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Optimization and phase transitions in a chaotic model of data traffic
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Ohira and SawatafPhys. Rev E58, 193(1998 ] introduced a simple model for a packet-switching network
which was extended by Sosnd Valverdd Physica A289, 595(2001)]. Both models used Poisson-like traffic
sources. Soland Valverde demonstrated that long-range depend&iRi2) in autocorrelation behavior can be
seen in the queue length dynamics at a given node. Actual network traffic sources are known to exhibit
long-range autocorrelation. To simulate the real case more closely, we have studied the effect of introducing
LRD behavior at an earlier stage. We replaced the Poisson-like sources with LRD sources, modeled using
chaotic maps. As was seen in the previous models, a phase transition occurs as the traffic load on a network is
increased and the network changes to a congested state where the time taken for delivery of packets increases
dramatically and throughput collapses. The paper reports extensive numerical results from our simulations
using both Poisson and LRD sources. It demonstrates the natural network-induced LRD when sources are
purely Poisson and shows strong enhancement when LRD sources are added. The model is adapted to include
congestion control mechanisms and their impact is considered.
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[. INTRODUCTION Comparisons are made of the phase transition using ex-
periments with the two types of source. Simulations with
Extensive measurements of real network traffic havd-RD sources show average packet lifetimes to be much
shown that the autocorrelation of the packet rates decays adiégher before the phase transition and throughput somewhat
power law[1,2]. This behavior is said to bgelf-similarand ~ lower at the transition. Measuring time series of average
to displaylong-range dependend&RD) [3]. This phenom- queue lengths showed that LRD sources greatly change the
enon results in increased queue lengths and delays, and caMey that queues build up in the network even at very small
not be “washed out” by mixing sources of data. The effectstraffic loads. The effect that the different sources had on the

of LRD need to be allowed for, both in computer models of LRD character of packet delay times seen in the original

network behavior and in the routing algorithms used to con-rnOdeI is investigated and how this changed with both the

trol data flow through networks. In this paper we look at aIoad and the distance packets had traveled. Further experi-

previously developed model of a network, Ref], that was mental behavior is processed using/S” statistics (defined
Y o later and referenced her8,5], which again confirms a criti-
used to illustrate the emergence of congestion in a network, . ; >
LRD was observed in this model. but this arose from inter_cal value of the load in agreement with the other indicators.
' Finally, we extend the scope of the original to accommodate

action within the nerork and was nqt intrinsic to the trafflc control strategies on the lengths of host queues and examine
sources, ohosts which are Poisson-like. We compare Pois- o changed throughput behavior.

son sources with LRD sources at the same load values. Both
the LRD sources and Poisson sources are modeled using cha-
otic maps. Thus we are able to introduce LRD directly at the Il. MODEL OF NETWORKED DATA TRAFFIC

host level, which allows a study of the “hierarchical” nature oy model for network traffic is similar to those described
of LRD from various sources, and models the real situation, Refs.[4,6,7] and to the cellular automaton model of Ref.
more closely. The implementation of control of host queugg]. The network architecture is a square lattice in which
lengths also brings new insights into the model’s behavior. gach node has four neighbors. As in Fig. 1 of Satel Val-

The paper is organized as follows. The history and feayerde[4], there are two types of nodes. Routers only store
tures of the network model are described. The main aspect ¢jnd forward packets; hosts can also generate packets. The
the paper is the introduction of chaotic maps for the producyensity of hostg €[ 0,1] is the ratio between the number of
tion of packet traffic sources within the network. The sourcesygsts and the total number of nodes in the network. Hosts are
can be continuously varied to give traffic across the fulliandgomly distributed throughout the network. The finite rect-
range of the Hurst parametefe (3,1). Mean field models angular latticeZ consists ofL? nodes. The position of the
are introduced for the network in steady state, that enable theach node in the lattic€ is given by the coordinate vector
calculation of a critical point for the load on the network atr=(i,j), wherei andj are integers in the range 1 ko
which the average lifetime of a packet changes dramatically. We use periodic boundary conditions throughout. Hence
The two models are distinguished in that global and locathe network can be seen as having a toroidal topology in
conditions are used for the congestion criticality condition.which nodes on one edge of the lattice are connected to
Their accuracy relative to other experimental results isnodes on the opposite edge. To measure the distance between
shown. a pair of nodes the periodic Manhattan metric
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o L o map’s parameters);, m,, andd. For example, the autocor-
dPM(rl’rZ):L_‘llz_lll_E‘_|12_Jl|_§ @ relation vectorc(n), neZ", of the output functiony is
known to have asymptotic behaviofn)~n~#, up to a mul-
is used, where the points=(i,,j;) andr,=(i,,j,) of Z tiplicative constant, asn—o with g=(2—m)/(m—1)
give the positions of the two nodes. Each node has a queug(0,1) for m=maxXm,,m,} with m;,m,e (3,2). Further-

of unlimited length in which to store packets. more, the Hurst parameteH, is given by
Previous simulations of packet traffic generation at each
host have used Poiss@ar Markoviar) distributions. In this B 3m-4
case a packet is generated at a host only if a random number H=1- 5" om—2 4

on the[ 0,1] interval is below a discriminator value Hence,
for a uniform random distribution the average rate at which
packets are produced at a hoshis and ranges over the intervaf (), [13—15. Thus m;,m,
An alternative to this is to use chaotic maps to model the=1.5 corresponds to Poisson-like behavior anchagn, are
LRD nature of real packet traffic. We used the family of increased towards 2, the behavior is increasingly long-range
maps f=fy m,q:1—! defined on the unit interval by ~ dependent, see Refs3,15. .
X4 1= f(x,) where A routing algorithm is needed to model the dynamic as-
pects of the network. Packets are created at hosts and sent
X, | M through the lattice one step at a time until they reach their
E) ,  Xpe[0d] destination host. In real packet-switching networks, packets
2) carry header and information payloads, including data about
the state of the network with them. To simplify the modeling,
we only record the time of creation and the source and des-
tination addresses when passing packets through the net-

described in previous papetsee Erramilliet al. [9]), and ~ work. _ _
related maps in Ref§10,11. Hered € (0,1) and the param-  The routing algorithm operates as follows _
eters m;,m, e (2,2) induce intermittency at each of the (1) First a host creates a packet following either a uniform

pointsx=0 andx=1. The orbital “escape times” in neigh- random distributionPoisson or a distribution defined by a

borhoods of 0 and 1 become power-law dependent. If thié:haouc map(LRD), as described above. If a packet is gen-

S : , erated it is put at the end of the queue for that host. This is
map is iterated a large number of times, the values,afill . )
) . PP ) repeated for each host in the lattice.
form a nonuniform continuous distribution on the interval .
The parameted is used as a discriminator, asis for the (2) Packets at the head of each queue are picked up and
€p ' : sent to a neighboring node selected according to the follow-
Poisson case. I, falls between 0 and, a packet is gener-

) . . ing rules.(a) A neighbor closest to the destination node is
ated; and i, falls betweerd and 1, no packet is generated. selected(b) If more than one neighbor is at the minimum

ngiownee)hav\cﬁici ?S|screte output map associated with thSistance from the destination, the link through which the
' smallest number of packets have been forwarded is selected.
1 (c) If more than one of these links shares the same minimum
, X,e[0d] T
y(X,)= (3y  humber of packets forwarded, then a random selection is
0, xpe(d1]. made.
This process is repeated for each node in the lattice. The
The intermittency behavior of the m&mduces the so-called whole procedure of packet generation and movement repre-
“memory” in the digital outputy, giving the long-range sents one time step of the simulation. Initially, there is no
correlation effects required for the packet traffic. This featureeedback implemented on queue lengths in this algorithm
is shown by the slow decay of variance with respeat,tthe  and hence the model is uncontrolled. This is a scenario simi-
size of batched output, see Figibl and Ref.[1]. An ex- |ar to the one discussed by Salad Valverde in Ref{4]. In
ample of this phenomenon is illustrated in Figa)lwhere a  Fig. 2a) we have clear evidence of the earlier onset of con-
sequence of the iterated valuesiear the origin have small gestion in the LRD traffic by comparison with the Poisson
increments. This effect is even stronger for orbits passingraffic produced at the same rate when this routing algorithm
closer tox=0. The time of escapé.e., into the regiorx is implemented. Although the throughput is only slightly re-
>d) of an orbit from a neighborhood of the origin has a duced, the average lifetimes increase by up to a factor of 10.
power-law dependence on its initial positift0]. This earlier onset appears to be the most important feature of
The nonlinear nature dfmeans that in this case the load LRD congestion within the context of the model, and has
A=\(mg,m;,d) (i.e., the average value of the outpuper  significant implications for shared backbone data network
iteration is not equal tod, but is given by)\=f8,u(x)dx, infrastructures.
where o is the natural invariant density distribution of the
mapf on the interval 0,d]. This distribution has no closed |, vODELS FOR SUBCRITICAL NETWORK BEHAVIOR
form and is often obtained numerically via the Perron-
Frobenius operatdrl2]. Thus the various statistical proper-  Here we develop two simple mean field models to esti-
ties of traffic generated in this way are determined by themate local and global load conditions at the boundary of

X+ (1—d)

X =
n+1 1_Xn my

-4 Xpe (d,1],

Xpn—
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@ 0 % d 1 FIG. 1. (a) The piecewise con-
tinuous graph of a mapdescribed
by Eg. (2) with f(x) plotted
againstx. An intermittent orbit off

is illustrated with initial condition
Xo. (b) Averaged binary output
from (i) a Poisson-like source and
(i) a chaotic intermittent source
given by the indicator mayy in
Eqg. (3). The averaged data have
200 400 600 800 1000 300 200 Z00 800 1000 been taken with batch sizes of
100, 1000, and 10000 in each
case. The variance of the Poisson
source is seen to diminish around
the mean value of 0.5 more rap-
idly than the intermittent source as
the batch size increases.

oiz UL i
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congestion, i.e., the phase transition or critical point. Theheir destination. At the boundary of the congested phase,
critical point for a network can be defined as the load forthere are queues at all nodes, and the change in the total
which throughput reaches a maximum. In Figb)2 for ex-  distance is

ample, a plot of throughput against load for a network grid of

32X 32 nodes with 164 hosts reaches a maximum at a critical D(N¢+1) = D(Nyp), (5)

load, \.=0.39. However, it is important to note in Fig(a?

(see also Sec. IVthat congestion impacts at a load value WhereN; is the number of packets in the queues at tiraad
lower than the critical load . D(N,) is the aggregate distance of all these packets from

their destinations at time At each time step, the number of
packets increases p\L? and their average distance to des-
tination is L/2. Thus the overall added distance is
A global approach for estimating. is to consider the pAL2(L/2). By contrast, the aggregate distance is reduced by
total distance all the packets at timbave to travel to reach L2, given that every packet at the head of the queue moves

A. Distance model for global critical load
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ditions by taking into account the different behavior for hosts

0% ! ! ! ! ) and routers. Given that hosts also route packets, it the
0 0.2 0.4 0.6 08 1 o
oad A average utilization of any node queue due only to cross traf-
o fic, then the total node utilization across the whole network
(®) can be given by

FIG. 2. (a) Average packet lifetimes are plotted as a function of
the load\ for Poisson sources and also for LRD sources with
increasing average lifetimé@n the precongestion phgsas m in-
creases througm=1.5,1.8, and 1.95b) Corresponding through-
puts for Poisson and LRD traffic are plotted as a function of the
load N for m=1.95. Note that the lower peak value in throughput o,+\=1, 9
for the LRD traffic sources reflects the longer average lifetimes
below the critical point. The peak differences diminish to zermas which implies that the hosts are fully loaded, but that routers

N=(o,+\)n,+o,n,, (8)

where n,, is the number of hosts and, is the number of
routers. The local critical load condition is given by

is decreased to th@oisson-likg valuem=1.5. are not. So, at each time step the aggregate distance reduces
by N<L?2.

one step closer to its destination. Thus the change in total As before, the overall added distance per time step is

distance to destination between timandt+1 is pAL?(L/2). Thus the change in total distance to destination

between timeg andt+1 is
—L2 (6)

L
D(Nt+1)D(Nt):PM—2<2 L
D(N¢yq)— D(Nt):P)\Lz( 2) —[(o,+N)np+o.n,].
The critical load\ ;. occurs when the total distance no longer (10)
decreases, giving
When the total distance no longer decreases, we obtain the

2 following equation foro, :
ANe=—, (7)
pL L
. . . Or=p)\(—l>. (12
(cf. Fig. 3), which corroborates the estimate from the mean 2

field model of Filks and LawniczaKk7], who considered the

special cas@=1. If the average utilization of queues exceeds the rate at which

packets are served, then queues will become overloaded.
Since routers handle cross traffic exclusively, the average
occupancy of router queues is given simplydyy For host

The distance model determines the global critical load byqueues the packets produced by the source have to be added,
assuming that the whole network is fully loaded at each timeso the average occupancyads+ \. For this network packets
step, i.e., the aggregate distance reducekBy-one packet are always served at the rate of one per time tick, hence if
per node moves one step closer to its destination. This modelther value exceeds 1 then queues will become overloaded.
can be developed further to estimate local critical load conSubstituting the condition for host queues becoming over-

B. Average utilization model
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loaded,o,+A=1, into Eq.(11) gives the following expres- value of throughput is slightly lower for the LRD sources,
sion for\(, the load at whichlocal) congestion starts: emphasizing the longer lifetimes of packets. However, the
difference is less pronounced than that seen in average life-
. 1 times. Away from the peak, values of throughput for the two
Ne= L ' (12 types of traffic source are very similar. Note that whap
P(z —ptl =m,=1.5 the intermittency source behaves like a Poisson
source(cf. Ref.[10]).
Congestion is present for loads betweenand . In this Figure 2 also shows the effect of deCfeasing the values of
case, host queues are overloadge-\>1, and hence in- M1 andm, from the maximum 2. The differences between
creasing in size, and congestion spreads to router queud§€ LRD sources and the Poisson-like sources diminish as
However, the router queues are not fully utilized until theexpected until the value ah; =m,=1.5 is reached and the
global criterion is met ak., when the total service capacity Plots become identical. At this point the Hurst parameter is
of the network is fully matched by the overall added distanced-5. equivalent to there being no LRD, the autocorrelation

of incoming traffic. decays exponentially, and so the two sources, i.e., LRD and
Poisson, would be expected to be statistically indistinguish-
IV. NUMERICAL ANALYSIS OF THE CRITICAL POINT able in terms of autocorrelation. One can obtain plots similar

to those in Fig. 2, for the range of values of the host density

All our simulations were run first with LRD sources and p. As p increases, the total load on the system increases and
then with Poisson-like traffic sources for comparison. Thethe phase transition becomes sharper. This is also seen in
LRD data for Fig. 2 are shown for various valuesmf  other critical phenomena. As predicted by E@), \. de-
=m,. We have chosen equal intermittency parameters tereases ap increases. This scaling.~p ! also occurs in
simplify the interpretation of the observed behavior. In gen-Ref. [17]. Plotting A againstp (Fig. 3) shows good agree-
eral, the heaviest power-law autocorrelation decay dominatasent with the theoretical prediction of Eq7). Flks and
the behavior[13—-15. Values ofm; and m, close to the Lawniczak[7] also obtained\. from their data for the case
maximum values ofn;=m,=2 give the highest degree of p=1.
intermittency and hence the greatest contrast with Poisson In Fig. 4, time series of the average host and router queue
traffic sourcegcorresponding tan;=m,=1.5 in the inter-  sizes for a lattice are plotted with the same parameters as for
mittency model. The highest value used in our simulation, Fig. 2. Figure 4 has a range of load values up to the critical
H=0.975, has been observed in statistical investigafitfs  load A .=0.39. These plots confirm that at this point the sys-
of real network traffic data and has been used for most of theem has already left the steady stétéhere there is no up-
data in this paper. ward trend in the number of packets in the systen the

Figure 2 gives a comparison of onset of congestion in twacase of Poisson sourcdsig. 4(a)] the average host queue
otherwise identical networks with host density: 0.164, one  size starts rising at a load of, =0.30, as predicted by Eq.
Poisson sourced, and the other LRD sourced for differentg), indicating the onset of congestion. Below a loadof
values of the Hurst parameter. The values of the intermit=0.28, average host queue sizes are approximately equal to
tency parametens); =m,=m are kept equal in each case for average router queue sizes. This indicates the free flowing
simplicity. Figure 2a) shows the average lifetime, end-to-  phase in which packets are fairly evenly spread throughout
end delay of a packet plotted against load the average the network. The greater fluctuations in host queue size are
number of packets generated per host per unit time. As hasaused by averaging over a smaller number of nodes. At
been seen in the other models, there is a phase transitiQgads above\.=0.30 both averages rise approximately lin-
from a free phase in which lifetimes remain small to a con-garly, with host queue sizes rising at a much greater rate than
gested phase in which lifetimes increase rapidly. We firstouter queue sizelef. Figs. 4a) and 4b)].
consider the Poisson sourdege Sec. Il A. Congestion be- The equivalent plots for LRD traffic sources in Figgc)
gins at a load\; that is lower than the critical loall.. For  and 4d) show that the loss of steady state occurs at a much
this network, Eq(12) gives a value foin; of 0.30. Below lower value of the load. This corresponds with the earlier rise
this load, average lifetimes are below 40. This is higher tharin average latency displayed in Fig. 2. The average router
the approximation of./2 [see Eq.(11)] used in Sec. lllA, queue time series are similar to those in Figp)4or Poisson
but of the same order. Beyond this point lifetimes rise exposources, except for the greater fluctuations. Hence the much
nentially due to congestion. The critical logals defined by higher average lifetimes prior to congestion seen in Fig. 2 are
Eq. (7)] for this network is\ =0.39. Comparing the effect of entirely due to delays in host queues. For loads above
the different types of traffic source, there is very good agree=0.15, the rate of increase in average host queue size rises
ment above the critical point, in the congested phase. Theapidly by contrast with the Poisson case.
most pronounced differences do occur near and immediately In actual packet networks, the distance traveled by pack-
below the critical point. Below the critical point the average ets is an important factor. We have investigated the average
lifetimes for LRD sources are much greater than for Poissoliifetime and rate of packets delivered as a function of load
sources—typically ten times as long. for a range of path lengths. The transition to congestion can

Figure 2b) shows the throughput versus load. The peak inbe seen in such plofd8]. Average lifetimes are higher for
throughput occurs at the critical point. The network therefordonger path lengths, as would be expected. For path lengths
reaches its peak efficiency at the critical point. The pealof 12 steps or more, the throughput reaches a peak and then
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4 4

10 10

average host queue length - Poisson
average router queue length - Poisson

FIG. 4. Time series over
100000 time units:(a) average
host queue length{Poissomn; (b)
average router queue lengfPois-
son; (c) average host queue
length (LRD); (d) average router
queue length(LRD). In each of
the parts(a)—(d) plots are given
for the four load valuesA\
=0.156, 0.294, 0.303, and 0.389
up to the critical network load of
A=0.39.

average host queue length - LRD
)
average router queue length - LRD

drops off as the load is increased. This is similar to the behavior in the critical region is more volatile and the averag-
havior seen for the average of all path lengths, cf. Fig. 2 anihg does not provide convergence here. The number of such
Ref. [18]. For the shorter path lengths the throughput risegaths for each path length depends on the lattice size, density
slightly with increasing load. This is possibly because theof hosts, and selected host pattern. The variation in number
large host queues can be avoided for the majority of shoref paths and change in lifetime with path length account for
paths, and the rise in router queue lengths has less influentee changes in peak value of throughput.

than the rise in the rate of packet creation. Comparing LRD
traffic sources with Poisson sources, the features seen in pre-
vious plots are present for all path lengths, with decreased
throughput near the critical point, and an earlier rise in aver-
age latency. Similar plots can be obtained for selected Long-range dependence, manifested as power-law decay
source-destination paif48]. A smoothing of the plots away of the autocorrelation in the time series of queue lengths, has
from the critical load arises from averaging data over thebeen reported in Reff4] and[8]. Since only Poisson traffic
various path lengths away from the critical region. The be-sources were used, this autocorrelation behavior must come

V. TIME SERIES ANALYSIS OF LONG-RANGE
DEPENDENCE
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TABLE I. The power-law behavior oR/S with respect to the TABLE 1. R/S behavior for time series df) average hosttb)
exponentH for path lengthd =1 andl =24 for hosts with Poisson average router queue lengths.
and LRD characteristics.

H (Poisson H (LRD)
H (Poisson H (LRD)

Load(\) Hosts Routers Hosts Routers
Load (\) =1 =24 =1 =24

0.2 0.69 0.69 1.0 0.95
0.2 0.51 0.57 0.61 0.61 0.29 0.96 0.78 1.0 1.0
0.29 0.71 0.70 0.60 0.56 0.3 0.98 0.89 1.0 1.0
0.30 0.54 0.53 0.61 0.57 0.39 0.99 1.0 0.99 1.0
0.39 0.52 0.51 0.60 0.54 0.45 0.98 1.0 1.0 1.0
0.45 0.56 0.55 0.57 0.52

=0.3, congestion does occur, leading to an upward trend in
purely from interaction within the network. We investigated delay times and queue sizes. In this case, the data are
this and the effect of replacing the Poisson sources with LRRyejghted to remove the trend, creating a stationary series. In
sources. To expand upon the previous work, we analyzegaple | (Poisson we see that fon=0.2, H~0.5 for both
time series for delays of 1 step and 24 steps, and also lookgshth lengths, indicating that very little LRD is present. This
at time series of average host and router queue lengths meg- corroborated by the probability distributions of delays
sured at each time tick. which both have the characteristic shape of exponentially
Hurst's empirical law for estimating long memory was decaying delay timessee Ref.[18]). However, for A\
introduced in 195119], see also Ref$3,5]. Itis obtained by =0 .29, H values are higher for both path lengths. TRES
considering the so-calletescaled dataMore precisely, let pots show a kink with the steeper part of the curve corre-
X, teZ" denote a discrete time series. Tagjusted range  sponding toH=0.8 in both cases. Hence the longer delays
is defined as (and lower frequencigsio show significant LRD, but this is
_ . not seen at any other load value. Values for the three higher
R(t’k)_Orzii)f(Ri(t’k)_Og'gkR‘(t'k)’ 13 |oad values show very similad values. Note that in these
cases, the time series was weighted to remove the upward
where trend and theH values are all close to 0.5. This lack of any
, LRD seems to be caused by the phase change to the con-
t+i t L ottk t . , L R
i gested region above;. The probability distributions for
Ri(t’k)zzl XI‘,; Xi= E( |_E XI‘,; XI) - (149 these higher values show delays shifting towards the length
of the run (1x 1P time ticks as the network becomes more
The quantityR(t,k) is normalized by the translated sample and more congested. Here 1 and 24 step delays have a long
standard deviation tailed distribution, but this is caused by the nonstationarity of
the data, not power-law autocorrelation decay.
_ The LRD data in Table | show values of 0.6 for the 1 step
S(t,k)= kfll_z (X=X 02, (15  and 24 step data. This is slightly higher than the equivalent
B data for Poisson sources, but much less than the value for the
Y L —1lgttk i : LRD sources by themselves, i.¢1,=0.975. If delay prob-
){Nherext'k_ K™72i=i0X. TheR/S statistic is then defined ability distributions are compared with the Poisson case then
o be LR
the presence of congestion is indicated by the much longer
R(t,k) delay times when LRD sources are used. Similar valud$ of
R/IS(k)= SR (16) are seen at higher load values. This suggests that any LRD in
' the system is not strongly transferred to packet delay times.
and it is fitted to the equation As before, the distribution of pa(;ket delays sh@fts t_owards the
length of the run as the load increases. This gives a long
INE[R/S(k)]=a+H Ink, (17) tailed distribution, but with lowH value.
In Table I, high values oH for queue length distributions
with H interpreted as the Hurst parameter. at hosts and routers are measured at all postcritical loads for
In Table | we consider separaR/S plots for 1 and 24 Poisson sources indicating the presence of strong network-
step journeys in a 3232 network grid with 164 hosts for induced LRD. TheR/S values in Table Il are calculated from
Poisson, and for LRD sources for a range of load values. Ththe average host and router queue lengths for the runs used
network used had the same parameters as that used for Figr Table I. For LRD sources, the valuestdéfare all about 1,
4, so the onset of congestion at a load\of 0.3 was ex- both for routers and hosts. This shows that the intermittency
pected. At the smaller loads the network remains free obf the sources has fed through to average queue sizes, both
congestion. This means that time series of packet delays afer hosts and routers. For Poisson host quedeas,very high
stationary, and the original data may be used in measuring @Imost 1 for all load values, except for a load of 0.2, where
value of H. For the higher values of the load, including H=0.7. The lowerH value at a load of 0.2 agrees to some

t+k
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10 10 LRD sources. The network mod-
eled is the same as before—32
X 32 nodes with 164 hosts. The
control mechanism has little effect
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extent with the delay distributions for that load, which showsizes have showi18], long queues in the network invariably
an exponential decay. Average Poisson router queue lengtlescur at hosts. For this reason it was decided to reduce the
in Table Il have slightly lower values dfi. This shows that rate of packet production at hosts with long queues. The
router queues suffer less LRD than host queues. The data féimulation keeps count of packets produced, so the actual or
the LRD sources in Table Il show that congestion starts atcarried” load is known. Knowledge of thel value being
much lower values of the load. For this reason it was neced!sed for the ma gives the maximum rate of packet pro-
sary to remove trends from all the LRD data usedRits ~ duction, or “offered” load.

plots used in Table II. Figures %a) and 5b) show average lifetime and through-
puts plotted against the carried load. The data apply to a 32
VI. NETWORK PACKET TRAFEIC SIMULATION X 32 node rectangular network with a host dengity0.16
WITH CONTROL and Poisson-like traffic sources. A comparison is made be-

tween simulations with and without a queue limit. There is
The simplest way to control packet traffic is to limit the little difference between the two cases below a carried load
length of queue$20—22. As grid bar charts of node queue of A =0.3. Average lifetime and throughput are very similar.
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Average queue lengths are closely linked to average lifetimenstead. The effect on throughput is much smaller, but there
As has been shown previously, this is the point at whichis a slight increase when control is used. It should be noted
congestion sets in. Above this point average lifetimes andhat the plots do not extend beyond a carried load of about
host queue lengths are much lower in the controlled case. In=0.36, which is the maximum load with queue limiting. In
the case of host queue length this would be expected, bex real network this would equate to bandwidth being traded
cause when packets are created at a host they are immedior reduced end-to-end delay.

ately added to the queue for that host. The queue limit device Figures %c) and 5d) show similar plots for the same
prevents longer queues from building up. This also explain;ietwork with LRD sources. In this case the average lifetime
the longer average lifetimes. Long host queues no longeis very much lower in the controlled case for the whole range
exist, so host packets are not delayed so long and averagé carried load values. As before, the average queue lengths
latency times are therefore lower. The average router queusre linked closely to average lifetime. We have seen in Sec.
length is longer in the controlled case because there is nbV/ that, in the case of LRD sources, congestion starts at very
limit on router queue lengths, so that packets that would haveew values of load. The queue limiting prevents this early
been in host queues become distributed over router queuesiset of congestion, modifying the system to behave as the
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same network with Poisson sources would. This can be seagested. It should be noted that a significant degree of self-
in the plots of average lifetime. Again, higher queue threshsimilarity can be seen in packet delay times in the precon-
olds have less influence. The throughput is slightly higher ingestion phase which disappears when congestion starts.
the controlled case at high values of the load. As before, the Congestion begins at a much lower load value for LRD
highest possible load when control is used is aboa0.36.  sources, but the critical point, at which throughput reaches a
Figures a) and Gb) show plots of the same parameters maximum, is similar to the Poisson critical load value. The
for the same network with Poisson sources, but plotteqnechanism causing the earlier onset of congestion is not
against(_)ffe_red loadinstead of carried load. The plot of av- fully understood, see Takayas al. [23], but is probably
erage lifetime versus offered load shows that in the congggaciated with phase transitions in thermodynamic func-
trolled case average lifetimes remain low even when they;,,q see Refs[24,11)). But other factors such as the spatial
would become very high in the uncontrolled case. The sam istribution of congested nodd&5], are important. More

%pepc!fasnit:(;)mavfésgr?tsh?ﬁé ggt?/tljgrksz‘fs; l!)gc%f:ﬁi%t, t:hoen Cg;té ophisticated routing algorithms than those considered here
P 9 9 an address this problem. Algg/S behavior in Tables | and

no matter how high the offered load, but at the expense oﬁ, and probability distributions of packet delayg6,18

restricting the carried load to one that the network can man- . .

age. Similar conclusions can be drawn for LRD sources irp'0Wed that when networks are congested little LRD is seen
Fig. 6(c) and &d). in delay d|str|put|ons. These shpw that long tails are present
when congestion occurs, but this appears to be caused by the
nonstationarity of the data, rather than any LRD.

Mean field approaches give a value for the critical laad

We have shown that the greatest difference in the behawat which throughput reaches a maximum, and predicts the
ior of same load Poisson and LRD traffic sources in a modepoint at which local congestion starts quite accurately. Theo-
of network traffic occurs close to the critical point. We show retically the sharpness of this phase transition should in-
that LRD destroys the clean phase transitions apparent f@rease with increasing total load on the network. This is seen
Poisson traffid17,2,4 and makes the problem of detecting in the data, since increasing the host density does sharpen the
onset of congestion much more problematical. Most importransition[18]. We also see that the maximum efficiency of
tantly, below criticality, average packet lifetimes for LRD the system, in terms of throughput, occurs at the critical
sources are much higher, and at criticality, the packepoint. This agrees with other data network models, notably
throughput is decreased. Ref.[4], and is also seen in models of road traffay].

There are essentially three load types for Poisson-like Application of a simple control mechanism showed that
sources:(i) at low loads, packets travel freely through the the network can be prevented from becoming congested by
system—little LRD is present, average lifetimes are close t@ffectively limiting its packet carrying capacity. Extra refine-
the source to destination distance as queues are difjalf  ments in routing and network information carried by the
a well-defined load\=\.<\., local congestion sets in, packet are being considered; see also Ré&f5,28,29,23for
host queues become overloaded, and the system is no longarrrent progress. The key aim is to develop the uncontrolled
in a steady state, but most offered load still reaches its degnodel into one which reacts to the local buildup of queues
tination in this precongestion phase and LRD throughput i$20], with an objective of delaying the onset of congestion at
decreased at criticalityiii ) beyond the critical point, router the network level when the sources are strongly long-range
queues are overloaded and the network is increasingly coriependent.
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