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Evolutionary reconstruction of networks
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Can a graph specifying the pattern of connections of a dynamical network be reconstructed from statistical
properties of a signal generated by such a system? In this model study, we present a Metropolis algorithm for
reconstruction of graphs from their Laplacian spectra. Through a stochastic process of mutations and selection,
evolving test networks converge to a reference graph. Applying the method to several examples of random
graphs, clustered graphs, and small-world networks, we show that the proposed stochastic evolution allows
exact reconstruction of relatively small networks and yields good approximations in the case of large sizes.
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The operation of network-organized systems of differ
origins is determined by the pattern of connections betw
their elements. The principal framework for investigations
dynamical networks is provided by graph theory@1–4#. Re-
cently, properties of various social@5–8#, linguistic @9#, bio-
chemical @10#, and neural networks@6,11# have been ana
lyzed, whereas properties of plastic networks with evolv
patterns of connections have been considered in Ref.@12#.
Statistical mechanics of systems with network organizat
has been reviewed@13#. Much effort is invested in under
standing how the structure of a network is mapped to
function and determines its operation. On the other hand
applications ranging from bioengineering to neuroscien
one also needs to design networks with a given function
reconstruct a network from its dynamics. Taking into acco
the great complexity of the network dynamics, explicit so
tions of such inverse problems of the graph theory are d
cult. But graph reconstruction may also be achieved, with
any knowledge of rules, by running an artificial evolutio
process through which a network learns to generate ce
dynamics by adjusting its internal organization. Indeed, e
lutionary algorithms are known to yield efficient solution
for complex optimization problems@14#. For the problem of
graph reconstruction, such an approach has previously b
proposed@15#.

In this Communication, we apply a Metropolis algorith
to reconstruct graphs from their Laplacian spectra. Rand
graphs, small-world networks and networks, with cluster
ganization are considered. We show that for relatively sm
graphs, exact reconstruction within a reasonable evolu
time is possible. For larger graphs, the evolution leads t
network that provides a good approximation of the tar
graph. Both the spectral properties, as well as, other cha
teristic features of the reference network, such as the di
eter, clustering coefficient, and the average degree, are
reproduced by the approximately reconstructed graph.

Any graphG can be described by its adjacency matrixA,
where Ai j 51 if the nodesi and j are connected, andAi j
50 otherwise. A Laplacian spectrum of the graphG is de-
fined @4# as the set of eigenvaluesl i of the matrixT with
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elementsTi j 5Ai j 2mid i j , wheremi5( j 51
N Ai j is the degree

of nodei andd i j is the Kronecker symbol.
Laplacian spectra are closely related to dynamical prop

ties of a simple network. Consider a hypothetical line
‘‘molecule’’ consisting ofN identical particles connected b
identical elastic strings. The pattern of connections is defi
by a graphG: a bond between particlesi andj in the network
is present if the respective elementAi j in the adjacency ma-
trix of the graphG is equal to unity and absent otherwis
This dynamical system is described by a set of differen
equationsẍi1( j 51

N Ai j (xi2xj )50 for the coordinatesxi of
all particles. Obviously, the vibration frequenciesvk of such
a molecule (k50,1, . . . ,N21) are given by the eigenvalue
lk52vk

2 of the matrixT. Note that one eigenvaluel0 al-
ways satisfiesl050 due to the translational invariance o
this equation. For this reason, the Laplacian spectra o
graph are also known as the vibrational spectra@4#. Besides
yielding a link to dynamical networks, spectra provide
powerful invariant characterization of graphs. Each graph
sizeN is thus mapped into a set ofN21 positive real num-
bersv i . Various statistical properties of graphs can be e
pressed or evaluated in terms of their spectra@4#. Moreover,
even though cospectral graphs~topologically different graphs
with the same spectra! are known to exist, their fraction is
very small@20#. Hence, with a high probability two graph
with coinciding spectra would indeed be identical.

It is convenient to introduce the spectral densityr(v) for
a graph as a sum of narrow Lorentz distributions,

r~v!5K (
k51

N21
g

~v2vk!
21g2

, ~1!

with a common widthg and a normalization constantK cho-
sen such that*0

`r(v)dv51. The spectral distancee be-
tween two graphsG andG0 with densitiesr(v) andr0(v)
can then be defined as

e5AE
0

`

@r~v!2r0~v!#2dv. ~2!

Our aim is to reconstruct graphs from their Laplaci
spectra. Note that the numberMN of different graphs of a
given sizeN becomes~super!astronomically large even fo
©2002 The American Physical Society09-1
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relatively small sizes. A lower bound forMN is
2N(N21)/2/N!, so even forN550 we haveMN.1.9310304.
Therefore, finding an exact solution to the inverse probl
by subsequently testing all graphs is in practice impossi
Instead, we shall use an evolutionary procedure for gr
reconstruction.

Suppose that we want to reconstruct a certain refere
graphG0 with the spectral densityr0(v). In order to do this,
we generate an arbitrary initial graphG and introduce a sto
chastic process of mutations and selection. The mutat
represent random modifications of the pattern of connect
whereas the selection is based on the spectral distanc~2!
between two graphs.

A mutation of the graphG first consists of deleting al
connections of a randomly chosen nodei. A new degreemi

for this particular node is then chosen at random betwee
and N21 followed by a random generation of itsmi new
connections. The obtained mutated graph is denoted asG8.

To decide whether a mutation should be accepted~that is,
to realizea selection!, we calculate the spectral distancee8
between the modified graphG8 and the reference graphG0.
This is then compared with the spectral distancee betweenG
andG0. If De5e82e,0, the mutation is always accepte
If De.0, the mutation is accepted with a certain probabil
p(De)5exp(2De/eu). When a mutation has been accepte
the graphG is replaced byG8.

These two steps are applied iteratively and the evolu
is continued until the spectra are identical (e50) or the
spectral distancee is smaller than a given threshold. No
that mutations may be accepted even ifDe.0 to avoid that
the evolution gets trapped in a local minimum. The noise
the selection is controlled by the ‘‘temperature’’ parameteru.
The scheme is similar to the Metropolis algorithm used
statistical mechanics and complex combinatorial optimi
tion @16,17#.

In the following, this procedure is applied to reconstru
three different types of reference graphs.

Random networks. First we, consider the case where t
reference network is a random graph of sizeN with connec-
tion probabilityp. As an example, we take a reference gra
G0 with N510 andp50.2. The initial graphGinit is also
random, but has a higher connection probabilityp50.9. The
two graphs and their Laplacian spectra are shown in F
1~a! and 1~b!. We then apply the stochastic evolution, d
scribed above with the selection temperatureu50.044. The
evolution of the spectral differencee is shown in Fig. 1~c!.
The spectral distance is gradually decreasing, with so
fluctuations, until eventually a transition occurs att.3500,
when the spectral densities of the reference and test g
coincide. Examining the final graphGfinal in Fig. 1~a!, we
conclude that it is indeed identical to the reference graphG0.
Note that though the number of graphs of sizeN510 is of
the order of 106, the exact reference graph has been rec
structed in only 3500 stochastic iterations.

To determine the reliability of the reconstruction and
dependence on the selection temperatureu, a statistical in-
vestigation has been performed. The variation of the m
spectral distanceē as a function ofu is shown in Fig. 1~d!,
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where each point corresponds to the average over 103 evo-
lutions each starting from a randomly chosen test graph w
connection probability chosen randomly from the interv
@0,1#. Each evolution was stopped after 43104 iterations. We
see that there is a window of the selection temperature wh
fast convergence takes place. At the minimumu50.04, ap-
proximately 92% of all evolutions converge exactly to t
reference graph within the specified time.

Furthermore, in a separate study we have taken an
semble of 2000 different random reference graphs of s
N510. Each graphG0 in the ensemble was generated ind
pendently with a connection probabilityp0 chosen randomly
from the interval@0,1#. For each reference graph, a stochas
evolution atu50.06, starting from the same initial graph an
continuing for 105 iterations, has been realized. We ha
found that approximately 67% of all the evolutions co
verged exactly to the respective reference graphs within
time. The average reconstruction error specified by the m
spectral distance after 105 iterations was onlyē50.032.

Clustered networks. Next, we consider large clustered ne
works representing a union of several random graphs w
different connection densities. As an example, a refere
network G0 of size N550 with three clusters of high con
nection probability is chosen. To prepare it, a sparse rand
graph of sizeN with low connection probabilityp50.05 is
first generated. Then three random dense clusters of
Nlocal58 with connection probabilityplocal50.8 have been
constructed and added to the sparse graph. The spectru
G0 exhibiting two distinct peaks is shown by a solid line
Fig. 2~a!. The reconstruction was tested by running 103 sto-
chastic evolutions starting from different random graphs w

FIG. 1. GraphsG0 , Ginit , andGfinal ~note thatG0 andGfinal are
identical! ~a!. Spectral densities ofG0 ~solid line! andGinit ~dashed
line! ~b!. One stochastic evolution of the spectral distancee(t) ~c!.

Dependence of the final mean spectral distanceē on the selection
temperatureu ~d!. Parameters areg50.08 ~b!–~d! and u50.044
~c!.
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connection probability chosen randomly in from the intern
@0,1#. The spectra of one such initial graph and of the cor
sponding final graph obtained after 105 iterations are shown
in Fig. 2~a!. Even though the exact reconstruction is n
reached in this case, the spectral densities of the final an
the reference graphs in Fig. 2~a! are very similar (e
50.057), and differ greatly from that of the initial graph.

Though exact reconstruction is not reached for the c
sidered large graph, statistical analysis reveals that the p
erties of the final graph are close to that of the refere
graph. Figure 2~b! shows the time dependenceē(t) of the
mean spectral difference averaged over the 103 stochastic
evolutions. We see thatē decreases to about 0.056 after 14

iterations. Other important properties of the reference gra
such as its diameterL, clustering coefficientC, and its mean
degreeD ~all defined as in the review@13#!, are also well
reproduced. This is seen from Fig. 2~b!, where the time de-
pendence of the mean ratiosL̄(t)/L0 , C̄(t)/C0, andD̄(t)/D0
is presented.

Similarity between graphs can also be discussed in te
of their adjacency matrices: For any two graphsG1 andG2
with adjacency matricesA1 and A2, a transformationF
5F(A1 ,A2) can be introduced as

F5U1
TU2A2V2

TV1 . ~3!

Here the real matricesU1,2 and V1,2 are defined by the
singular-value decomposition@18# of A1 and A2. If two
graphs are identical and their adjacency matrices only di
because of a different enumeration of nodes, the iden
A15F(A1 ,A2) holds and the differenceD5A12F is zero.
On the other hand, if two graphsG1 andG2 do not coincide,
the normd51/N(( i , jD i j

2 )1/2 of this difference can be used a
a measure of the distance between the graphs.

In Fig. 3, we visually display the matricesA0 , Finit
5F(A0 ,A init), andFfinal5F(A0 ,Afinal) whereA0 , A init , and
Afinal are the adjacency matrices of the graphsG0 , Ginit , and
Gfinal . Here the elements in the matrices are represented
square array of pixels using gray-scale color maps wh
limits are determined by the minimum and maximum valu
of the respective matrix elements. Even though the ma

FIG. 2. Spectral densities of the clustered reference graph~solid
line!, and of the initial and final graphs~dashed and dotted lines! of
one stochastic evolution~a!. Time dependences of the mean spect

distanceē(t) and of the ratiosL̄(t)/L0 , C̄(t)/C0, and D̄(t)/D0

averaged over 103 evolutions ~b!. Parameters areg50.08 andu
50.002; for the reference graphL054, C050.263, andD057.04.
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Ffinal does not coincide withA0, it is already very close to it.
The respective distancesd for the initial and final graphs are
d init50.41 anddfinal50.04.

Small worlds. Now we consider a small-world graph@see
Ref. @6## consisting ofN540 nodes organized on a ring wit
each node connected to its two neighboring nodes. In a
tion, each nodei is connected to a randomly chosen nodej in
the network (j Þ i 61) with the probabilityp50.1. The ad-
jacency matrix of this reference graph is visually display
in the left frame of Fig. 4~a!. To test the reconstruction effi
ciency for this graph, we have performed 103 stochastic evo-
lutions, each starting from a random graph with connect
probability chosen randomly from the interval@0,1# . The
spectra of the reference, initial and final graphs of one p
ticular evolution are shown in Fig. 4~b!; we see that even fine
structures of the reference spectrum have been reprodu
The structure of the final graph is also close to that of
reference graph as seen from the last two frames in Fig. 4~a!,
where the matricesFinit andFfinal defined by Eq.~3! are dis-
played ~the respective distancesd for the initial and final
graphs ared init50.92 anddfinal50.01).

The time dependence of the mean spectral distanceē(t)
and the ratiosL̄(t)/L0 , C̄(t)/C0, and D̄(t)/D0 averaged

l

FIG. 3. Density plots of the adjacency matrixA0 of the clustered
reference graph and of the matricesFinit andFfinal ~see the text!.

FIG. 4. Density plots of the adjacency matrixA0 of a small-
world reference graph and of the matricesFinit and Ffinal ~a!. The
corresponding spectral densities for the reference, initial, and fi
graphs~solid, dashed, and dotted lines, respectively! ~b!. Time de-

pendences of the mean spectral distanceē(t) and of the ratios

L̄(t)/L0 , C̄(t)/C0, andD̄(t)/D0 averaged over 103 evolutions~c!.
Parameters areg50.08 and u50.021; for the reference grap
L058, C050.063, andD052.65.
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over 103 evolutions are shown in Fig. 4~c!. After a transient
of 104 iterations, ē50.058 and all three ratios have a
proached unity implying that these characteristic proper
of the reference network also are well captured by the
proximate reconstruction process.

Our analysis has revealed that the proposed evolution
algorithm provides an efficient method for exact or appro
mate reconstruction of graphs from their Laplacian spec
Based on the spectral density only, such important prope
of the reference network as its diameter, clustering coe
cient, and average degree are well reproduced. Moreo
approximately reconstructed networks have similar ad
cency matrices determining the pattern of connections
tween nodes. Unique evolutionary reconstruction is not p
sible for cospectral graphs, but these are, however, extrem
rare @3#. Our numerical study has been performed using
Metropolis algorithm with a fixed selection temperatureu.
The Metropolis algorithms employing time dependent te
perature@similar to the method of simulating annealing@17##
and more refined evolutionary algorithms@14# could also be
implemented.

As already mentioned in the Introduction, the Laplaci
spectrum of a graph can be interpreted@4# as a vibrational
spectrum of a dynamical network formed by the partic
coupled by elastic strings. Thus, we have shown that
,
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pattern of connections in such a dynamical network can
reconstructed provided its vibrational spectrum is know
i.e., by using only information contained in a dynamical s
nal.

In essence, the proposed stochastic evolution can be
garded as a learning process through which a test netw
by adjusting its internal structure, learns to approximate
dynamics generated by a different system. Similar
proaches can be applied to solve other problems. For
stance, approximations of large clustered graphs by graph
a smaller size can be constructed, and networks genera
stochastic signals with prescribed power spectra can be
signed.

The results of our model study put forward questio
whether the network organization of complexnonlineardy-
namical systems with deterministic chaos can be rec
structed from their power spectra in an evolutionary learn
process and whether, generally, a nonlinear network m
learn to generate given complex chaotic dynamics by ite
tively adjusting its pattern of connections@see, e.g., Ref.
@19##. A practical solution of these problems would be im
portant for a variety of applications.
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