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The Yang-Lee zeros of th@-state Potts model on recursive lattices are studied for noninteger val@@s of
Considering one-dimensionélD) lattice as a Bethe lattice with coordination number equal to 2, the location
of Yang-Lee zeros of 1D ferromagnetic and antiferromagnetic Potts models is completely analyzed in terms of
neutral periodical points. Three different regimes for Yang-Lee zeros are four@>dr and 0<Q<1. An
exact analytical formula for the equation of phase transition points is derived for the 1D case. It is shown that
Yang-Lee zeros of th€-state Potts model on a Bethe lattice are located on arcs of circles with the radius
depending orQ and temperature foR>1. Complex magnetic field metastability regions are studied for the
Q>1 and 0<Q<1 cases. The Yang-Lee edge singularity exponents are calculated for both 1D and Bethe
lattice Potts models. The dynamics of metastability regions for different valu@si®ftudied numerically.

DOI: 10.1103/PhysReVvE.66.046110 PACS nuner05.50+q, 05.10-a

I. INTRODUCTION native criterion for studying phase transitions in models de-
fined on recursive lattices.

The Q-state Potts model plays an important role in the In 1994, Glumac and Uzeldd4], using the transfer ma-
general theory of phase transitions and critical phenomentiix method, analytically studied the distribution of Yang-Lee
[1]. It was initially defined for an intege® as a generaliza- zeros for the one-dimensional ferromagnetic Potts model
tion of the Ising model Q=2) to more-than-two compo- with arbitrary and continuou®=0. For 0<Q<1 they ob-
nents[2]. Later on, it was shown that the Potts model fortained that for high temperatures the Yang-Lee zeros lie on a
noninteger values d@ may describe the properties of a num- real interval, and for low temperatures these are located par-
ber of physical systems such as dilute spin glag3ggyela- tially on the real axis and in complex conjugate pairs on the
tation and vulcanization of branched polymers<(Q<1)  activity plane. Later on, Monroe investigated this model by
[4]. Also it was shown that the bond and site percolationmeans of the dynamical systems approach and confirmed
problems could be formulated in terms of Potts models witrthat forQ<<1 there is a real interval of Yang-Lee zefd$)].
pair and multisite interactions in th@=1 limit. Then, Kim and Creswick found that f@>1 the Yang-Lee

In 1952, for the first time, Lee and Yan§] in their fa-  zeros lie on a circle with radiuR, whereR<1 for 1<Q
mous papers studied the distribution of zeros of the partition<2, R>1 forQ>2, andR=1 for Q=2 [9]. However, it is
function considered as a function of a complex magnetiqot clear yet what is the location of Yang-Lee zeros for O
filed (e~ 2"/KT activity, H is a magnetic field They proved <Q<1 at low temperaturegl4].
the circle theorem which states that zeros of the partition In this paper the Yang-Lee zeros of the one-dimensional
function of an Ising ferromagnet lie on a unit circle in the and Bethe lattic&-state Potts models are studied using the
complex activity planéYang-Lee zergsAfter these pioneer- dynamical systems approach. It is shown that for the one-
ing works of Lee and Yang, Fishg6], in 1964, initiated the dimensional Potts model the partition function becomes zero
study of partition function zeros in the complex temperaturewhen the corresponding recurrence relation has neutral fixed
plane (Fisher zeros These methods were then extended topoints for a given value of magnetic field. Using this corre-
other types of interactions and found wide applicatipfls spondence between zeros of the partition function and neu-

Recently, much attention was drawn to the problem of theral fixed points of the recurrence relation, the Yang-Lee ze-
Yang-Lee and Fisher zeros of tl@g-state Potts model for ros of both ferromagnetic and antiferromagnetic Potts
both integer and noninteger values@fThe microcanonical models are completely studied analytically. The location of
transfer matrix method was used to study the Yang-Lee an¥ang-Lee zeros of the ferromagnetic Potts model fer@
Fisher zeros of the noninteg€state Potts model in two and <1 is found. Also, formulas for the density of the Yang-Lee
three dimensiong3—11]. zeros are derived and edge singularity exponents are calcu-

Derrida, De Seze, and ltzyks¢t2] showed for the first lated. For the Potts model on a Bethe lattice it is shown that
time that the Fisher zeros in hierarchical lattice models are¢he Yang-Lee zeros are located on a phase coexistence line in
just the Julia set corresponding to the renormalization transhe complex magnetic field plane. Here, the phase coexist-
formation. They found a fractal structure for the Fisher zerosnce line is defined as a line in the complex magnetic field
in Q-state Potts model on the diamond lattice. Recentlyplane, where the absolute values of the derivatives of the
Monroe investigated Julia sets of the Potts model on recurrecurrence relation in two attracting fixed points are equal. It
sive lattices[13]. He found that the box counting fractal is worth noting that, Monrogl6] used a similar criterion for
dimension of the Julia set of the governing recurrence relastudying critical properties of the Potts model on recursive
tion is a minimum at a phase transition. This gives an alterfattices. For the Bethe lattice case an analytical study of
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where the summation goes over all configurations of the sys-
tem.

Using the recursive structure of the Bethe lattiEgy. 1)
one can derive an exact recurrence relation and apply the
theory of dynamical systems to investigate the thermody-
namical properties of models defined orji7]. Cutting the
lattice at the central site O one will obtaininteractingnth
generation branchd48]. By denoting the partition function
of thenth generation branch with the basic site 0 in the state
oo asg,(oy), the partition function may be written as fol-
lows:

zn={2} exp(h (00,0} gn( 0], )

where o is the Potts variable at the central site 0 of the
FIG. 1. The Bethe lattice with coordination numbger3. lattice (Fig. 1. Applying the “cutting” procedure to amth
generation branch one can derive the recurrence relation for
Yang-Lee zeros is performed also. A formula for the Yang-9n(oo),
Lee edge singularity points is derived and edge singularity
exponents are calculated. Our analytical treatment confirme _ y—1
the results of numerical calculations. Further, metastabilitydg“(%)_{;l} expIo(00,01) +h3(71.0H{Gn-a(a) ]
regions in a complex magnetic field plane are investigated. It 3
is shown that the border of a metastability region may be
found from the condition of existence of a neutral fixed point!ntroducing the notation
of the governing recurrence relation.
The structure of this paper is as follows: in Sec. Il an X :gn(‘ﬂéo) @)
exact recurrence relatioriPotts-Bethe mappingfor the " gp(oc=0)’
Q-state Potts model on a Bethe lattice is derived. Applying
the theory of dynamical systems to the problem of phas@ne can obtain the Potts-Bethe map from £3),
transitions, it is shown that critical points may be associated
with neutral periodical points of the corresponding mapping. pt(z+Q—2)x
In Sec. Il the Yang-Lee zeros and edge singularities of fer- Xn=T(Xn-1),  f(X)= -1 ®)
o . : . Zu+(Q—1)x”
romagnetic and antiferromagnetic Potts models are studied
analytically for nonintege, considering a 1D lattice as a where,u=eh andz=¢e".
Bethe lattice with coordination number=2. In Sec. IV the The magnetization of the central site for a Bethe lattice of
Yang-Lee zeros and edge singularities of the Potts model of generations may be written as
a Bethe lattice with coordination numbet>2 are studied
numerically. In the final section the dynamics of complex P
magnetic metastability regions is studied numerically and the My=2,1> 8006 Ple————.
{oo} wt+(Q—1)x]

explanation of results is given.
Instead of considerinlyl () in Eg. (6) it is more convenient
Il. THE Q-STATE POTTS MODEL to consider the functioM (x)=2M(u)— 1, which has the
ON THE BETHE LATTICE same analytical properties &(x) and gives correct mag-

The Q-state Potts model in the magnetic field is definednetization for the Ising modelQ=2)
by the Hamiltonian

(6)

— u—(Q—=1)x”
M(u)= W (7)
~BH=12, 5(0’i,0'j)+h2 8(a,,0), 1) H
R In the following, the formulas in Eqs(5) and (6) will be
where o takes the values0,1.2,.... O—1, and 3 generalized to noninteger values@&0.

Let us now give some definitions and briefly discuss the
roblem of phase transitions on recursive lattices in terms of
ynamical systems theory. The pokit is called a periodical

point with periodk of the mappingx,=f(x,_,) if it is a

solution to the equatiof(x) =x. Heref" means a superpo-

ZzE e AH sition f'=fofo...of  If k=1, x* is called a fixed point. To
{o} analyze the stability of a periodic poirt of periodk, i.e.,

=1/KT. The first sum on the right-hand side of Ef) goes
over all edges and the second one over all sites on the lattic
The partition function of the model is given by
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either iterations of (x) tend to the periodical point or move R(®)=alc, R(—d/c)=0s,

away from it, one should compute the derivativeféf \

=(f%'(x) ('=d/dx), at this point. A periodic poink* is  if c#0, while R()=% whenc=0. The dynamics of such

(1) attracting (stable if |[\|<1, (2) repelling (unstablg if maps is rather simplg20]: If f(x) is a Maoius transforma-

[N|>1, and(3) neutral(indifferend if |\|=1. tion with two fixed points, then eithei'(x) converge to one
The thermodynamic properties of models defined on reof the fixed points off (x) (one of the fixed points is attract-

cursive lattices may be investigated by studying the dynaming and the other is repelling or they move cyclically

ics of the corresponding recursive function. For the ferro-through a finite set of points, or they form a dense subset of

magnetic Ising model, for example, this may be done asome circle(both fixeq points are neutpallt follows from

follows. For high temperaturesT& T,) the recursive func- the dynamics of the Maius transformation that phase tran-

tion Eq.(5) has only one attracting fixed point correspondingsitions correspond to values of the temperature and magnetic

to a stable paramagnetic state. For low temperatufies (field where the recursive functidi{x) has only neutral fixed

<T,) the recursive function Eq5) has two attracting fixed points. Thus, to study the Yang-Lee zeros one should study

points. In the absence of a magnetic field, these two attracthe system(8) to find the values ofx at which this system

ing fixed points correspond to two possible ferromagnetidias solutions fok=1. For neutral fixed points the system

states with opposite magnetizations. It is well known that for(8) may be written in the form

h=0 and T<T,. the system undergoes a first-order phase

transition and the conditiof\;|=|\,| is satisfied, where FO)=x,

N1 7 are derivatives of (x) in these attracting fixed points. Vi

|In trle presence of a magnetic field, the stable state corre- F'(0=e?,  ¢e[0,2m]. ©

sponds to the fixed point with maximupn| and the magne-  xciudingx from the equations of the syste®) after some

tization in this state has the same direction as the externaligepra one can find the equation of phase transitions in the
magnetic field. The other fixed point corresponds to a metagy m

stable state, which may be achieved by a sudden reversal in

the sign of the magnetic field. The boundary of the metasta- 22u?—2[(z—1)(z+Q—1) cosp+1—Q]u
bility region may be found from the condition that one of the )
fixed points becomes neutral. For more details about the dy- +(z+Q-2)"=0, (10

namics of metastable states see the book by Chaikin anv%heregb [0,277]. Since cosh is an even function ofb, we
Lubensky[19]. The critical temperature corresponds to the a restt;ict,ours.elves t < [07]. Thus, for giverz an’dQ
values of the magnetic field and temperature when the fixe Y eLoml. » org '

. . . ; g. (10) is a parametric equation of the Yang-Lee zeros,
points of recursive functiori(x) are neutral and repelling. where¢ is a parameter. Analyzing EGL0) one can find the
The values of external parameteftemperature, magnetic P ) yzing

field, etc) at which the recursive functioh(x) has a neutral Iocgtion of the_ Yang_-Lee zeros of the Potts model. It_is worth
periodical point of periock may be obtained from the fol- noting thz;gsgsmg this equation one can study the Fisher and
lowing system of equations: POtt.S zerosin the same way. . . :
First of all, note that Eq(10) is a quadratic equation qf

fK(x) =X, with real coefficients. Hence, solutions to this equation lie

either on the real axes or in complex conjugate pairs on a
circle with radiusR=|u|=|z+Q—2|/z for any ¢ [0,7]
(see also Ref[9]). The solutions to the Eq10) can be
written in the form

Thus, for the models defined on recursive lattices, critical
2 co§§—Bi2\/co§¢(co§§—B)J,

1 (x)| =1. tS)

points and the boundary of metastability regions may be as-
sociated with neutral periodical points of the model's map- m1o=A >
ping. In the following section the Yang-Lee zeros of the 1D

Q-state Potts model are investigated in terms of neutral fixed 1D
lll. THE YANG-LEE ZEROS OF THE 1D Q-STATE aoZZVEre-b o 224Q72)
POTTS MODEL 72 (z—=1)(z+Q—-1)°
A one-dimensional lattice may be considered as a particu- (12
lar case of the Bethe lattice with coordination number Let us now study the Yang-Lee zeros of the ferromagnetic
=2. In this case the Bethe-Potts mappif®) becomes a potts model, i.e.J>0 andz>1. ForQ>1 one can easily
Mobius transformation, i.e., a rational map of the form find thatB>1, hence, all solution&l1) are complex conju-
b
R(X)= ——, ad—bc+#0, L » _ _ i
cx+d Zeros of the partition function considered as a function of com-
plex Q.
where 2The results will be published elsewhere.
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FIG. 2. A schematic representation of the Yang-Lee zeros of the 1D ferromagnetic Potts moddR-Her€ Q—2)/z and .. are
defined in Eq(14).

gate and lie on an arc of a circle with radibs=(z+Q 6
—2)/z. If 1<Q<2 thenR<1 (the arc lies inside the unit 1 sin;
circle), if Q>2 thenR>1 (the arc lies outside the unit circle g(0)=— . (15
[9]) andR=1 [5] for Q=2 (Ising mode). Writing w in the 2m \/sinzf—sinzﬁ
. 0 .
exponential formu=R€", one can find 2 2
From Eq.(15) it follows that the density functiomg(6) for
- +Q— ) . ) .
cosf= (zZ1)(z+Q—1) osf_ (13 Q>1 diverges in the gap poinis.. with the exponentr=
2 2(z+Q-2) 2 -3, i.e.,g(6)x|0— 6|” when p—0 or 6— 6.

For Q<1, the corresponding density functigfwx) may

From Eq.(13) one can see that there are no solutions withbe obtained by differentiation of both sides of Eg0),

arguments in the interval €©6<6, where 6,

=_2§1rcc_os/B*I. This is the well known gafg21] in the 1 | — s |
distribution of Yang-Lee zeros. It points to the absence of g(u)= ETN = (16)
phase transitions in a 1D ferromagnetic Potts modelQor (s =p)(n—p-)

>1 at any real temperature. This is in good agreement with
recent studies by Glumac and Uzelgl], and Kim and One can see thag(u) diverges in the pointsu., i.e.,
Creswick [9], where the Yang-Lee zeros of the 1D Pottsg(u)«|u— x|, with the exponenir=—3. Thus, forQ
model was studied by using the transfer matrix method<1 the density function of the Yang-Lee zeros of the 1D
Comparing our formulgl13) with the corresponding formula Q-state Potts ferromagnetic model has singularities only at
(14) of Ref. [9], one can see that the argumepitof the  points u. [Eq. (14)] with the edge singularity exponent
derivative in our method is nothing but the difference in the=—1. The same is true for the antiferromagnetic case.
arguments of two maximal eigenvalues in the transfer matrix Glumac and Uzela¢14] considered forQ<1 case the
method. It follows from Eqs(11) and(13) that the Yang-Lee contribution of the third eigenvalue of the transfer matpis (
edge fields correspond =0 and have the form in their notations We want to note that for the 1D Potts
model the transfer matrix method gives three and more ei-
genvalues only foQ>2; hence, the third and other eigen-
values should be neglected fQr<2. In this case the study
of two maximal eigenvalues gives the same results as does
our method. The summary of the results of the 1D ferromag-
netic Potts model is given in Fig. 2. It is interesting to note
and . are complex folQ>1. that the argumeng of the derivative in Eq(9) corresponds

B<1 whenQ<1 and it is positive or negative depending to the argument of the maximal eigenvalue in the transfer
on z. Hence,B is negative wherz<2—Q(Q<1), and all matrix method.
values ofu’s in Eq. (11) are real and lie between_ and The antiferromagnetic case may be studied in the same
., whereu.>0. manner. The results are shown in Fig. 3.

0<B<1 whenz>2-Q(Q<1), and all values of’s in
Eq. (11) are either real or complex depending én For 0
< <o, Where ¢po=2 arccos/B, solutions(11) are real
and lie in the interval w_ ,u4]. For ¢po<¢<m the solu-
tions (11) are complex conjugate and lie on the circle with  Let us, at first, consider the ferromagnetic Potts model on
radiusR=(z+Q—2)/z. the Bethe lattice with coordination numbe+ 3. In this case

For Q>1, the differentiation of both sides of EqL3)  the system8) may be studied analytically for neutral fixed
with respect tqu and ¢ gives the density of Yang-Lee zeros points k=1). The exclusion ok from both parts of EqY8)
g(6) in the form gives the following equation:

1
Mf;w(z—lxzm—l)rJl—Q}Z, (14

IV. YANG-LEE ZEROS OF THE Q-STATE POTTS MODEL
ON A BETHE LATTICE (Q>1)
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FIG. 3. A schematic representation of the Yang-Lee zeros of the 1D antiferromagnetic Potts mod&=H&reQ—2z)/z and .. are
defined in Eq(14).

. ) planes[22]. Dolan et al. used this approach to study Fisher
22(Q—1)u"—|2(Q—1)y(4 cosg+1) zeros for the Ising and Potts models on nonplafthin)
regular random graphs. It is interesting to note that the locus

o ridr o 103 5 of Fisher zeros on a Bethe lattice is identical to the corre-
+y°| 4e S|n2§+1 —2(Q-1)%|u sponding random grapf23]. For our models the phase co-

existence line is defined as a line in the complex plane,

+(z+Q—-2)%=0, (17 where the absolute values of the recursive function deriva-

_ tives in two attracting fixed points are equake also Ref.
wherey=(z—1)(z+Q—1)/2 and ¢ e[0,27]. This equa- [16]). Our numerical study showed that the phase coexist-
tion describes the border of the metastabl“ty region in tthnce line forT>Tc is an arc of a circle with radiuRM

complexu plane(Fig. 4. The dashed areas in Fig. 4 show ending at the edge singularity poirthe dashed line in Fig.
the metastability regions for different temperatures. Insidey),

the metastab”lty region there are two attl’acting fixed pOintS Let us now Study the ana]ytica| properties of the magne-
and there is only one outside of it. The other fixed points arejzation function(7) to prove that the edge singularity points
repelling. Note that such a behavior is valid for anyAt . ., correspond to its singularities. The fixed point equation

at least two of the fixed pointS become neutral. It will be of the Potts-Bethe mappn’@) may be written in the form
shown below that aju. the magnetization functiof7) is

singular andu . correspond to the Yang-Lee edge singularity (Q—1)x—(z+Q—-2)
points. These are solutions to E(L7) for ¢=0 and the u=xr"1
critical temperature may be obtained from the condition

Mgln:t:g[le I;:}oll;vzisrglrgrcv:tzﬁ.:;g?ut;azt:trzifgg_eZs)lglgzlgl(aglty For continuity atu+#0, x is defined to be equal toQ
P “ —1)/(z+Q—2) atu=0. Considering as a function ofu,

—1). Since there is no phase transition on the boundary of . o
metastability region it will not give rise to zeros of the par- 8ne can study the_s;mgulannes B{x) that also correspond

tition function[19]. The metastability region in the complex t© singularities ofM(x). The singular points ok(u) are
« plane points to the existence of the first-order phase tran# =0, #=%, and u(x.), x. being the points where the
sition for complex magnetic fields. The problem of finding derivativedx/du is infinite. x.. satisfies the equation

the Yang-Lee zeros of models with first-order phase transi-

tions attracted much attention for many years. Recently, o 2(z+Q-2)(2—y)—y(Q-1) z+Q-2

1—7x . (18

Biskup et al. showed that the position of partition function z2(Q-1)(y—1) X+ z(Q-1) =0
zeros is related to the phase coexistence lines in the complex (19
b
(a) ) (b) g (<)
1
\ 1 2
Ye
3 3 3
g 0 g 0 @ g 0
H H H
A -1 -2
-1
-2 —4
-1 0 1 -2 -1 0 1 -4 -2 0 2
Re u Re u Re u

FIG. 4. Metastability regions and Yang-Lee zeros of @state Potts model on the Bethe lattice with coordination numbe8 and
Q=2. The solid lines correspond to the boundary of metastability redgmay filled areas Dashed lines present an arc or circles of radius
Ri=(2+Q—2)’//27(Q—1)7’2 and correspond to Yang-Lee zerda) T>T.(z=1.8), w. are Yang-Lee edge singularity poinid) T
=T, critical point z=2.=3); (c) T<T.(z=6), w. are spinodal points of the model. For more details see the text.
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Equation(19) is obtained after differentiating both sides of
Eqg. (18) with respect tox and x from the condition that
dul dx vanishes. Note that E419) may be derived from the
system(8) for k=1 and¢=0 by excludingu from both the

equations. At the singularity points dﬁ(,u) the recursive

PHYSICAL REVIEW E 66, 046110 (2002

function has two neutral fixed points with=0 and the oth-
ers are repelling.

The critical temperature may be obtained from the condi-
tion u, = _ or by setting the discriminant of the quadratic
equation(19) to zero,

C

1-Q

For Q>1 and 1<z<z; the solutionsx.. are complex con-
jugate numbers with modulu®,=\(z+Q—2)/z(Q—1)
and forz>z, they become real valued. FQ<1 the solu-
tions x.. are always real numbers. Substituting=R,e'*+
into Eqg. (18) one finds, after some algebra

ppo =R, @lll=Fax(-1)] (22)
where
R,=R}(Q—1), tanTg—i=l+ZR’(tana—i,
2 1-zR 2
and
COSa’t=%}/ (22

2(y—1)zR,

Note that the fixed point equatidi{x) =x and the magneti-
zation M(u) are invariant under the transformati@{ u
*)Ri/,u, X— Ri/x}. Moreover, for the magnetization func-
tion one has

2
Ry

i

-M (23

The Yang-Lee zeros of the Potts model on the Bethe lat
tice may be obtained also analytically by studying the ana
lytical properties of the magnetization functién. This was
done for the first time by Bessis, Drouffe, and Mou§24]
for the Ising model on the Bethe lattice. Making use of sin-
gularities ofx(u«) in analogy with Ref[24], a careful analy-
sis of the analytic properties of the functidh,, Eq. (7) for
Q>1 gives the following picture for the Yang-Lee zeros.

(@ For z<z.: M(u) is analytic in the complex plane
cut along an arc of the circle with radiu§i=(z+Q
—2)"2"(Q—1)?"2, which contains the point R, and is
limited by the pointsu., which are complex conjugates.
Due to relation(23), the discontinuity along the cut is real

~[2-Q Q27T AQ-DyI(y-27 for Q>1,

(20)

for Q<1.

im M(p)|,=reio— M M()|,=reio=—47g(R,,0).
r—»R#+ r—»R#—

(24)

Our numerical study of Eq24) shows that, close to the edge
singularity pointsu. =e*'%, g(R,,0) has an exponential
behaviorg(R,,,6) | 6— 8|” and 6o(T)(T—-T.)*, where
o=1/2 for z<z., o0=1/3 (6=1/5) for z=z. and A
=32 (A=p6). Our results are in a good agreement with
those of Refs[25,21], where it was shown that the expo-
nent is universal and is always equal to 1/2 Tor T, and
o=1/6 for T=T, in ferromagnetic models on lattices with
spatial dimensiord>6.

(b) For 2>z the function M) is split into two different
functions M, (u) defined for|u|<R, andM_(u) defined

for |u|>R,. The functionM , (u) can be analytically con-
tinued outside the circlgu|=R,, into thez plane cut along
the real axes fromu(x,) to «, wherex, is the largest root
of Eq. (19). The pointu(x, ) increases from unity to infinity
when z increases frong; to infinity. The discontinuity of

M (u) across the cut is purely imaginary and does not
change the sign. Hence, it has no influence on the physical
properties of the model and the Yang-Lee zeros lie on the
circle |u|=R,, . The pointsy. correspond to the boundary
of metastability for real magnetic fields and the plots of the
iteration functionf(x) at these points are given in Fig. 5.

V. COMPLEX MAGNETIC FIELD
METASTABILITY REGIONS

In the preceding section the neutral fixed points of the
recursive functiorf(x), Eq. (5) was considered only. It was
found that the set of values of the magnetic field, for which
the recursive functioifs) has at least one neutral fixed point,
gives the boundary of the metastability region in the complex
© plane. Inside it, there are two attracting fixed points and
others are repelling. Numerical experiments show that in the
w plane the recursive function E¢p) has a complex behav-
ior with period doubling bifurcations. The question arises:

and never vanishes except at the Yang-Lee edge singulariti/hat will happen to the metastability region if neutral peri-

points . . This is in a good agreement with the Yang-Lee
theory[5]. The density of zerog(R,, ,#) may be calculated
from

odical points of periok=1 are also considered? To answer
this question, one has to study the syst@nfor anyk=1.
Since it is impossible to solve the systdB) directly for k
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(a) (b) ()

6 3] 6
4 2 4
x x x
) a1 Al
03 2 1 6 s 1 2 3 0% 2 2 3
X X =X

FIG. 5. Plots off(x) function (5) indicating the existence of neutral fixed points for different temperatures and magnetic fi€ds at
=2 andy=3. (@ T<T,(z=6) and expl/kT)=u_; (b) T=T, (z=3)h=0; (c) T<T,(z=6), and expi/kT)=pu, .

>1 and y=3 analytically and even numerically for larde recursive function has only attracting and repelling periodi-
andy, the method developed in RéR6] is used. It gives a cal points. If at least one of the critical orbits does not con-
numerical algorithm for searching neutral periodical pointsverge, for example, afteriterations, one says that the recur-
for the recursive functions such as E6) and is based on the sive function has a neutral periodical point. Of course, the
theory of complex dynamical systems and the well knownlast statement is not rigorous from the strong mathematical
fact that the convergence of iterations to neutral periodicapoint of view, since a weak convergence to an attracting
points is very weak and irregular, i.e., one has to make @eriodical point is also possible. Depending on the choice of
number of iterations in order to approach a neutral periodic ande (the accuracy of approaching an attracting periodical
point. The algorithm is to find all critical points of the recur- point), the resulting picture on the plane may change. Our
sive function and investigate the convergence of all the orbitsimulation experiments show that=700 ande=10"° are
started at critical pointscritical orbitg. If all critical orbits ~ optimal values and the data generated with this algorithm do
converge to any attracting periodical point, one says that thaot qualitatively change when and/ore differ from their

(a) 0=10 () 0=4

(c) Q=2

: 0 : 0 : 0
~ ~ ~
-2 -1 -1
-2 -2
-4 i R -3 .
-4 -2 0 2 -4 -3 -2 -1 0 1 -4 -3 -2 -1 0 1
Rep Repn Rep

(d) 0=1.5 (e) 0=0.8 (E) 0=0.4

R w— 5 0.4 0.8
Rep Rep Rep

FIG. 6. The dynamics of metastability regions of Qestate Potts model on the Bethe lattice with coordination numbeB8 andz
=3 for different values of). For more details see the text.
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optimal values. For more details of the method and the VI. CONCLUSIONS

C+ + program code see Refi6,27). . . _
One can easily find all critical points of the mappihg We showed that the stability analysis of attracting fixed

from Eq. (5). The critical points ar&c=0 with multiplicity points of the recurrence relation, i.e., the condition that the
y—2 andx=c with multiplicity y—2. The degree of our absolute values of derivatives of the governing recurrence
mappingf is d=(y—1). It may be shown that these are the relation in two attracting fixed points are equal at a phase
only critical points of the mappin§[26]. Hence, one has to transition, may be successfully applied to a study of zeros of
consider only the orbits of the poinkg=0 andxy=0c°. For the partition function. Note that in the one-dimensional case
numerical calculations it is convenient to start iterations athe condition of a phase transition is equivalent to the con-
the points x,;=f(0)=1/z and x;=f(*)=(z+Q—2)/(Q  dition of the existence of neutral fixed points. It will be in-

—-1). ) _ - ) teresting to check Monroe’s conjecture that at a phase tran-
In Fig. 6 the dynamics of the metastability regions of theg;ion the box counting dimension of the Julia set of the

Q-state Potts model on the Bethe lattice with Coord'nat'ongoverning recurrence relation is a minimum for zeros of the

numbery=3 andz=3 is shown depending 0Q. We have o . .
experimental evidence that in white regions all critical orbitspart't'or.] funct|on[13]_. We suppose that the box _countmg
dimension of the Julia set of the recurrence relation should

converge. Figures(8)—6(d) show the metastability regions e e . )
for the caseQ>1. It is seen that the sets of black points arePe @ minimum for zeros of the partition function also. This
similar to the boundary of the Mandelbrot set of the qua-Mmay serve as one more criterion for studying zeros of the
dratic mappingz—z>+c [Figs. 6c),6(d)]. This fact is partition function for models on recursive lattices.

known as the universality of the Mandelbrot $88]. The In conclusion, we observe that numerical methods pro-
metastability region of the Ising modeDE 2) at the critical  posed in this paper are generic and may be used for the
temperature is shown in Fig(®. It intersects the positive investigation of zeros of the partition function and metasta-

semiaxis atu=1, which is an evidence of the existence of pjlity regions of other models on recursive lattices.
real temperature second-order phase transition in conformity

with exact calculationg18]. The Q<1 case is shown in

Figs. 6e)—6(i). One can see that Fig(é) resembles a mirror

reflection of the Mandelbrot set boundary of Fig&d)g(e). ACKNOWLEDGMENTS
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