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Yang-Lee zeros of theQ-state Potts model on recursive lattices
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The Yang-Lee zeros of theQ-state Potts model on recursive lattices are studied for noninteger values ofQ.
Considering one-dimensional~1D! lattice as a Bethe lattice with coordination number equal to 2, the location
of Yang-Lee zeros of 1D ferromagnetic and antiferromagnetic Potts models is completely analyzed in terms of
neutral periodical points. Three different regimes for Yang-Lee zeros are found forQ.1 and 0,Q,1. An
exact analytical formula for the equation of phase transition points is derived for the 1D case. It is shown that
Yang-Lee zeros of theQ-state Potts model on a Bethe lattice are located on arcs of circles with the radius
depending onQ and temperature forQ.1. Complex magnetic field metastability regions are studied for the
Q.1 and 0,Q,1 cases. The Yang-Lee edge singularity exponents are calculated for both 1D and Bethe
lattice Potts models. The dynamics of metastability regions for different values ofQ is studied numerically.
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I. INTRODUCTION

The Q-state Potts model plays an important role in t
general theory of phase transitions and critical phenom
@1#. It was initially defined for an integerQ as a generaliza
tion of the Ising model (Q52) to more-than-two compo
nents@2#. Later on, it was shown that the Potts model f
noninteger values ofQ may describe the properties of a num
ber of physical systems such as dilute spin glasses@3#, gela-
tation and vulcanization of branched polymers (0,Q,1)
@4#. Also it was shown that the bond and site percolat
problems could be formulated in terms of Potts models w
pair and multisite interactions in theQ51 limit.

In 1952, for the first time, Lee and Yang@5# in their fa-
mous papers studied the distribution of zeros of the parti
function considered as a function of a complex magne
filed (e22H/kT activity, H is a magnetic field!. They proved
the circle theorem which states that zeros of the partit
function of an Ising ferromagnet lie on a unit circle in th
complex activity plane~Yang-Lee zeros!. After these pioneer-
ing works of Lee and Yang, Fisher@6#, in 1964, initiated the
study of partition function zeros in the complex temperat
plane~Fisher zeros!. These methods were then extended
other types of interactions and found wide applications@7#.

Recently, much attention was drawn to the problem of
Yang-Lee and Fisher zeros of theQ-state Potts model fo
both integer and noninteger values ofQ. The microcanonical
transfer matrix method was used to study the Yang-Lee
Fisher zeros of the nonintegerQ-state Potts model in two an
three dimensions@8–11#.

Derrida, De Seze, and Itzykson@12# showed for the first
time that the Fisher zeros in hierarchical lattice models
just the Julia set corresponding to the renormalization tra
formation. They found a fractal structure for the Fisher ze
in Q-state Potts model on the diamond lattice. Recen
Monroe investigated Julia sets of the Potts model on re
sive lattices@13#. He found that the box counting fracta
dimension of the Julia set of the governing recurrence r
tion is a minimum at a phase transition. This gives an al
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native criterion for studying phase transitions in models
fined on recursive lattices.

In 1994, Glumac and Uzelac@14#, using the transfer ma
trix method, analytically studied the distribution of Yang-Le
zeros for the one-dimensional ferromagnetic Potts mo
with arbitrary and continuousQ>0. For 0,Q,1 they ob-
tained that for high temperatures the Yang-Lee zeros lie o
real interval, and for low temperatures these are located
tially on the real axis and in complex conjugate pairs on
activity plane. Later on, Monroe investigated this model
means of the dynamical systems approach and confir
that forQ,1 there is a real interval of Yang-Lee zeros@15#.
Then, Kim and Creswick found that forQ.1 the Yang-Lee
zeros lie on a circle with radiusR, whereR,1 for 1,Q
,2, R.1 for Q.2, andR51 for Q52 @9#. However, it is
not clear yet what is the location of Yang-Lee zeros for
,Q,1 at low temperatures@14#.

In this paper the Yang-Lee zeros of the one-dimensio
and Bethe latticeQ-state Potts models are studied using t
dynamical systems approach. It is shown that for the o
dimensional Potts model the partition function becomes z
when the corresponding recurrence relation has neutral fi
points for a given value of magnetic field. Using this corr
spondence between zeros of the partition function and n
tral fixed points of the recurrence relation, the Yang-Lee
ros of both ferromagnetic and antiferromagnetic Po
models are completely studied analytically. The location
Yang-Lee zeros of the ferromagnetic Potts model for 0,Q
,1 is found. Also, formulas for the density of the Yang-Le
zeros are derived and edge singularity exponents are ca
lated. For the Potts model on a Bethe lattice it is shown t
the Yang-Lee zeros are located on a phase coexistence li
the complex magnetic field plane. Here, the phase coex
ence line is defined as a line in the complex magnetic fi
plane, where the absolute values of the derivatives of
recurrence relation in two attracting fixed points are equa
is worth noting that, Monroe@16# used a similar criterion for
studying critical properties of the Potts model on recurs
lattices. For the Bethe lattice case an analytical study
©2002 The American Physical Society10-1
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Yang-Lee zeros is performed also. A formula for the Yan
Lee edge singularity points is derived and edge singula
exponents are calculated. Our analytical treatment confirm
the results of numerical calculations. Further, metastab
regions in a complex magnetic field plane are investigated
is shown that the border of a metastability region may
found from the condition of existence of a neutral fixed po
of the governing recurrence relation.

The structure of this paper is as follows: in Sec. II
exact recurrence relation~Potts-Bethe mapping! for the
Q-state Potts model on a Bethe lattice is derived. Apply
the theory of dynamical systems to the problem of ph
transitions, it is shown that critical points may be associa
with neutral periodical points of the corresponding mappi
In Sec. III the Yang-Lee zeros and edge singularities of
romagnetic and antiferromagnetic Potts models are stu
analytically for nonintegerQ, considering a 1D lattice as
Bethe lattice with coordination numberg52. In Sec. IV the
Yang-Lee zeros and edge singularities of the Potts mode
a Bethe lattice with coordination numberg.2 are studied
numerically. In the final section the dynamics of compl
magnetic metastability regions is studied numerically and
explanation of results is given.

II. THE Q-STATE POTTS MODEL
ON THE BETHE LATTICE

The Q-state Potts model in the magnetic field is defin
by the Hamiltonian

2bH5J(
^ i , j &

d~s i ,s j !1h(
i

d~s i ,0!, ~1!

where s i takes the values0,1,2,. . . , Q21, and b
51/kT. The first sum on the right-hand side of Eq.~1! goes
over all edges and the second one over all sites on the lat
The partition function of the model is given by

Z5(
$s%

e2bH,

FIG. 1. The Bethe lattice with coordination numberg53.
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where the summation goes over all configurations of the s
tem.

Using the recursive structure of the Bethe lattice~Fig. 1!
one can derive an exact recurrence relation and apply
theory of dynamical systems to investigate the thermo
namical properties of models defined on it@17#. Cutting the
lattice at the central site 0 one will obtaing interactingnth
generation branches@18#. By denoting the partition function
of thenth generation branch with the basic site 0 in the st
s0 as gn(s0), the partition function may be written as fo
lows:

Zn5 (
$s0%

exp$hd~s0,0!%@gn~s0!#g, ~2!

where s0 is the Potts variable at the central site 0 of t
lattice ~Fig. 1!. Applying the ‘‘cutting’’ procedure to annth
generation branch one can derive the recurrence relation
gn(s0),

gn~s0!5 (
$s1%

exp$Jd~s0 ,s1!1hd~s1,0!%@gn21~s1!#g21.

~3!

Introducing the notation

xn5
gn~s5” 0!

gn~s50!
, ~4!

one can obtain the Potts-Bethe map from Eq.~3!,

xn5 f ~xn21!, f ~x!5
m1~z1Q22!xg21

zm1~Q21!xg21
, ~5!

wherem5eh andz5eJ.
The magnetization of the central site for a Bethe lattice

n generations may be written as

Mn5Z n
21(

$s0%
d~s0,0!e2bH5

m

m1~Q21!xn
g

. ~6!

Instead of consideringM (m) in Eq. ~6! it is more convenient
to consider the functionM̄ (m)52M (m)21, which has the
same analytical properties asM (m) and gives correct mag
netization for the Ising model (Q52)

M̄ ~m!5
m2~Q21!xg

m1~Q21!xg
. ~7!

In the following, the formulas in Eqs.~5! and ~6! will be
generalized to noninteger values ofQ>0.

Let us now give some definitions and briefly discuss
problem of phase transitions on recursive lattices in terms
dynamical systems theory. The pointx* is called a periodical
point with periodk of the mappingxn5 f (xn21) if it is a
solution to the equationf k(x)5x. Here f n means a superpo
sition f n[ f + f +•••+ f . If k51, x* is called a fixed point. To
analyze the stability of a periodic pointx* of periodk, i.e.,
0-2
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YANG-LEE ZEROS OF THEQ-STATE POTTS MODEL . . . PHYSICAL REVIEW E 66, 046110 ~2002!
either iterations off (x) tend to the periodical point or mov
away from it, one should compute the derivative off k, l
5( f k)8(x) (85d/dx), at this point. A periodic pointx* is
~1! attracting ~stable! if ulu,1, ~2! repelling ~unstable! if
ulu.1, and~3! neutral~indifferent! if ulu51.

The thermodynamic properties of models defined on
cursive lattices may be investigated by studying the dyna
ics of the corresponding recursive function. For the fer
magnetic Ising model, for example, this may be done
follows. For high temperatures (T.Tc) the recursive func-
tion Eq.~5! has only one attracting fixed point correspondi
to a stable paramagnetic state. For low temperaturesT
,Tc) the recursive function Eq.~5! has two attracting fixed
points. In the absence of a magnetic field, these two attr
ing fixed points correspond to two possible ferromagne
states with opposite magnetizations. It is well known that
h50 and T,Tc the system undergoes a first-order pha
transition and the conditionul1u5ul2u is satisfied, where
ul1,2u are derivatives off (x) in these attracting fixed points
In the presence of a magnetic field, the stable state co
sponds to the fixed point with maximumulu and the magne-
tization in this state has the same direction as the exte
magnetic field. The other fixed point corresponds to a me
stable state, which may be achieved by a sudden revers
the sign of the magnetic field. The boundary of the meta
bility region may be found from the condition that one of t
fixed points becomes neutral. For more details about the
namics of metastable states see the book by Chaikin
Lubensky@19#. The critical temperature corresponds to t
values of the magnetic field and temperature when the fi
points of recursive functionf (x) are neutral and repelling
The values of external parameters~temperature, magneti
field, etc.! at which the recursive functionf (x) has a neutral
periodical point of periodk may be obtained from the fol
lowing system of equations:

f k~x!5x,

u f k8~x!u51. ~8!

Thus, for the models defined on recursive lattices, criti
points and the boundary of metastability regions may be
sociated with neutral periodical points of the model’s ma
ping. In the following section the Yang-Lee zeros of the 1
Q-state Potts model are investigated in terms of neutral fi
points.

III. THE YANG-LEE ZEROS OF THE 1D Q-STATE
POTTS MODEL

A one-dimensional lattice may be considered as a part
lar case of the Bethe lattice with coordination numberg
52. In this case the Bethe-Potts mapping~5! becomes a
Möbius transformation, i.e., a rational map of the form

R~x!5
ax1b

cx1d
, ad2bc5” 0,

where
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R~`!5a/c, R~2d/c!5`,

if c5” 0, while R(`)5` whenc50. The dynamics of such
maps is rather simple@20#: If f (x) is a Möbius transforma-
tion with two fixed points, then eitherf n(x) converge to one
of the fixed points off (x) ~one of the fixed points is attract
ing and the other is repelling!, or they move cyclically
through a finite set of points, or they form a dense subse
some circle~both fixed points are neutral!. It follows from
the dynamics of the Mo¨bius transformation that phase tra
sitions correspond to values of the temperature and magn
field where the recursive functionf (x) has only neutral fixed
points. Thus, to study the Yang-Lee zeros one should st
the system~8! to find the values ofm at which this system
has solutions fork51. For neutral fixed points the system
~8! may be written in the form

f ~x!5x,

f 8~x!5eif, fP@0,2p#. ~9!

Excludingx from the equations of the system~9! after some
algebra one can find the equation of phase transitions in
form

z2m222@~z21!~z1Q21! cosf112Q#m

1~z1Q22!250, ~10!

wherefP@0,2p#. Since cosf is an even function off, we
may restrict ourselves tofP@0,p#. Thus, for givenz andQ,
Eq. ~10! is a parametric equation of the Yang-Lee zero
wheref is a parameter. Analyzing Eq.~10! one can find the
location of the Yang-Lee zeros of the Potts model. It is wo
noting that using this equation one can study the Fisher
Potts zeros1 in the same way.2

First of all, note that Eq.~10! is a quadratic equation ofm
with real coefficients. Hence, solutions to this equation
either on the real axes or in complex conjugate pairs o
circle with radiusR5umu5uz1Q22u/z for any fP@0,p#
~see also Ref.@9#!. The solutions to the Eq.~10! can be
written in the form

m1,25AF2 cos2
f

2
2B62Acos2

f

2 S cos2
f

2
2BD G ,

~11!

where

A5
~z21!~z1Q21!

z2
and B5

z~z1Q22!

~z21!~z1Q21!
.

~12!

Let us now study the Yang-Lee zeros of the ferromagne
Potts model, i.e.,J.0 andz.1. For Q.1 one can easily
find thatB.1, hence, all solutions~11! are complex conju-

1Zeros of the partition function considered as a function of co
plex Q.

2The results will be published elsewhere.
0-3
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FIG. 2. A schematic representation of the Yang-Lee zeros of the 1D ferromagnetic Potts model. HereR5(z1Q22)/z and m6 are
defined in Eq.~14!.
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gate and lie on an arc of a circle with radiusR5(z1Q
22)/z. If 1,Q,2 thenR,1 ~the arc lies inside the uni
circle!, if Q.2 thenR.1 ~the arc lies outside the unit circl
@9#! andR51 @5# for Q52 ~Ising model!. Writing m in the
exponential formm5Reiu, one can find

cos
u

2
5A~z21!~z1Q21!

z~z1Q22!
cos

f

2
. ~13!

From Eq.~13! one can see that there are no solutions w
arguments in the interval 0,u,u0, where u0

52 arccosAB21. This is the well known gap@21# in the
distribution of Yang-Lee zeros. It points to the absence
phase transitions in a 1D ferromagnetic Potts model forQ
.1 at any real temperature. This is in good agreement w
recent studies by Glumac and Uzelac@14#, and Kim and
Creswick @9#, where the Yang-Lee zeros of the 1D Po
model was studied by using the transfer matrix meth
Comparing our formula~13! with the corresponding formula
~14! of Ref. @9#, one can see that the argumentf of the
derivative in our method is nothing but the difference in t
arguments of two maximal eigenvalues in the transfer ma
method. It follows from Eqs.~11! and~13! that the Yang-Lee
edge fields correspond tof50 and have the form

m65
1

z2
$A~z21!~z1Q21!6A12Q%2, ~14!

andm6 are complex forQ.1.
B,1 whenQ,1 and it is positive or negative dependin

on z. Hence,B is negative whenz<22Q(Q,1), and all
values ofm ’s in Eq. ~11! are real and lie betweenm2 and
m1, wherem6.0.

0,B,1 whenz.22Q(Q,1), and all values ofm ’s in
Eq. ~11! are either real or complex depending onf. For 0
,f,f0, where f052 arccosAB, solutions ~11! are real
and lie in the interval@m2 ,m1#. For f0,f,p the solu-
tions ~11! are complex conjugate and lie on the circle w
radiusR5(z1Q22)/z.

For Q.1, the differentiation of both sides of Eq.~13!
with respect tom andf gives the density of Yang-Lee zero
g(u) in the form
04611
h

f

th

.

ix

g~u!5
1

2p

Usin
u

2U
Asin2

u

2
2sin2

u0

2

. ~15!

From Eq.~15! it follows that the density functiong(u) for
Q.1 diverges in the gap pointsm6 with the exponents5
2 1

2 , i.e., g(u)}uu2u0us whenf→0 or u→u0.
For Q,1, the corresponding density functiong(m) may

be obtained by differentiation of both sides of Eq.~10!,

g~m!5
1

2pm

um2Am1m2u

A~m12m!~m2m2!
. ~16!

One can see thatg(m) diverges in the pointsm6 , i.e.,
g(m)}um2m6us, with the exponents52 1

2 . Thus, for Q
,1 the density function of the Yang-Lee zeros of the 1
Q-state Potts ferromagnetic model has singularities only
points m6 @Eq. ~14!# with the edge singularity exponents
52 1

2 . The same is true for the antiferromagnetic case.
Glumac and Uzelac@14# considered forQ,1 case the

contribution of the third eigenvalue of the transfer matrix (l2
in their notations!. We want to note that for the 1D Pott
model the transfer matrix method gives three and more
genvalues only forQ.2; hence, the third and other eigen
values should be neglected forQ,2. In this case the study
of two maximal eigenvalues gives the same results as d
our method. The summary of the results of the 1D ferrom
netic Potts model is given in Fig. 2. It is interesting to no
that the argumentf of the derivative in Eq.~9! corresponds
to the argument of the maximal eigenvalue in the trans
matrix method.

The antiferromagnetic case may be studied in the sa
manner. The results are shown in Fig. 3.

IV. YANG-LEE ZEROS OF THE Q-STATE POTTS MODEL
ON A BETHE LATTICE „QÌ1…

Let us, at first, consider the ferromagnetic Potts model
the Bethe lattice with coordination numberg53. In this case
the system~8! may be studied analytically for neutral fixe
points (k51). The exclusion ofx from both parts of Eqs.~8!
gives the following equation:
0-4
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FIG. 3. A schematic representation of the Yang-Lee zeros of the 1D antiferromagnetic Potts model. HereR5(22Q2z)/z andm6 are
defined in Eq.~14!.
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z3~Q21!m22F2~Q21!y~4 cosf11!

1y2S 4eif sin2
f

2
11D22~Q21!2Gm

1~z1Q22!350, ~17!

where y5(z21)(z1Q21)/2 and fP@0,2p#. This equa-
tion describes the border of the metastability region in
complexm plane~Fig. 4!. The dashed areas in Fig. 4 sho
the metastability regions for different temperatures. Ins
the metastability region there are two attracting fixed poi
and there is only one outside of it. The other fixed points
repelling. Note that such a behavior is valid for anyg. At m6

at least two of the fixed points become neutral. It will
shown below that atm6 the magnetization function~7! is
singular andm6 correspond to the Yang-Lee edge singular
points. These are solutions to Eq.~17! for f50 and the
critical temperature may be obtained from the condit
m15m2 . It follows from Eq. ~17! that the edge singularity
points lie on a circle with radiusRm

2 5(z1Q22)3/z3(Q
21). Since there is no phase transition on the boundary
metastability region it will not give rise to zeros of the pa
tition function @19#. The metastability region in the comple
m plane points to the existence of the first-order phase t
sition for complex magnetic fields. The problem of findin
the Yang-Lee zeros of models with first-order phase tra
tions attracted much attention for many years. Recen
Biskup et al. showed that the position of partition functio
zeros is related to the phase coexistence lines in the com
04611
e

e
s
e

a

n-

i-
y,

lex

planes@22#. Dolan et al. used this approach to study Fish
zeros for the Ising and Potts models on nonplanar~thin!
regular random graphs. It is interesting to note that the lo
of Fisher zeros on a Bethe lattice is identical to the cor
sponding random graph@23#. For our models the phase co
existence line is defined as a line in the complex pla
where the absolute values of the recursive function der
tives in two attracting fixed points are equal~see also Ref.
@16#!. Our numerical study showed that the phase coex
ence line forT.Tc is an arc of a circle with radiusRm
ending at the edge singularity points~the dashed line in Fig.
4!.

Let us now study the analytical properties of the mag
tization function~7! to prove that the edge singularity poin
m6 correspond to its singularities. The fixed point equati
of the Potts-Bethe mapping~5! may be written in the form

m5xg21
~Q21!x2~z1Q22!

12zx
. ~18!

For continuity at m5” 0, x is defined to be equal to (Q
21)/(z1Q22) atm50. Consideringx as a function ofm,
one can study the singularities ofx(m) that also correspond
to singularities ofM̄ (m). The singular points ofx(m) are
m50, m5`, and m(x6), x6 being the points where the
derivative]x/]m is infinite. x6 satisfies the equation

x21
z~z1Q22!~22g!2g~Q21!

z~Q21!~g21!
x1

z1Q22

z~Q21!
50.

~19!
ius

FIG. 4. Metastability regions and Yang-Lee zeros of theQ-state Potts model on the Bethe lattice with coordination numberg53 and

Q52. The solid lines correspond to the boundary of metastability regions~gray filled areas!. Dashed lines present an arc or circles of rad
Rm

2 5(z1Q22)g/zg(Q21)g22 and correspond to Yang-Lee zeros.~a! T.Tc(z51.8), m6 are Yang-Lee edge singularity points;~b! T
5Tc critical point (z5zc53); ~c! T,Tc(z56), m6 are spinodal points of the model. For more details see the text.
0-5
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Equation~19! is obtained after differentiating both sides
Eq. ~18! with respect tom and x from the condition that
]m/]x vanishes. Note that Eq.~19! may be derived from the
system~8! for k51 andf50 by excludingm from both the
equations. At the singularity points ofM̄ (m) the recursive
-

la
na

in

.
l

ar
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04611
function has two neutral fixed points withf50 and the oth-
ers are repelling.

The critical temperature may be obtained from the con
tion m15m2 or by setting the discriminant of the quadrat
equation~19! to zero,
zc5H 1

2
@22Q1A~Q22!214~Q21!g2/~g22!2# for Q.1,

12Q for Q,1.

~20!
e
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For Q.1 and 1,z,zc the solutionsx6 are complex con-
jugate numbers with modulusRx5A(z1Q22)/z(Q21)
and forz.zc they become real valued. ForQ,1 the solu-
tions x6 are always real numbers. Substitutingx65Rxe

ia6

into Eq. ~18! one finds, after some algebra

m65Rmei [ ũ61a6(g21)], ~21!

where

Rm5Rx
g~Q21!, tan

ũ6

2
5

11zRx

12zRx
tan

a6

2
,

and

cosa65
~g22!z2Rx

21g

2~g21!zRx
. ~22!

Note that the fixed point equationf (x)5x and the magneti-
zation M̄ (m) are invariant under the transformationG:$m
→Rm

2 /m, x→Rx
2/x%. Moreover, for the magnetization func

tion one has

M̄ ~m!52M̄ S Rm
2

m D . ~23!

The Yang-Lee zeros of the Potts model on the Bethe
tice may be obtained also analytically by studying the a
lytical properties of the magnetization function~7!. This was
done for the first time by Bessis, Drouffe, and Moussa@24#
for the Ising model on the Bethe lattice. Making use of s
gularities ofx(m) in analogy with Ref.@24#, a careful analy-
sis of the analytic properties of the functionM̄m Eq. ~7! for
Q.1 gives the following picture for the Yang-Lee zeros.

~a! For z,zc : M̄ (m) is analytic in the complex plane
cut along an arc of the circle with radiusRm

2 5(z1Q
22)g/zg(Q21)g22, which contains the point2Rm and is
limited by the pointsm6 , which are complex conjugates
Due to relation~23!, the discontinuity along the cut is rea
and never vanishes except at the Yang-Lee edge singul
pointsm6 . This is in a good agreement with the Yang-L
theory@5#. The density of zerosg(Rm ,u) may be calculated
from
t-
-

-

ity

lim
r→Rm1

M̄ ~m!um5reiu2 lim
r→Rm2

M̄ ~m!um5reiu524pg~Rm ,u!.

~24!

Our numerical study of Eq.~24! shows that, close to the edg
singularity pointsm65e6 iu0, g(Rm ,u) has an exponentia
behaviorg(Rm ,u)}uu2u0us and u0(T)}(T2Tc)

D, where
s51/2 for z,zc , s51/3 (s51/d) for z5zc and D
5 3

2 (D5bd). Our results are in a good agreement w
those of Refs.@25,21#, where it was shown that thes expo-
nent is universal and is always equal to 1/2 forT.Tc and
s51/d for T5Tc in ferromagnetic models on lattices wit
spatial dimensiond.6.

~b! For z.zc the function M̄(m) is split into two different

functions. M̄ 1(m) defined forumu,Rm and M̄ 2(m) defined
for umu.Rm . The functionM̄ 1(m) can be analytically con-
tinued outside the circleumu5Rm into thez plane cut along
the real axes fromm(x1) to `, wherex1 is the largest root
of Eq. ~19!. The pointm(x1) increases from unity to infinity
when z increases fromzc to infinity. The discontinuity of
M̄ 1(m) across the cut is purely imaginary and does n
change the sign. Hence, it has no influence on the phys
properties of the model and the Yang-Lee zeros lie on
circle umu5Rm . The pointsm6 correspond to the boundar
of metastability for real magnetic fields and the plots of t
iteration functionf (x) at these points are given in Fig. 5.

V. COMPLEX MAGNETIC FIELD
METASTABILITY REGIONS

In the preceding section the neutral fixed points of t
recursive functionf (x), Eq. ~5! was considered only. It was
found that the set of values of the magnetic field, for whi
the recursive function~5! has at least one neutral fixed poin
gives the boundary of the metastability region in the comp
m plane. Inside it, there are two attracting fixed points a
others are repelling. Numerical experiments show that in
m plane the recursive function Eq.~5! has a complex behav
ior with period doubling bifurcations. The question arise
What will happen to the metastability region if neutral pe
odical points of periodk>1 are also considered? To answ
this question, one has to study the system~8! for any k>1.
Since it is impossible to solve the system~8! directly for k
0-6
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FIG. 5. Plots off (x) function ~5! indicating the existence of neutral fixed points for different temperatures and magnetic fieldsQ
52 andg53. ~a! T,Tc(z56) and exp(h/kT)5m2 ; ~b! T5Tc (z53)h50; ~c! T,Tc(z56), and exp(h/kT)5m1 .
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do
@1 andg>3 analytically and even numerically for largek
andg, the method developed in Ref.@26# is used. It gives a
numerical algorithm for searching neutral periodical poi
for the recursive functions such as Eq.~5! and is based on the
theory of complex dynamical systems and the well kno
fact that the convergence of iterations to neutral period
points is very weak and irregular, i.e., one has to mak
number of iterations in order to approach a neutral perio
point. The algorithm is to find all critical points of the recu
sive function and investigate the convergence of all the or
started at critical points~critical orbits!. If all critical orbits
converge to any attracting periodical point, one says that
04611
s

n
l
a
ic

ts

e

recursive function has only attracting and repelling perio
cal points. If at least one of the critical orbits does not co
verge, for example, aftern iterations, one says that the recu
sive function has a neutral periodical point. Of course,
last statement is not rigorous from the strong mathemat
point of view, since a weak convergence to an attract
periodical point is also possible. Depending on the choice
n and« ~the accuracy of approaching an attracting periodi
point!, the resulting picture on them plane may change. Ou
simulation experiments show thatn5700 and«51025 are
optimal values and the data generated with this algorithm
not qualitatively change whenn and/or« differ from their
FIG. 6. The dynamics of metastability regions of theQ-state Potts model on the Bethe lattice with coordination numberg53 andz
53 for different values ofQ. For more details see the text.
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optimal values. For more details of the method and
C11 program code see Refs.@26,27#.

One can easily find all critical points of the mappingf
from Eq. ~5!. The critical points arex50 with multiplicity
g22 andx5` with multiplicity g22. The degree of our
mappingf is d5(g21). It may be shown that these are th
only critical points of the mappingf @26#. Hence, one has to
consider only the orbits of the pointsx050 andx05`. For
numerical calculations it is convenient to start iterations
the points x15 f (0)51/z and x15 f (`)5(z1Q22)/(Q
21).

In Fig. 6 the dynamics of the metastability regions of t
Q-state Potts model on the Bethe lattice with coordinat
numberg53 andz53 is shown depending onQ. We have
experimental evidence that in white regions all critical orb
converge. Figures 6~a!–6~d! show the metastability region
for the caseQ.1. It is seen that the sets of black points a
similar to the boundary of the Mandelbrot set of the qu
dratic mapping z→z21c @Figs. 6~c!,6~d!#. This fact is
known as the universality of the Mandelbrot set@28#. The
metastability region of the Ising model (Q52) at the critical
temperature is shown in Fig. 6~c!. It intersects the positive
semiaxis atm51, which is an evidence of the existence
real temperature second-order phase transition in confor
with exact calculations@18#. The Q,1 case is shown in
Figs. 6~e!–6~i!. One can see that Fig. 6~e! resembles a mirror
reflection of the Mandelbrot set boundary of Figs. 6~d!,6~e!.
It is worth noting that forQ51 andg53 the Bethe-Potts
mapping becomes a quadratic one@29#, and our numerical
method fails@26#. By lowering Q the metastability regions
become more and more complicated, Figs. 6~f!–6~i!. Note
that the dynamics of the metastability regions remains
same if one fixesQ and changes the temperature.
J.

A
.
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VI. CONCLUSIONS

We showed that the stability analysis of attracting fix
points of the recurrence relation, i.e., the condition that
absolute values of derivatives of the governing recurre
relation in two attracting fixed points are equal at a pha
transition, may be successfully applied to a study of zeros
the partition function. Note that in the one-dimensional ca
the condition of a phase transition is equivalent to the c
dition of the existence of neutral fixed points. It will be in
teresting to check Monroe’s conjecture that at a phase t
sition the box counting dimension of the Julia set of t
governing recurrence relation is a minimum for zeros of
partition function @13#. We suppose that the box countin
dimension of the Julia set of the recurrence relation sho
be a minimum for zeros of the partition function also. Th
may serve as one more criterion for studying zeros of
partition function for models on recursive lattices.

In conclusion, we observe that numerical methods p
posed in this paper are generic and may be used for
investigation of zeros of the partition function and metas
bility regions of other models on recursive lattices.
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