicles move deterministically through the system. No jams
are formed, except for some small ones occurring at the right
boundary. However, these small jams dissolve very quickly
since the flows in the free-flow phase are smaller than the
jam outflow. One very interesting peculiarity that cannot be
found in the NaSch model occurs in the cagpg=0, i.e.,

Qout

a) Free oJ maximal putflow. Here even for*inflows greater than the.out-
Flow flow of a jamJyee(din) >[Itree(din) = Joud, the system is in
the free-flow phase. This is indicated by the thick black line
' in the phase diagram. The origin of this line can be explained
o — quite simply taking into account that vehicles inserted into
in the system move deterministically, and no perturbations are

Gin present. Again the flow within the free-flow pha¥ge«(qin)

FIG. 4. Phase diagram of the VDR model with deterministic IS given by Eq.(5): . .
movement p=0) of free-flowing vehicles. The phase diagram is The microscopic structure (?f the tWO dl_f'ferentjam Phases
similar to that of the NaSch model. However, there are some diff the VDR model is characterized briefly in the following. A
ferences, most notably on tlg,=0 line. Furthermore, two differ- 100k at typical space-time plots in Fig. 5 reflects that both
ent regions(b) and (c) in the jam phase have to be distinguished phases produce a striped structure, i.e., compact jam clusters
with respect to their microscopic structure. The JO ph@Beis  alternating with free flow regions. At the right boundary,
characterized by very wide continuously growing jams. In thisfree-flow segments as well as compact clusters are effec-
phase, very high flows can be observed in finite systems. tively injected into the system. Both regions stay most likely
) ) ) ~ separated due to the dynamics and move backwards. The
is clear that the area of the MC phase shrinks with decreasingfiow into a single cluster is produced by the stochastic
p until it vanishes completely for the deterministic case oytflow of the preceding cluster. Therefore the width of the
=0. ) _clusters performs a nonbiased random wggk] until the

Up to here, the phase diagram of the NaSch model igjysters are far enough from the left boundary, i.e., there is a
qualitatively in complete agreement with that of the ASEPpreceding cluster present. If a cluster finally arrives near the
(vmax=1), which is known exactly33,34. As already men- |eft houndary, it becomes the first one in the system so that
tioned, this coincides with the argument of Kolomeiskyal. s inflow gets equal to the inflow into the system. The cluster
[19] that models with one single maximum in the fundamen-yidth now follows a biased random walk. If the inflow is
tal diagram (periodic system exhibit the same phases for smajler than the outflow of a jamlfyee(Cin) <[Jree(dl)
open boundaries. In order to determine the fundamgntal dia= Joutl (jam-1 phasg, the width decreases in average while it
gram from the open system, global flow and densities are, creases f0rfree(Gin) > [ Jiree(05) = Jout] (jam-1l phase.

'Nbte, that in the jam-I phase, the clusters vanish often before
?hey reach the left boundaryig. 5, top.

The most interesting result is that a new phase with a
nonstationary oscillating density pattern and very high flows
in finite systems can be found in the VDR model gy,
gqi’; and gou<Js,- The new phase will be denoted as the
m outflow (JO) phase in the following. This notation is

over all cells. In contrast, bulk values are measured in th
middle of the system. For low inflow and restricted outflow
the bulk density is juspr, whereas for the free-flow case it
is given byp, . By varying the inflowq;, and the outflow
Jout» We can generate all possible bulk densities and thus th
full fundamental diagramsee Fig. 1(inse)]. This agrees

) . ) oo . ja
with that obtained in the periodic system as predicted by th‘J?notivated by the fact that in the thermodynamic limit, the

extremal flow principle(1). . .
We like to stress that another choice of the insertion strat—SyStem flow is only determined by the JO. Moreover, the

. . . microscopic pattern reveals that in the JO phase the system is
egy can produce different phase diagrams. This happens, dbminated by one single large jiras can be seen in Fig. 6
fact, for insertion strategies that are not able to achieve th oy

. This peculiarity has its origin in the metastability of the
maximum flow of the NaSch model. Then only a part of themodel, leading to the so-called local-cluster efl@5], i.e., a
state space is scanned.

small local disturbance of the system can lead to the forma-

tion of a global wide jam. Due to this effect the global den-

sity in the JO phase cannot be related to one of the boundary
We proceed by characterizing the typical properties of thelensities. In fact, the left boundary densitgflow) directly

VDR model with metastable states and phase separated largetermines the global density and the high flows during the

jams. Figure 4 summarizes the results of our Monte Carlo

simulations for a VDR model where fluctuations of free-

flowing vehicles are suppressed. If not stated otherwise, the*This is indicated by Odone jam in Fig. 4.

B. Partially deterministic VDR model: py>0, p=0
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Time
Time

—_—

Space

FIG. 6. Space-time plot of the JO phase. The system is domi-
nated by one large jam that does not vanish until it reaches the left
boundary. The model parameters arp=(0.0, pp=0.5, Qou
=0.01g;,=1.0) andL =500.

densities instead of the bulk densities are considered due to
the oscillating density pattern. This may lead to small differ-
ences compared to the bulk density in the middle of the
system. However, besides the new states that are ascribed to
the JO phasex), the boundaries of the phase diagram can
easily be related to the periodic FD of the VDR model if
proper parameter combinations are chosé)),(so that in

this sense the extremal current principle is fulfilled.

In the following a phenomenological approach for the
flow in the JO phase is given. The jam front that originates
from the right boundary moves backwards with a velocity of
Vjam=1—Po [17] until it reaches the left boundary. In the

Space meanwhile, i.e., for the time intervdl;,,, the jam outflow
determines the system flow. The duration tifig, is pro-

FIG. 5. Typical space-time plots of the two different jam phasesportional to the system size It is the average time interval
of the VDR model for a system consisting lof=500 cells. The top  L/J,,; needed for the jam front to move from the right to the
part of the figure represents the jam-I phagg,{0.4, ;,=0.3),  left boundary plus the timé&/v 4, the last car of the jam
while the jam-Il phased,,= 0.4, gj,=1.0) is shown in the bottom npeeds to move from the left to the right boundady,,
plot. =Umax/[ (Vmax/(1—po)) +1] corresponds to the jam out-

flow. This leads toTj,m=L[1oy+ v may] for the mean
time interval T¢,c. (see Fig. 6. On the contrary, the right duration time where the system flow is dominated by the jam
boundary(outflow) only acts as the local seed that causes theutflow. Note that the inflowds,.(Qi,) does not influence
formation of wide global jams. The density within the corre- this time intervalT;,, at all. In contrast, the duratiof,
sponding jammed time interval,,, depends on the jam where the flow is given by the inflow does not depend on the
outflow, which is a fixed parameter of the model, and thesystem size, but only on the probability that a jam emerges.
infow. However, the right boundary density exerts an indi-Assuming that the right boundary is blocked, the first car in
rect influence to the global density since it determines thdront of it has to slow down if the distance is smaller than the
frequency of occurrence for wide global jams. Shortly beforemaximum velocity. The probability of finding a car within
the transition to the jam phase, i.e., increasiqg;, addi- the scope ob . cells at the blocked boundary is equal to
tional small jams are formed at the right boundary. Thesey;,,. Note that this assumption holds since deterministic
small jams constrict the formation of wide global jams somovement of free-flowing vehicles is considered so that the
that the global density slightly decreases before it increasesflow at the left boundary can directly be mapped to the
again. In fact, this sequence of the density charigesease- right boundary. Thereof only the fraction of about dl/(
decrease-increaseombined with the high flows are the ori- +1)=1% of cars has to brake completely to zero, namely, the
gin for the interesting shape of the curve)(corresponding cars that are directly in front of the boundgrno more free
to the JO phase in the FBee Fig. 1 where the system can cell left). This fraction of stopped cars will cause a large jam
take on three different states. Note that in Fig. 1 the globataking into account that the average flow in the JO phase is

Time
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larger than the jam outflow. The rest of the slowed down cars 1 . . - -
will only brake down to zerdcause a jamif the boundary is e da) - Gy
blocked even in the next time step. The probability for this is &-gqm";aoqa‘q'“ I
equal tog?,,. Neglecting the less probable events, one gets 0.8 | % - %0,=001

. . 2 . - ¥y, =0.05
the estimationT ;,ee= 1] Qin(§dourt 295,91 for the time du-
ration that the system flow is determined by the inflow. The

flow in the JO phase can then be estimated by 06
- X
g z
J :TJam‘Jout+ Ttreedtree ©6) 2 N . = X -GG g
70 Tjam+Tfree . 04 )

Consequently, the reason for the strong size dependence (

the high flow states in the JO phase becomes clear. For sma 0.2
systems, the time periods with a “high flow” play an integral

part in the overall flow while for larger systems these regions

can _be_m_ore and more neglected. Fln_ally, in the thermody- 0 02 o 08 o8 ”
namic limit only the jam outflow determines the system flow. Gin q

At this point it should be mentioned that for growimg,, "

even in the jam outflow regiorwithin Tj,,,), additional 1

small jams are formed at the right boundary so that the mi-
croscopic structure merges into the striped pattern of the jarr
phases. As a side effect, these small jams can enlarge th 08
time durationT 5, .

The comparison of the predictions for the flow within the .
JO phase shows good agreement with the simulation result 0.6 |
(inset Fig. 7. The top of the figure points out the character- 5  E
istic properties with respect to the system inflow. Tdg; =4
=0 line of the phase diagram corresponds to the free flow 0.4
phase. As soon as the outflow is restricted, gg,~~0, the
global flow drops to a significantly lower level even for very
small o< g, (JO phasg Remind that the sharp decline of 0.2
the flow with growingq,,; is predicted by the estimatidsee
Eq. (6) and inset in Fig. J. Further, as can be seen in the
curve for q,,=0.01, for example, the global flow grows 0 7
with an increasing inflowd;,.¢(qi,) if very low g, is chosen Ot
so that high flow states are present. Obviously this effect is
caused by the increased free flow within the time periods FiG. 7. The dependence between system flow and inflow param-
Ttree. However, the flow quickly converges to the jam out- eter q,, (top), respectively, outflow parametey,, (bottom is
flow Joy¢ With further increasingoy. If gout trespasses on  shown for the VDR model with deterministic movement of free-
as.» the capacity of the right boundary determines the sysflowing vehicles. The model parameter was chosenlas 1000,
tem flow once the inflow is larger than the capacity of thepo=0.5,p=0).
right boundary. These states can be identified by a large pla- .
teau on a level below, , (Fig. 7, top. The system is now in pected features as phase separatlon anq metastable(states
the jam phase. At the bottom of the figure, the dependencBefS- [16,17] for further detail$ are retained. If not stated

between the global flow and the outflow restrictiqy, is ~ Otherwisep, is setto 0.5 ang to 0.1. The stochastic move-
shown. This confirms the results discussed above. ment of vehicles leads to an additional feature, in compari-

son to the deterministic case, namely, the occurrence of
spontaneous jams at sufficiently high flows. A look at the
phase diagranfsee Fig. 8 reveals strong similarities with
So far we have considered a particular case of the VDRhe deterministic case. The free-flow phase is not influenced
model where vehicles move deterministically if once startecht all by the additional fluctuations, except for some small
up. A substantial property of this model variant is that thejams. Moreover, even the two different jam phases are indis-
only stochasticity comes from the jam outflow. However, duetinguishable since spontaneous jamming does not play a rel-
to the fact that jams are formed only because of the outflovevant role within the free-flow segments of the striped jam
restrictionq,,=>0, the generation of jams within the differ- patterns. In the following, we concentrate our studies on ad-
ent phases is determined by the right boundary. Now waelitional effects based on the spontaneous jamming in the JO
investigate the VDR model with stochastic movement of fregphase.
flowing vehicles as an additional element. We focus on the The most eye-catching difference in comparison to the
so-called slow-to-start case withy>p, for which the ex- VDR model with deterministic movement can be seen at the

0.2 0.4 0.6 0.8 1
Aot

C. Stochastic VDR model:py>p>0
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1 T 0.6 T : T
b)Jam| | |
| ! = AJ
i ' / -é EFE‘EFEHH—D—B—EJ
. Y s sy sty
| ¢)Jamli o4l Eaia ?6:_
F | e
| o E;
a) Free 't (OJ + SJ) _, |
FIOW | k 0 0-0-9-8 -6 O - 000 04
Vo 02 | |
. —— Qg =0.00
0 0 —— 1 ! & - Hq,,=0.01
Qn ! H- -+ Goy=0.05
q | V- - 7 Gy = 0.09
in | G- Quy = 0.50
FIG. 8. Phase diagram of the VDR model with stochastic ve- L , ‘
hicle movement. The phase diagram is very similar to the determin- 0 0.2 q’_‘wf 0.6 0.8 1
istic case in Fig. 4. However, in contrast, the JO phase has to be 9
distinguished with respect t,,. For relatively smallg;,, the mi-
croscopic pattern is dominated by one large jam marked bgo@d 0.8 .

jam). If larger g;, are considered in addition spontaneous jams SJ
occur at erratic positions most likely near the left boundary.

top of Fig. 9. The maximum possible flow cannot be g
achieved for maximum inflow anymore, even fgg,~=0.

On the contrary, the curve correspondinggta,=0 shows a

clear maximum at an intermediate inflow. The occurrence of—
this maximum can be explained as follows. Up to inflows g 0.4
smaller than the outflow of a jandsec(Qin) <[ Jtree(d)

=Joutl the system is in the free-flow phase anyway. Further ,
increasing the inflow shortens the average distance betwee l A
the vehicles. This enlarges the probability that velocity fluc- 02¢-&-proer00eoee
tuations can lead via a chain reaction to the spontaneou:
formation of a jam. Therefore an increasing inflow leads
more and more frequently to spontaneous jams, and finally tc
decreasing global flows. Note that the sensitivity of the high-
flow states also depends on the system size since the prob-

ability of finding a vehicle configuration that is capable of kG 9. Top: Global flow vs inflow parameter,,. For goy
producing a jam is proportional to the number of vehicles=g, a wide maximum exists if inflows noticeably smaller than the
(see Ref[17] for details. If the inflow is further increased, maximal possible inflow are considered. The maximum vanishes
the system is overfed and the flow converges into a plateayapidly with increasingy;, . Bottom: For capacitie§ight boundary
Here the global flow is mainly determined by the outflow of above the jam outflowdO phaseg,,<qZ,), high flow states are
jams occurring mostly near the left boundary, but also sponebservable as in the deterministic case, but they are not as distinct.
taneously at erratic positions in the system. In addition, ifThe model parameters are chosen @ms0.1, py=0.5, andL

& 5

|
|
0 l ; : : -
ox/ 02 0.4 0.6 0.8 1
qout
[

one switches on the outflow restrictiap, ~~0, the occur- =1000.
rence of a separated maximum levels off very fast due to the
additional jams generated at the right boundary. a restricted outflow is shown. The top of the figure corre-

At the bottom of Fig. 9, the dependence of the global flowsponds to a situation with optimal inflow. This means that the
on g, is plotted. The results are similar to Fig. 7, with the inflow into the system is large enough to increase the overall
high flow stateginse} occurring wherm,,<q3,. However, flow due to an increased flow between the time interval of
while in Fig. 7 the high flow states are most distinct for atwo consecutive large jams. At the bottom of the figure a
maximum inflow Js,ce(Qin=1)=Jmax, here the maximum system with high inflow is depicted. Here spontaneous jams
high flow state is obtained for an optimg},. That is, if the  are formed at arbitrary positions mostly near the left bound-
inflow is too large, the spontaneous jamming levels off theary caused by fluctuations in addition to the large jams gen-
flow drastically, and this greatly reduces the current from theerated due to the outflow restriction. Consequently, the sys-
deterministic case. tem flow is then completely determined by the jam outflow.

As a further demonstration of the impact of spontaneoud his is very undesirable since the corresponding global flows
jamming within the JO phase, typical space-time plots forare considerably lower then for an optimal situation. In this
two different inflows are given in Fig. 10. In particular, the context in the following we show how to optimize the over-
interplay among spontaneous jams and jams generated dueab flow systematically by regulating the inflow into a system
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FIG. 11. The global flow is plotted vs the green cycle time for
some red cycle times. Obviously, the flow is nearly twice as high
for the optimal parameter combination than for a system without
inflow restriction. The limit of large green cycle times corresponds
to an unrestricted system. Note that we have chgggn0.75 to
stress the strong impact of the inflow restriction onto the overall
flow. The remaining model parameters are chosen as foll@wys:
=0, gj,=1.0, o= 0.0, L=1000.

Time

be seen within the framework of this paper. The inflow
Jiree(in) represents the traffic demand. If a very highis
allowed, this typically leads to spontaneous jams inside the
“tunnel” as explained in the previous sections.

In Fig. 11, a situation is depicted where a traffic light is
implemented in the simulations. The inflow is set to the
maximum possible valuds,qo(din=1)=Jnax t0 guarantee
that an uncontrolled inflow generates a multitude of jams.

Space The traffic light itself is implemented in such a way that the
connecting cell between the system and the left boundary is

FIG. 10. Typical space-time plots of the two distinguishable blocked for the duration of the red-signal time period and
states in the JO phase. The parameters ggg~0.01,L=500, open for the green-signal period. As one can see in Fig. 11,
T=10000,p=0.1, py=0.5), with g;;=0.65 for the top part and for an optimal signal combination the possible flow is about
gin= 1.0 for the bottom one. twice as high as for an unrestricted system. In reality, i.e., the

case of the Lincoln and Holland tunnels, improvements of
and therewith suppressing the emergence of Spontaneoabout 20% have been achieved. Note that in the case of large
jams. green-signal periods the system converges to a system with-
out traffic light restriction. However, the flow in the JO phase
for g;,=1 is determined by the jam outflow that can easily
) o ) be adjusted byp,. Therefore the choice g, determines the
Besides the theoretical interest in metastable states, thefﬁ)ssible gain achieved by the flow optimization strategy so

are also interesting real world traffic applications for thiSnat the model can simply be calibrated to real traffic condi-
phenomenon. The previous discussion about the existence gf .

high flow states shows that one can optimize the throughput
if the homogeneous state is stabilized by controlling the in-
flow into the system. This strategy was followed, for ex-

ample, in minimizing frequent jams in the Lincoln and the  We have analyzed the VDR model that enhances the well-
Holland tunnels in New YorK36,37. Before traffic lights known Nagel-Schreckenberg cellular automata model for

were installed, jams used to form spontaneously within theraffic flow with features such as phase separation and meta-
tunnel. The installed traffic lights at the entrance restrict thestable high flow states. In our investigation we focused on

inflow so that a critical value cannot be exceeded anymorethe effects of open boundary conditions. For this purpose we
With this strategy a remarkable increase of the overall capadiave defined an insertion strategy that allows us to analyze
ity was achieved. The modeling aspect of this situation carthe complete phase diagram of the model. A further advan-

D. Application: Flow optimization

IV. CONCLUSIONS
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tage of this insertion scheme is that the corresponding inflovef the VDR model. Due to the fact that the metastable branch
into the system can be determined by an analytical approachf the VDR model vanishes in the thermodynamic limit, the
As a special case of the VDR model we also study thdundamental diagram gets the same simple structure contain-
behavior of the NaSch model under open boundaries sinceg one single maximum as the one of the NaSch model. The
less is known about this model for,,,>>1. It is shown that only difference is the fact that the maximum flow in the VDR
the phase diagram of the NaSch modeldqy,,=5 is quali-  model corresponds to the jam outflow while the maximum
tatively in total agreement with that of the ASEP. This onceflow of the NaSch model is marginally larger than the jam
more confirms the recent prediction by Kolomeis&yal.  outflow[38] since in the NaSch model spontaneous jams can
[19] that models with a unique flow-density relation, and oneoccur even in the jam outflow area. Nevertheless, the predic-
single maximum in the fundamental diagram of the periodiction of Ref.[19] for models with one single maximum holds
system should show a comparable phase diagram that is gogven for the VDR model in the thermodynamic limit except
erned by an extremal current principle. Moreover, it is showrfor q,,=0. Further, a simple phenomenological approach
that an unsuitable choice of the insertion strategy might leatias been suggested for the flow in the JO phase that shows
to a different phase diagram where one or even more phasgeod agreement with numerical data and confirms that the
are missing. approach of an interplay between jam-free segments and
The main focus of this paper is on the VDR model with large jams holds.
slow-to-start behavior. This exhibits phase separation and We have also investigated the VDR model with stochastic
metastable high flow states, and the corresponding periodimovement of cars concentrating on the slow-to-start case
system has a nonunique flow-density relation in a certaitwith p,>p. This exhibits the expected features such as
density regime. In this work we make clear how far the re-phase separation and metastable states. The stochastic move-
sults from the NaSch model can be transferred and whahent of vehicles leads to an additional feature that is the
additional effects can be found due to the more complexccurrence of spontaneous jams at sufficiently high inflows.
fundamental diagram. However, this effect neither plays an important role in the
First we studied a slow-to-start case where fluctuations offree-flow” phase nor in the jam phases which are nearly
free-flowing vehicles are suppressed, so that the only stainaffected, and therefore are equal to the phases of the de-
chasticity is found in the boundaries and the jam outflowterministic version. But the spontaneous jamming is a sig-
The jammed phases of this model variant consist of a veryificant feature in the JO phase. For loy, it is shown that
characteristic microscopic structure. We found a striped patthe maximum possible flow is no more achieved as in the
tern with alternating large jam clusters and free-flow seg-deterministic case for a maximum inflow, but rather for in-
ments. It appears as if the microscopic structure of theermediate inflows. This can be explained by the sensitivity
jammed phases is generic for driven lattice gases with metasf the metastable high flow states, which increases with in-
stability. For example, in Refl28] a very similar micro- creasing inflows. In other words, the higher the inflow into
scopic structure has been observed in a related model. Fuhe system, the more frequently spontaneous jams appear
thermore, in the area that corresponds to the maximurwhich influence due to a reduced jam outflow the overall
current(MC) phase of the NaSch model, a phase denoted affow drastically. As an interesting application to real traffic, it
JO (jam outflow) phase can be observed in the VDR model.is further shown how the overall flow can be optimized sys-
This phase can be seen besides the striped microscopic jamatically by the installation of a traffic light regulating the
patterns as a signature of metastability. For very lgyy,  inflow into the system and thereby suppressing the formation
(outflow restriction, very high flows are observed in a finite of spontaneous jams.
system in this phase. The corresponding microscopic struc- Similar resultg39] can be found in a continuum version
ture reveals that the system is then dominated mainly by af the NaSch model, the SK modpt0]. This model also
single large jam that originates from the right bound@awt-  implicitly contains slow-to-start behavior. There is, however,
flow restriction and grows rapidly since the inflow into the an important difference from the VDR model since the high
jam, which is determined by the system inflow, is larger tharflow states in the metastable region of the SK model seem to
the outflow of a jam. The explanation for the high flows be much more stable than those of the VDR mddd].
within this phase is given by jam-free areas between two Summarizing, the results presented here are of theoretical
succeeding large jams. Since the only seed for jamming iand practical relevance for various applications of traffic
found in the restricted outflow, a finite probability that the flow. Due to their simplicity, cellular automata models have
system is jam-free for a certain time exists. In these jam-fre&ecome quite popular in recent years, which makes a proper
areas, the high inflow contributes a significant portion to theunderstanding of the underlying models indispensable. In
overall flow. However, this portion decreases with increasingparticular, from the theoretical point of view several interest-
system sizes, and in the thermodynamic limit the flow ising points are the focus of this work. It is shown that for a
determined by the jam outflow. For growiing,; even within  proper insertion strategy, the phase diagram of the NaSch
the JO phase, additional small jams are formed at the rightnodel is equivalent to that of the ASEP. In this connection
boundary and the microscopic structure transforms into théhe origin of contradictory results is discussed. Further, it is
striped pattern of the jam phase. The flow in the thermodyshown that a striped microscopic jam pattern within the jam
namic limit is given by the jam outflow, which then corre- phases seems to be generic for models with metastability. As
sponds to the maximum flow. This may be seen as a linlkanother typical feature of the analyzed model, a phase where
between the MC phase of the NaSch model and the JO phaseetastable high flow states can exist in finite systems
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is observed. This phase can be related to the maximum cupractical point of view a flow optimization strategy applied,
rent phase of the NaSch model. It is shown how the higHor example, in the Lincoln and the Holland tunnels in New
flow states are influenced by the restricted outflow, whichYork is reproduced with the help of the finite-size effects
can lead to wide jams, and by spontaneous jamming. From accurring in the analyzed model.
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