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Evolutionary reconstruction of networks
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Can a graph specifying the pattern of connections of a dynamical network be reconstructed from statistical
properties of a signal generated by such a system? In this model study, we present a Metropolis algorithm for
reconstruction of graphs from their Laplacian spectra. Through a stochastic process of mutations and selection,
evolving test networks converge to a reference graph. Applying the method to several examples of random
graphs, clustered graphs, and small-world networks, we show that the proposed stochastic evolution allows
exact reconstruction of relatively small networks and yields good approximations in the case of large sizes.
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The operation of network-organized systems of differentelementsT;; = Aj; —m; 5, wheremi=EjN:1Aij is the degree
origins is determined by the pattern of connections betweeof nodei and §; is the Kronecker symbol.

their elements. The principal framework for investigations of Laplacian spectra are closely related to dynamical proper-
dynamical networks is provided by graph thedty-4]. Re-  ties of a simple network. Consider a hypothetical linear
cently, properties of various socigi—§], linguistic[9], bio-  “molecule” consisting ofN identical particles connected by
chemical[10], and neural network§6,11] have been ana- identical elastic strings. The pattern of connections is defined
lyzed, whereas properties of plastic networks with evolvingby @ graphG: a bond between particlesind] in the network
patterns of connections have been considered in [R€].  is present if the respective elemeky in the adjacency ma-
Statistical mechanics of systems with network organizatiorffiX of the graphG is equal to unity and absent otherwise.
has been revieweflL3]. Much effort is invested in under- This dynqmical system is described by a set of differential
standing how the structure of a network is mapped to itequationsx;+ =L, A;;(x;—x;) =0 for the coordinates; of
function and determines its operation. On the other hand, il particles. Obviously, the vibration frequencieg of such
applications ranging from bioengineering to neuroscience@ molecule k=0,1,... N—1) are given by the eigenvalues
one also needs to design networks with a given function ohk= — wi of the matrixT. Note that one eigenvalue, al-
reconstruct a network from its dynamics. Taking into accountvays satisfies\,=0 due to the translational invariance of
the great complexity of the network dynamics, explicit solu-this equation. For this reason, the Laplacian spectra of a
tions of such inverse problems of the graph theory are diffigraph are also known as the vibrational speptia Besides
cult. But graph reconstruction may also be achieved, withouYi€lding a link to dynamical networks, spectra provide a
any knowledge of rules, by running an artificial evolution POWerful invariant characterization of graphs. Each graph of
process through which a network learns to generate certafiZ€N i thus mapped into a set &f—1 positive real num-

dynamics by adjusting its internal organization. Indeed, evo-bers“’id Variouls sta(;i;tical prop?rtri]eg of graphs can be ex-
lutionary algorithms are known to yield efficient solutions pressed or evaluated in terms of their speptia Moreover,

for complex optimization problemd 4]. For the problem of even though cospectral grap(mspolog|cally dn‘fe.rent gr_aph;
. . with the same spectraare known to exist, their fraction is
graph reconstruction, such an approach has previously been . . i
roposed 15] very small[20]. Hence, with a high probability two graphs
propose ' L . . with coinciding spectra would indeed be identical.
In this Communication, we apply a Metropolis algorithm It is convenient to introduce the spectral dengity) for
to reconstruct graphs from their Laplacian spectra. Randorg graph as a sum of narrow Lorentz distributions
graphs, small-world networks and networks, with cluster or- '

ganization are considered. We show that for relatively small N-1
graphs, exact reconstruction within a reasonable evolution plw)=K >, ;, (1)
time is possible. For larger graphs, the evolution leads to a =1 (w—w )2+ 92

network that provides a good approximation of the target

graph. Both the spectral properties, as well as, other charatith a common widthy and a normalization constaktcho-
teristic features of the reference network, such as the diangen such thafjp(w)dw=1. The spectral distance be-
eter, clustering coefficient, and the average degree, are wélveen two graph$ and G, with densitiesp(w) andpy(w)

reproduced by the approximately reconstructed graph. can then be defined as

Any graphG can be described by its adjacency matkix
where Aj;=1 if the nodesi andj are connected, and; = \/fm[ (@)= pol ) ]2dw )
=0 otherwise. A Laplacian spectrum of the graphs de- 0 p Pot® '

fined [4] as the set of eigenvalues of the matrix T with
Our aim is to reconstruct graphs from their Laplacian
spectra. Note that the numbbfty of different graphs of a
*Electronic address: mpi@osc.kiku.dk given sizeN becomes(supejastronomically large even for

1063-651X/2002/6@}/0461094)/$20.00 66 046109-1 ©2002 The American Physical Society



MADS IPSEN AND ALEXANDER S. MIKHAILOV PHYSICAL REVIEW E 66, 046109 (2002

relatively small sizes. A lower bound forMy is a) | @) b)
2N(N=D2/N1 so even forN=50 we haveM > 1.9x 10°% Go 1 U
Therefore, finding an exact solution to the inverse problem 0sl ."‘ ]
by subsequently testing all graphs is in practice impossible. ’ i
Instead, we shall use an evolutionary procedure for grapr 0.6 i 1
reconstruction. o | o0al FrY L]
Suppose that we want to reconstruct a certain referenct v
graphG, with the spectral densityo(w). In order to do this, Gonsl 021 i Vo
we generate an arbitrary initial grahand introduce a sto- -i-—" 4 L \\Zu

chastic process of mutations and selection. The mutation:
represent random maodifications of the pattern of connections ¢
whereas the selection is based on the spectral disté)ce 051
between two graphs. 0.4
A mutation of the graphG first consists of deleting all
connections of a randomly chosen nddé& new degream;

™|

1 05
1 04

0.3F 1 03

for this particular node is then chosen at random between 102 1 02
andN—1 followed by a random generation of its; new g, 1 o1
connections. The obtained mutated graph is denotgd’as
To decide whether a mutation should be acceptieat is, T2 5 log,t ST Oy
to realizea selection, we calculate the spectral distanee
between the modified grapgh’ and the reference gragh. FIG. 1. Graphssy, Gjii, andGy (Note thatGy and Gy are

This is then compared with the spectral distaad®tweenG  identica) (a). Spectral densities dB, (solid line) andG;,; (dashed
andG,. If Ae=¢’'—€e<0, the mutation is always accepted. line) (b). One stochastic evolution of the spectral distaa(® (c).
If Ae>0, the mutation is accepted with a certain probability Dependence of the final mean spectral distan@ the selection
p(Ae)=exp(—Aeed). When a mutation has been accepted,temperatured (d). Parameters are=0.08 (b)—(d) and §=0.044
the graphG is replaced byG'. (©).

These two steps are applied iteratively and the evolution
is continued until the spectra are identica=(0) or the  where each point corresponds to the average ovér$6-
spectral distance is smaller than a given threshold. Note lutions each starting from a randomly chosen test graph with
that mutations may be accepted everh ¥>0 to avoid that connection probability chosen randomly from the interval
the evolution gets trapped in a local minimum. The noise of0,1]. Each evolution was stopped aftex40" iterations. We
the selection is controlled by the “temperature” parameiter see that there is a window of the selection temperature where
The scheme is similar to the Metropolis algorithm used infast convergence takes place. At the minimém0.04, ap-
statistical mechanics and complex combinatorial optimizaproximately 92% of all evolutions converge exactly to the

tion [16,17). reference graph within the specified time.
In the following, this procedure is applied to reconstruct Furthermore, in a separate study we have taken an en-
three different types of reference graphs. semble of 2000 different random reference graphs of size

Random networksFirst we, consider the case where the N=10. Each graplt, in the ensemble was generated inde-
reference network is a random graph of sitavith connec-  pendently with a connection probabilipy chosen randomly
tion probabilityp. As an example, we take a reference graphfrom the interval0,1]. For each reference graph, a stochastic
Gy with N=10 andp=0.2. The initial graphG,,; is also  evolution atf=0.06, starting from the same initial graph and
random, but has a higher connection probability0.9. The  continuing for 10 iterations, has been realized. We have
two graphs and their Laplacian spectra are shown in Figdfound that approximately 67% of all the evolutions con-
1(a) and Xb). We then apply the stochastic evolution, de-verged exactly to the respective reference graphs within this
scribed above with the selection temperatdre0.044. The time. The average reconstruction error specified by the mean
evolution of the spectral differenceis shown in Fig. 1c).  spectral distance after 1@erations was only=0.032.

The spectral distance is gradually decreasing, with some Clustered networkdNext, we consider large clustered net-
fluctuations, until eventually a transition occurstat3500,  works representing a union of several random graphs with
when the spectral densities of the reference and test grapifferent connection densities. As an example, a reference
coincide. Examining the final grapBiny in Fig. 1@, we  network G, of size N=50 with three clusters of high con-
conclude that it is indeed identical to the reference gi@ph  nection probability is chosen. To prepare it, a sparse random
Note that though the number of graphs of skke-10 is of  graph of sizeN with low connection probabilityp=0.05 is

the order of 10, the exact reference graph has been reconfirst generated. Then three random dense clusters of size
structed in only 3500 stochastic iterations. Nioca=8 With connection probabilityp,,.,=0.8 have been

To determine the reliability of the reconstruction and itsconstructed and added to the sparse graph. The spectrum of
dependence on the selection temperat@yra statistical in- G, exhibiting two distinct peaks is shown by a solid line in
vestigation has Been performed. The variation of the meapig. 2(a). The reconstruction was tested by running -
spectral distance as a function ofg is shown in Fig. 1d),  chastic evolutions starting from different random graphs with
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A FIG. 3. Density plots of the adjacency matAy of the clustered
4 =’ . 6 = reference graph and of the matrides; and Fy;,, (see the text

FIG. 2. Spectral densities of the clustered reference gtsqlid Frinal dO€S not coi_ncide witho, it i_s _a_lready very close to it
line), and of the initial and final graphslashed and dotted linesf The_respectlve d'StimCG%for the initial and final graphs are
one stochastic evolutiof@). Time dependences of the mean spectral Sinit=0.41 anddfn,=0.04. .
distancee(t) and of the ratios (t)/Lo, C(t)/Co, and D(t)/Dy Small worlds Now we consider a small-world grapbee
averaged over fOevolutions(b). Parameters arg=0.08 andé Ref. [6]] consisting 0ﬂ\|:4,0 nodes olrganlz_ed on a ring with )
=0.002; for the reference gragihy=4, Co=0.263, andD o= 7.04. each node connected to its two neighboring nodes. In addi-

tion, each nodeis connected to a randomly chosen ngdte
connection probability chosen randomly in from the internalth® nétwork {#i%1) with the probabilityp=0.1. The ad-
[0,1]. The spectra of one such initial graph and of the correJac€ncy matrix of this reference graph is visually displayed
sponding final graph obtained afterSliterations are shown N the left frame of Fig. 4. To test the reconstruction effi-
in Fig. 2a). Even though the exact reconstruction is notCi€ncy for this graph, we have performed® Hochastic evo-
reached in this case, the spectral densities of the final and ftions, each starting from a random graph with connection
the reference graphs in Fig.(@ are very similar ¢ probability chosen randomly_ from th_e intervid,1] . The
=0.057), and differ greatly from that of the initial graph. ~ SPectra of the reference, initial and final graphs of one par-

Though exact reconstruction is not reached for the conlicular evolution are shown in Fig(d); we see that even fine
sidered large graph, statistical analysis reveals that the progiructures of the reference spectrum have been reproduced.
erties of the final graph are close to that of the referenc he structure of the final graph is also close to t_hat_of the
graph. Figure @) shows the time dependenEet) of the reference graph as seen from the last two frames in &), 4

mean spectral difference averaged over thé di@chastic where the matriceByy, andFnq defined by Eq(3) are dis-

_ — played (the respective distance$ for the initial and final
evolutions. We see that decreases to about 0.056 aftef' 10 graphs ares, ;= 0.92 ands;,=0.01).

iterations. Other important properties of the reference graph, . T
such as its diametdr, clustering coefficienC, and its mean The tlme.deBendence_of the mean_spectral distaite
degreeD (all defined as in the reviewi3]), are also well and the ratiosL(t)/Lo, C(t)/Co, and D(t)/D, averaged
reproduced. This is seen from Figbg where the time de-
pendence of the mean ratibét)/L, C(t)/Cgy, andD(t)/Dg Bl
is presented.

Similarity between graphs can also be discussed in term
of their adjacency matrices: For any two graphs and G,
with adjacency matricef\; and A,, a transformationF
=F(A1,A,) can be introduced as

p(w)

F=UJU,A,VIV,. 3) 15¢ | ) ]
12F i g
Here the real matrices); , and V,, are defined by the
singular-value decompositiofl8] of A; and A,. If two oor |
graphs are identical and their adjacency matrices only differ os | -
because of a different enumeration of nodes, the identity P ]
A;=F(A;,A,) holds and the differencA=A;—F is zero. ’:' ".\
On the other hand, if two grapt3; andG, do not coincide, T

the norms=1/N(Z; ;Af)"? of this difference can be used as

a measure of the distance between the graphs. FIG. 4. Density plots of the adjacency matry, of a small-

In Fig. 3, we visually display the matrice8y, Fix  world reference graph and of the matridgs; and Fg., (3). The
=F(Ag,Ainit), andFgna=F(Ag,Asina) WhereAgy, Ay, and  corresponding spectral densities for the reference, initial, and final
Asina are the adjacency matrices of the grahs G, and  graphs(solid, dashed, and dotted lines, respectiyély. Time de-
Giinal - Here the elements in the matrices are represented bymendences of the mean spectral distaa¢® and of the ratios
square array of pixels using gray-scale color maps whosg(t)/L,, C(t)/C,, andD(t)/D, averaged over foevolutions(c).
limits are determined by the minimum and maximum valuesParameters are/=0.08 and =0.021; for the reference graph
of the respective matrix elements. Even though the matrix ,=8, C,=0.063, andD,=2.65.
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over 1 evolutions are shown in Fig.(d). After a transient pattern of connections in such a dynamical network can be
of 10* iterations, e=0.058 and all three ratios have ap- feéconstructed provided its vibrational spectrum is known,
proached unity implying that these characteristic propertie&®: by using only information contained in a dynamical sig-

of the reference network also are well captured by the ap[‘all' h d hasti luti b
proximate reconstruction process. n essence, the proposed stochastic evolution can be re-

Our analysis has revealed that the proposed evolutiona arded as a learning process through which a test network,

: . s . by adjusting its internal structure, learns to approximate the
algorithm prowde_s an efficient method f_or exact or approxi dynamics generated by a different system. Similar ap-
mate reconstruction of graphs from their Laplacian spectr roaches can be applied to solve other problems. For in-
Based on the spectral density only, such important properti :

Stance, approximations of large clustered graphs by graphs of

of the reference network as its diameter, clustering coeffiz; gajier size can be constructed, and networks generating

cient, and average degree are well reproduced. Moreovegy,chasic signals with prescribed power spectra can be de-
approximately reconstructed networks have similar adla‘signed.

cency matrices determining the pattern of connections be- “tha results of our model study put forward questions

tween nodes. Unique evolutionary reconstruction is not posyhether the network organization of compleanlineardy-

sible for cospectral graphs, but these are, however, extremely, nical systems with deterministic chaos can be recon-

rare[3]. Our numerical study has been performed using th&cted from their power spectra in an evolutionary learning
Metropolis algorlthm _Wlth a fixed _seleqtlon temperature process and whether, generally, a nonlinear network may
The Metropolis algorithms employing time dependent teM+g41n 1o generate given complex chaotic dynamics by itera-
peraturgsimilar to the method of simulating annealift/]]  tjely adjusting its pattern of connectiorisee, e.g., Ref.
and more refined evolutionary algorithriiisd] could also be [19]]. A practical solution of these problems would be im-

implemented. , , , _portant for a variety of applications.
As already mentioned in the Introduction, the Laplacian
spectrum of a graph can be interprefdd as a vibrational M.l. acknowledges financial support from the Alexander
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