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Optimization and phase transitions in a chaotic model of data traffic
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Ohira and Sawatari@Phys. Rev E58, 193~1998!# introduced a simple model for a packet-switching network
which was extended by Sole´ and Valverde@Physica A289, 595 ~2001!#. Both models used Poisson-like traffic
sources. Sole´ and Valverde demonstrated that long-range dependence~LRD! in autocorrelation behavior can be
seen in the queue length dynamics at a given node. Actual network traffic sources are known to exhibit
long-range autocorrelation. To simulate the real case more closely, we have studied the effect of introducing
LRD behavior at an earlier stage. We replaced the Poisson-like sources with LRD sources, modeled using
chaotic maps. As was seen in the previous models, a phase transition occurs as the traffic load on a network is
increased and the network changes to a congested state where the time taken for delivery of packets increases
dramatically and throughput collapses. The paper reports extensive numerical results from our simulations
using both Poisson and LRD sources. It demonstrates the natural network-induced LRD when sources are
purely Poisson and shows strong enhancement when LRD sources are added. The model is adapted to include
congestion control mechanisms and their impact is considered.
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I. INTRODUCTION

Extensive measurements of real network traffic ha
shown that the autocorrelation of the packet rates decays
power law@1,2#. This behavior is said to beself-similarand
to displaylong-range dependence~LRD! @3#. This phenom-
enon results in increased queue lengths and delays, and
not be ‘‘washed out’’ by mixing sources of data. The effec
of LRD need to be allowed for, both in computer models
network behavior and in the routing algorithms used to c
trol data flow through networks. In this paper we look a
previously developed model of a network, Ref.@4#, that was
used to illustrate the emergence of congestion in a netw
LRD was observed in this model, but this arose from int
action within the network and was not intrinsic to the traf
sources, orhosts, which are Poisson-like. We compare Po
son sources with LRD sources at the same load values. B
the LRD sources and Poisson sources are modeled using
otic maps. Thus we are able to introduce LRD directly at
host level, which allows a study of the ‘‘hierarchical’’ natu
of LRD from various sources, and models the real situat
more closely. The implementation of control of host que
lengths also brings new insights into the model’s behavio

The paper is organized as follows. The history and f
tures of the network model are described. The main aspe
the paper is the introduction of chaotic maps for the prod
tion of packet traffic sources within the network. The sourc
can be continuously varied to give traffic across the f

range of the Hurst parameterHP( 1
2 ,1). Mean field models

are introduced for the network in steady state, that enable
calculation of a critical point for the load on the network
which the average lifetime of a packet changes dramatic
The two models are distinguished in that global and lo
conditions are used for the congestion criticality conditio
Their accuracy relative to other experimental results
shown.
1063-651X/2002/66~4!/046106~11!/$20.00 66 0461
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Comparisons are made of the phase transition using
periments with the two types of source. Simulations w
LRD sources show average packet lifetimes to be m
higher before the phase transition and throughput somew
lower at the transition. Measuring time series of avera
queue lengths showed that LRD sources greatly change
way that queues build up in the network even at very sm
traffic loads. The effect that the different sources had on
LRD character of packet delay times seen in the origi
model is investigated and how this changed with both
load and the distance packets had traveled. Further exp
mental behavior is processed using ‘‘R/S’’ statistics ~defined
later and referenced here! @3,5#, which again confirms a criti-
cal value of the load in agreement with the other indicato
Finally, we extend the scope of the original to accommod
control strategies on the lengths of host queues and exam
the changed throughput behavior.

II. MODEL OF NETWORKED DATA TRAFFIC

Our model for network traffic is similar to those describ
in Refs.@4,6,7# and to the cellular automaton model of Re
@8#. The network architecture is a square lattice in whi
each node has four neighbors. As in Fig. 1 of Sole´ and Val-
verde @4#, there are two types of nodes. Routers only st
and forward packets; hosts can also generate packets.
density of hostsrP@0,1# is the ratio between the number o
hosts and the total number of nodes in the network. Hosts
randomly distributed throughout the network. The finite re
angular latticeZ consists ofL2 nodes. The position of the
each node in the latticeZ is given by the coordinate vecto
r5( i , j ), wherei and j are integers in the range 1 toL.

We use periodic boundary conditions throughout. Hen
the network can be seen as having a toroidal topology
which nodes on one edge of the lattice are connected
nodes on the opposite edge. To measure the distance bet
a pair of nodes the periodic Manhattan metric
©2002 The American Physical Society06-1
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dPM~r1 ,r2!5L2Uu i 22 i 1u2
L

2U2Uu j 22 j 1u2
L

2U ~1!

is used, where the pointsr15( i 1 , j 1) and r25( i 2 , j 2) of Z
give the positions of the two nodes. Each node has a qu
of unlimited length in which to store packets.

Previous simulations of packet traffic generation at e
host have used Poisson~or Markovian! distributions. In this
case a packet is generated at a host only if a random num
on the@0,1# interval is below a discriminator valuel. Hence,
for a uniform random distribution the average rate at wh
packets are produced at a host isl.

An alternative to this is to use chaotic maps to model
LRD nature of real packet traffic. We used the family
maps f 5 f (m1 ,m2 ,d) :I→I defined on the unit intervalI by

xn115 f (xn) where

xn115H xn1~12d!S xn

d D m1

, xnP@0,d#

xn2dS 12xn

12d D m2

, xnP~d,1#,

~2!

described in previous papers~see Erramilliet al. @9#!, and
related maps in Refs.@10,11#. HeredP(0,1) and the param

eters m1 ,m2P( 3
2 ,2) induce intermittency at each of the

pointsx50 andx51. The orbital ‘‘escape times’’ in neigh
borhoods of 0 and 1 become power-law dependent. If
map is iterated a large number of times, the values ofxn will
form a nonuniform continuous distribution on the intervalI.
The parameterd is used as a discriminator, asl is for the
Poisson case. Ifxn falls between 0 andd, a packet is gener
ated; and ifxn falls betweend and 1, no packet is generate
Thus we have a discrete output map associated with
function ~3!, which is

y~xn!5H 1, xnP@0,d#

0, xnP~d,1#.
~3!

The intermittency behavior of the mapf induces the so-called
‘‘memory’’ in the digital output yn giving the long-range
correlation effects required for the packet traffic. This feat
is shown by the slow decay of variance with respect ton, the
size of batched output, see Fig. 1~b! and Ref.@1#. An ex-
ample of this phenomenon is illustrated in Fig. 1~a! where a
sequence of the iterated valuesx near the origin have sma
increments. This effect is even stronger for orbits pass
closer tox50. The time of escape~i.e., into the regionx
.d) of an orbit from a neighborhood of the origin has
power-law dependence on its initial position@10#.

The nonlinear nature off means that in this case the loa
l5l(m1 ,m2 ,d) ~i.e., the average value of the outputy per
iteration! is not equal tod, but is given byl5*0

dm(x)dx,
wherem is the natural invariant density distribution of th
map f on the interval@0,d#. This distribution has no close
form and is often obtained numerically via the Perro
Frobenius operator@12#. Thus the various statistical prope
ties of traffic generated in this way are determined by
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map’s parametersm1 , m2, andd. For example, the autocor
relation vectorc(n), nPZ1, of the output functiony is
known to have asymptotic behaviorc(n);n2b, up to a mul-
tiplicative constant, asn→` with b5(22m)/(m21)

P(0,1) for m5max$m1,m2% with m1 ,m2P( 3
2 ,2). Further-

more, the Hurst parameter,H, is given by

H512
b

2
5

3m24

2m22
~4!

and ranges over the interval (1
2 ,1), @13–15#. Thus m1 ,m2

51.5 corresponds to Poisson-like behavior and asm1 ,m2 are
increased towards 2, the behavior is increasingly long-ra
dependent, see Refs.@13,15#.

A routing algorithm is needed to model the dynamic a
pects of the network. Packets are created at hosts and
through the lattice one step at a time until they reach th
destination host. In real packet-switching networks, pack
carry header and information payloads, including data ab
the state of the network with them. To simplify the modelin
we only record the time of creation and the source and d
tination addresses when passing packets through the
work.

The routing algorithm operates as follows
~1! First a host creates a packet following either a unifo

random distribution~Poisson! or a distribution defined by a
chaotic map~LRD!, as described above. If a packet is ge
erated it is put at the end of the queue for that host. Thi
repeated for each host in the lattice.

~2! Packets at the head of each queue are picked up
sent to a neighboring node selected according to the foll
ing rules. ~a! A neighbor closest to the destination node
selected.~b! If more than one neighbor is at the minimu
distance from the destination, the link through which t
smallest number of packets have been forwarded is selec
~c! If more than one of these links shares the same minim
number of packets forwarded, then a random selection
made.

This process is repeated for each node in the lattice.
whole procedure of packet generation and movement re
sents one time step of the simulation. Initially, there is
feedback implemented on queue lengths in this algorit
and hence the model is uncontrolled. This is a scenario s
lar to the one discussed by Sole´ and Valverde in Ref.@4#. In
Fig. 2~a! we have clear evidence of the earlier onset of co
gestion in the LRD traffic by comparison with the Poiss
traffic produced at the same rate when this routing algorit
is implemented. Although the throughput is only slightly r
duced, the average lifetimes increase by up to a factor of
This earlier onset appears to be the most important featur
LRD congestion within the context of the model, and h
significant implications for shared backbone data netw
infrastructures.

III. MODELS FOR SUBCRITICAL NETWORK BEHAVIOR

Here we develop two simple mean field models to e
mate local and global load conditions at the boundary
6-2
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FIG. 1. ~a! The piecewise con-
tinuous graph of a mapf described
by Eq. ~2! with f (x) plotted
againstx. An intermittent orbit off
is illustrated with initial condition
x0. ~b! Averaged binary output
from ~i! a Poisson-like source an
~ii ! a chaotic intermittent source
given by the indicator mapy in
Eq. ~3!. The averaged data hav
been taken with batch sizes o
100, 1000, and 10 000 in eac
case. The variance of the Poisso
source is seen to diminish aroun
the mean value of 0.5 more rap
idly than the intermittent source a
the batch size increases.
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congestion, i.e., the phase transition or critical point. T
critical point for a network can be defined as the load f
which throughput reaches a maximum. In Fig. 2~b!, for ex-
ample, a plot of throughput against load for a network grid
32332 nodes with 164 hosts reaches a maximum at a crit
load,lc50.39. However, it is important to note in Fig. 2~a!
~see also Sec. IV! that congestion impacts at a load val
lower than the critical loadlc .

A. Distance model for global critical load

A global approach for estimatinglc is to consider the
total distance all the packets at timet have to travel to reach
04610
e
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their destination. At the boundary of the congested pha
there are queues at all nodes, and the change in the
distance is

D~Nt11!2D~Nt!, ~5!

whereNt is the number of packets in the queues at timet and
D(Nt) is the aggregate distance of all these packets fr
their destinations at timet. At each time step, the number o
packets increases byrlL2 and their average distance to de
tination is L/2. Thus the overall added distance
rlL2(L/2). By contrast, the aggregate distance is reduced
L2, given that every packet at the head of the queue mo
6-3
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one step closer to its destination. Thus the change in t
distance to destination between timet and t11 is

D~Nt11!2D~Nt!5rlL2S L

2D2L2. ~6!

The critical loadlc occurs when the total distance no long
decreases, giving

lc5
2

rL
, ~7!

~cf. Fig. 3!, which corroborates the estimate from the me
field model of Fuˇks and Lawniczak@7#, who considered the
special caser51.

B. Average utilization model

The distance model determines the global critical load
assuming that the whole network is fully loaded at each ti
step, i.e., the aggregate distance reduces byL2—one packet
per node moves one step closer to its destination. This m
can be developed further to estimate local critical load c

FIG. 2. ~a! Average packet lifetimes are plotted as a function
the load l for Poisson sources and also for LRD sources w
increasing average lifetime~in the precongestion phase! as m in-
creases throughm51.5,1.8, and 1.95.~b! Corresponding through
puts for Poisson and LRD traffic are plotted as a function of
load l for m51.95. Note that the lower peak value in throughp
for the LRD traffic sources reflects the longer average lifetim
below the critical point. The peak differences diminish to zero am
is decreased to the~Poisson-like! valuem51.5.
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ditions by taking into account the different behavior for ho
and routers. Given that hosts also route packets, ifor is the
average utilization of any node queue due only to cross t
fic, then the total node utilization across the whole netwo
can be given by

N5~or1l!nh1ornr , ~8!

where nh is the number of hosts andnr is the number of
routers. The local critical load condition is given by

or1l51, ~9!

which implies that the hosts are fully loaded, but that rout
are not. So, at each time step the aggregate distance red
by N,L2.

As before, the overall added distance per time step
rlL2(L/2). Thus the change in total distance to destinat
between timet and t11 is

D~Nt11!2D~Nt!5rlL2S L

2D2@~or1l!nh1ornr #.

~10!

When the total distance no longer decreases, we obtain
following equation foror :

or5rlS L

2
21D . ~11!

If the average utilization of queues exceeds the rate at wh
packets are served, then queues will become overloa
Since routers handle cross traffic exclusively, the aver
occupancy of router queues is given simply byor . For host
queues the packets produced by the source have to be a
so the average occupancy isor1l. For this network packets
are always served at the rate of one per time tick, henc
either value exceeds 1 then queues will become overloa
Substituting the condition for host queues becoming ov

f

e
t
s

FIG. 3. The mean field boundary,lc52/(rL), in the (r,l)
plane which separates thefree andcongestedphases. Experimenta
data for the boundary are also plotted.
6-4
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OPTIMIZATION AND PHASE TRANSITIONS IN A . . . PHYSICAL REVIEW E66, 046106 ~2002!
loaded,or1l51, into Eq.~11! gives the following expres-
sion for lc8 , the load at which~local! congestion starts:

lc85
1

rS L

2D2r11

. ~12!

Congestion is present for loads betweenlc8 andlc . In this
case, host queues are overloadedor1l.1, and hence in-
creasing in size, and congestion spreads to router que
However, the router queues are not fully utilized until t
global criterion is met atlc , when the total service capacit
of the network is fully matched by the overall added distan
of incoming traffic.

IV. NUMERICAL ANALYSIS OF THE CRITICAL POINT

All our simulations were run first with LRD sources an
then with Poisson-like traffic sources for comparison. T
LRD data for Fig. 2 are shown for various values ofm1
5m2. We have chosen equal intermittency parameters
simplify the interpretation of the observed behavior. In ge
eral, the heaviest power-law autocorrelation decay domin
the behavior@13–15#. Values of m1 and m2 close to the
maximum values ofm15m252 give the highest degree o
intermittency and hence the greatest contrast with Pois
traffic sources~corresponding tom15m251.5 in the inter-
mittency model!. The highest value used in our simulatio
H50.975, has been observed in statistical investigations@16#
of real network traffic data and has been used for most of
data in this paper.

Figure 2 gives a comparison of onset of congestion in t
otherwise identical networks with host densityr50.164, one
Poisson sourced, and the other LRD sourced for differ
values of the Hurst parameter. The values of the interm
tency parametersm15m25m are kept equal in each case f
simplicity. Figure 2~a! shows the average lifetime, orend-to-
end delay, of a packet plotted against loadl, the average
number of packets generated per host per unit time. As
been seen in the other models, there is a phase trans
from a free phase in which lifetimes remain small to a co
gested phase in which lifetimes increase rapidly. We fi
consider the Poisson sources~see Sec. III A!. Congestion be-
gins at a loadlc8 that is lower than the critical loadlc . For
this network, Eq.~12! gives a value forlc8 of 0.30. Below
this load, average lifetimes are below 40. This is higher th
the approximation ofL/2 @see Eq.~11!# used in Sec. III A,
but of the same order. Beyond this point lifetimes rise ex
nentially due to congestion. The critical load@as defined by
Eq. ~7!# for this network isl50.39. Comparing the effect o
the different types of traffic source, there is very good agr
ment above the critical point, in the congested phase.
most pronounced differences do occur near and immedia
below the critical point. Below the critical point the avera
lifetimes for LRD sources are much greater than for Pois
sources—typically ten times as long.

Figure 2~b! shows the throughput versus load. The peak
throughput occurs at the critical point. The network theref
reaches its peak efficiency at the critical point. The pe
04610
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value of throughput is slightly lower for the LRD source
emphasizing the longer lifetimes of packets. However,
difference is less pronounced than that seen in average
times. Away from the peak, values of throughput for the tw
types of traffic source are very similar. Note that whenm1
5m251.5 the intermittency source behaves like a Poiss
source~cf. Ref. @10#!.

Figure 2 also shows the effect of decreasing the value
m1 and m2 from the maximum 2. The differences betwee
the LRD sources and the Poisson-like sources diminish
expected until the value ofm15m251.5 is reached and the
plots become identical. At this point the Hurst paramete
0.5, equivalent to there being no LRD, the autocorrelat
decays exponentially, and so the two sources, i.e., LRD
Poisson, would be expected to be statistically indistingui
able in terms of autocorrelation. One can obtain plots sim
to those in Fig. 2, for the range of values of the host den
r. As r increases, the total load on the system increases
the phase transition becomes sharper. This is also see
other critical phenomena. As predicted by Eq.~7!, lc de-
creases asr increases. This scalinglc;r21 also occurs in
Ref. @17#. Plotting lc againstr ~Fig. 3! shows good agree
ment with the theoretical prediction of Eq.~7!. Fǔks and
Lawniczak@7# also obtainedlc from their data for the case
r51.

In Fig. 4, time series of the average host and router qu
sizes for a lattice are plotted with the same parameters a
Fig. 2. Figure 4 has a range of load values up to the crit
loadlc50.39. These plots confirm that at this point the sy
tem has already left the steady state~where there is no up-
ward trend in the number of packets in the system!. In the
case of Poisson sources.@Fig. 4~a!# the average host queu
size starts rising at a load oflc850.30, as predicted by Eq
~8!, indicating the onset of congestion. Below a load ofl
50.28, average host queue sizes are approximately equ
average router queue sizes. This indicates the free flow
phase in which packets are fairly evenly spread through
the network. The greater fluctuations in host queue size
caused by averaging over a smaller number of nodes
loads abovelc850.30 both averages rise approximately li
early, with host queue sizes rising at a much greater rate
router queue sizes@cf. Figs. 4~a! and 4~b!#.

The equivalent plots for LRD traffic sources in Figs. 4~c!
and 4~d! show that the loss of steady state occurs at a m
lower value of the load. This corresponds with the earlier r
in average latency displayed in Fig. 2. The average rou
queue time series are similar to those in Fig. 4~b! for Poisson
sources, except for the greater fluctuations. Hence the m
higher average lifetimes prior to congestion seen in Fig. 2
entirely due to delays in host queues. For loads abovl
50.15, the rate of increase in average host queue size
rapidly by contrast with the Poisson case.

In actual packet networks, the distance traveled by pa
ets is an important factor. We have investigated the aver
lifetime and rate of packets delivered as a function of lo
for a range of path lengths. The transition to congestion
be seen in such plots@18#. Average lifetimes are higher fo
longer path lengths, as would be expected. For path len
of 12 steps or more, the throughput reaches a peak and
6-5
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FIG. 4. Time series over
100 000 time units:~a! average
host queue length~Poisson!; ~b!
average router queue length~Pois-
son!; ~c! average host queue
length ~LRD!; ~d! average router
queue length~LRD!. In each of
the parts~a!–~d! plots are given
for the four load values l
50.156, 0.294, 0.303, and 0.38
up to the critical network load of
l50.39.
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drops off as the load is increased. This is similar to the
havior seen for the average of all path lengths, cf. Fig. 2
Ref. @18#. For the shorter path lengths the throughput ris
slightly with increasing load. This is possibly because
large host queues can be avoided for the majority of sh
paths, and the rise in router queue lengths has less influ
than the rise in the rate of packet creation. Comparing L
traffic sources with Poisson sources, the features seen in
vious plots are present for all path lengths, with decrea
throughput near the critical point, and an earlier rise in av
age latency. Similar plots can be obtained for selec
source-destination pairs@18#. A smoothing of the plots away
from the critical load arises from averaging data over
various path lengths away from the critical region. The b
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havior in the critical region is more volatile and the avera
ing does not provide convergence here. The number of s
paths for each path length depends on the lattice size, de
of hosts, and selected host pattern. The variation in num
of paths and change in lifetime with path length account
the changes in peak value of throughput.

V. TIME SERIES ANALYSIS OF LONG-RANGE
DEPENDENCE

Long-range dependence, manifested as power-law de
of the autocorrelation in the time series of queue lengths,
been reported in Refs.@4# and@8#. Since only Poisson traffic
sources were used, this autocorrelation behavior must c
6-6
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OPTIMIZATION AND PHASE TRANSITIONS IN A . . . PHYSICAL REVIEW E66, 046106 ~2002!
purely from interaction within the network. We investigate
this and the effect of replacing the Poisson sources with L
sources. To expand upon the previous work, we analy
time series for delays of 1 step and 24 steps, and also loo
at time series of average host and router queue lengths
sured at each time tick.

Hurst’s empirical law for estimating long memory wa
introduced in 1951@19#, see also Refs.@3,5#. It is obtained by
considering the so-calledrescaled data. More precisely, let
Xt , tPZ1 denote a discrete time series. Theadjusted range
is defined as

R~ t,k!5 max
0< i<k

Ri~ t,k!2 min
0< i<k

Ri~ t,k!, ~13!

where

Ri~ t,k!5(
l 51

t1 i

Xl2(
l 51

t

Xl2
i

kS (
l 5t11

t1k

Xl2(
l 51

t

Xl D . ~14!

The quantityR(t,k) is normalized by the translated samp
standard deviation

S~ t,k!5Ak21 (
l 5t11

t1k

~Xl2X̄t,k!
2, ~15!

whereX̄t,k5k21( l 5t11
t1k Xl . TheR/S statistic is then defined

to be

R/St~k!5
R~ t,k!

S~ t,k!
~16!

and it is fitted to the equation

ln E@R/S~k!#5a1H ln k, ~17!

with H interpreted as the Hurst parameter.
In Table I we consider separateR/S plots for 1 and 24

step journeys in a 32332 network grid with 164 hosts fo
Poisson, and for LRD sources for a range of load values.
network used had the same parameters as that used for
4, so the onset of congestion at a load ofl50.3 was ex-
pected. At the smaller loads the network remains free
congestion. This means that time series of packet delays
stationary, and the original data may be used in measuri
value of H. For the higher values of the load, includingl

TABLE I. The power-law behavior ofR/S with respect to the
exponentH for path lengthsl 51 andl 524 for hosts with Poisson
and LRD characteristics.

H ~Poisson! H ~LRD!

Load ~l! l 51 l 524 l 51 l 524

0.2 0.51 0.57 0.61 0.61
0.29 0.71 0.70 0.60 0.56
0.30 0.54 0.53 0.61 0.57
0.39 0.52 0.51 0.60 0.54
0.45 0.56 0.55 0.57 0.52
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50.3, congestion does occur, leading to an upward tren
delay times and queue sizes. In this case, the data
weighted to remove the trend, creating a stationary series
Table I ~Poisson! we see that forl50.2, H'0.5 for both
path lengths, indicating that very little LRD is present. Th
is corroborated by the probability distributions of dela
which both have the characteristic shape of exponenti
decaying delay times~see Ref. @18#!. However, for l
50.29, H values are higher for both path lengths. TheR/S
plots show a kink with the steeper part of the curve cor
sponding toH50.8 in both cases. Hence the longer dela
~and lower frequencies! do show significant LRD, but this is
not seen at any other load value. Values for the three hig
load values show very similarH values. Note that in these
cases, the time series was weighted to remove the upw
trend and theH values are all close to 0.5. This lack of an
LRD seems to be caused by the phase change to the
gested region abovelc8 . The probability distributions for
these higher values show delays shifting towards the len
of the run (13106 time ticks! as the network becomes mor
and more congested. Here 1 and 24 step delays have a
tailed distribution, but this is caused by the nonstationarity
the data, not power-law autocorrelation decay.

The LRD data in Table I show values of 0.6 for the 1 st
and 24 step data. This is slightly higher than the equival
data for Poisson sources, but much less than the value fo
LRD sources by themselves, i.e.,H50.975. If delay prob-
ability distributions are compared with the Poisson case t
the presence of congestion is indicated by the much lon
delay times when LRD sources are used. Similar values oH
are seen at higher load values. This suggests that any LR
the system is not strongly transferred to packet delay tim
As before, the distribution of packet delays shifts towards
length of the run as the load increases. This gives a l
tailed distribution, but with lowH value.

In Table II, high values ofH for queue length distributions
at hosts and routers are measured at all postcritical loads
Poisson sources indicating the presence of strong netw
induced LRD. TheR/S values in Table II are calculated from
the average host and router queue lengths for the runs
for Table I. For LRD sources, the values ofH are all about 1,
both for routers and hosts. This shows that the intermitte
of the sources has fed through to average queue sizes,
for hosts and routers. For Poisson host queues,H is very high
~almost 1! for all load values, except for a load of 0.2, whe
H50.7. The lowerH value at a load of 0.2 agrees to som

TABLE II. R/S behavior for time series of~a! average host;~b!
average router queue lengths.

H ~Poisson! H ~LRD!

Load(l) Hosts Routers Hosts Routers

0.2 0.69 0.69 1.0 0.95
0.29 0.96 0.78 1.0 1.0
0.3 0.98 0.89 1.0 1.0
0.39 0.99 1.0 0.99 1.0
0.45 0.98 1.0 1.0 1.0
6-7
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FIG. 5. Plots showing the be
havior of the network parameter
average lifetimeand throughput
as carried load is varied whe
control is applied to a network
containing either all Poisson or a
LRD sources. The network mod
eled is the same as before—3
332 nodes with 164 hosts. Th
control mechanism has little effec
until the network becomes con
gested.
w
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a
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e
e
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the
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l or
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32

be-
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ad
r.
extent with the delay distributions for that load, which sho
an exponential decay. Average Poisson router queue len
in Table II have slightly lower values ofH. This shows that
router queues suffer less LRD than host queues. The dat
the LRD sources in Table II show that congestion starts
much lower values of the load. For this reason it was nec
sary to remove trends from all the LRD data used inR/S
plots used in Table II.

VI. NETWORK PACKET TRAFFIC SIMULATION
WITH CONTROL

The simplest way to control packet traffic is to limit th
length of queues@20–22#. As grid bar charts of node queu
04610
ths

for
t

s-

sizes have shown@18#, long queues in the network invariabl
occur at hosts. For this reason it was decided to reduce
rate of packet production at hosts with long queues. T
simulation keeps count of packets produced, so the actua
‘‘carried’’ load is known. Knowledge of thed value being
used for the mapf gives the maximum rate of packet pro
duction, or ‘‘offered’’ load.

Figures 5~a! and 5~b! show average lifetime and through
puts plotted against the carried load. The data apply to a
332 node rectangular network with a host densityr50.16
and Poisson-like traffic sources. A comparison is made
tween simulations with and without a queue limit. There
little difference between the two cases below a carried lo
of l50.3. Average lifetime and throughput are very simila
6-8
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FIG. 6. Plots are as in Fig. 5
but with offered load replacing
carried load.
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Average queue lengths are closely linked to average lifeti
As has been shown previously, this is the point at wh
congestion sets in. Above this point average lifetimes a
host queue lengths are much lower in the controlled case
the case of host queue length this would be expected,
cause when packets are created at a host they are imm
ately added to the queue for that host. The queue limit de
prevents longer queues from building up. This also expla
the longer average lifetimes. Long host queues no lon
exist, so host packets are not delayed so long and ave
latency times are therefore lower. The average router qu
length is longer in the controlled case because there is
limit on router queue lengths, so that packets that would h
been in host queues become distributed over router qu
04610
e.
h
d
In
e-
di-
e
s
er
ge
ue
o
e
es

instead. The effect on throughput is much smaller, but th
is a slight increase when control is used. It should be no
that the plots do not extend beyond a carried load of ab
l50.36, which is the maximum load with queue limiting. I
a real network this would equate to bandwidth being trad
for reduced end-to-end delay.

Figures 5~c! and 5~d! show similar plots for the same
network with LRD sources. In this case the average lifeti
is very much lower in the controlled case for the whole ran
of carried load values. As before, the average queue len
are linked closely to average lifetime. We have seen in S
IV that, in the case of LRD sources, congestion starts at v
low values of load. The queue limiting prevents this ea
onset of congestion, modifying the system to behave as
6-9
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WOOLF, ARROWSMITH, MONDRAGÓN-C, AND PITTS PHYSICAL REVIEW E66, 046106 ~2002!
same network with Poisson sources would. This can be s
in the plots of average lifetime. Again, higher queue thre
olds have less influence. The throughput is slightly highe
the controlled case at high values of the load. As before,
highest possible load when control is used is aboutl50.36.

Figures 6~a! and 6~b! show plots of the same paramete
for the same network with Poisson sources, but plot
againstoffered loadinstead of carried load. The plot of av
erage lifetime versus offered load shows that in the c
trolled case average lifetimes remain low even when t
would become very high in the uncontrolled case. The sa
applies to average host queue sizes. In effect, the con
mechanism prevents the network from becoming conges
no matter how high the offered load, but at the expense
restricting the carried load to one that the network can m
age. Similar conclusions can be drawn for LRD sources
Fig. 6~c! and 6~d!.

VII. SUMMARY AND REMARKS

We have shown that the greatest difference in the beh
ior of same load Poisson and LRD traffic sources in a mo
of network traffic occurs close to the critical point. We sho
that LRD destroys the clean phase transitions apparen
Poisson traffic@17,2,4# and makes the problem of detectin
onset of congestion much more problematical. Most imp
tantly, below criticality, average packet lifetimes for LR
sources are much higher, and at criticality, the pac
throughput is decreased.

There are essentially three load types for Poisson-
sources:~i! at low loads, packets travel freely through th
system—little LRD is present, average lifetimes are close
the source to destination distance as queues are small;~ii ! at
a well-defined load,l5lc8,lc , local congestion sets in
host queues become overloaded, and the system is no lo
in a steady state, but most offered load still reaches its d
tination in this precongestion phase and LRD throughpu
decreased at criticality;~iii ! beyond the critical point, route
queues are overloaded and the network is increasingly
,

v/
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gested. It should be noted that a significant degree of s
similarity can be seen in packet delay times in the prec
gestion phase which disappears when congestion starts.

Congestion begins at a much lower load value for LR
sources, but the critical point, at which throughput reache
maximum, is similar to the Poisson critical load value. T
mechanism causing the earlier onset of congestion is
fully understood, see Takayasuet al. @23#, but is probably
associated with phase transitions in thermodynamic fu
tions ~see Refs.@24,11#!. But other factors such as the spati
distribution of congested nodes@25#, are important. More
sophisticated routing algorithms than those considered h
can address this problem. Also,R/S behavior in Tables I and
II, and probability distributions of packet delays@26,18#
showed that when networks are congested little LRD is s
in delay distributions. These show that long tails are pres
when congestion occurs, but this appears to be caused b
nonstationarity of the data, rather than any LRD.

Mean field approaches give a value for the critical loadlc
at which throughput reaches a maximum, and predicts
point at which local congestion starts quite accurately. Th
retically the sharpness of this phase transition should
crease with increasing total load on the network. This is s
in the data, since increasing the host density does sharpe
transition@18#. We also see that the maximum efficiency
the system, in terms of throughput, occurs at the criti
point. This agrees with other data network models, nota
Ref. @4#, and is also seen in models of road traffic@27#.

Application of a simple control mechanism showed th
the network can be prevented from becoming congested
effectively limiting its packet carrying capacity. Extra refin
ments in routing and network information carried by t
packet are being considered; see also Refs.@17,28,29,23# for
current progress. The key aim is to develop the uncontro
model into one which reacts to the local buildup of queu
@20#, with an objective of delaying the onset of congestion
the network level when the sources are strongly long-ra
dependent.
,
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