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Field-theoretic renormalization group for a nonlinear diffusion equation
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This paper is an attempt to relate two vast areas of the applicability of the renormalization group~RG!:
field-theoretic models and partial differential equations. It is shown that the Green function of a nonlinear
diffusion equation can be viewed as a correlation function in a field-theoretic model with an ultralocal term,
concentrated at a space-time point. This field theory is shown to be multiplicatively renormalizable, so that the
RG equations can be derived in a standard fashion, and the RG functions~the b function and anomalous
dimensions! can be calculated within a controlled approximation. A direct calculation carried out in the
two-loop approximation for the nonlinearity of the formfa, wherea.1 is not necessarily integer, confirms
the validity and self-consistency of the approach. The explicit self-similar solution is obtained for the infrared
asymptotic region, with exactly known exponents; its range of validity and relationship to previous treatments
are briefly discussed.
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I. INTRODUCTION

The renormalization group~RG! has proved to be the
most efficient tool for studying self-similar scaling behavio
This tool first appeared within the context of quantum fie
theory @1#, and was then successfully applied to a variety
problems as disparate as phase transitions, polymer dil
random walks, hydrodynamical turbulence, growth p
cesses, and so on. See, e.g., the monographs@2,3#, the pro-
ceedings@4#, and references therein.

The most powerful and well-developed formulation of t
RG is the field-theoretic one, see Refs.@1–3#. It is this ver-
sion of the RG that is simplest and most convenient in pr
tical calculations, especially in higher orders. It is also i
portant that it has a reliable basis in the form of quantu
field renormalization theory, including the renormalization
composite operators and operator product expansion. For
reason, the first step in the RG analysis of a given problem
to reformulate it as a field-theoretic model. This means t
the quantities under study should be represented as f
tional averages with the weight expS(f), wheref is a clas-
sical random field~or set of fields! and S(f) is a certain
action functional. For parabolic differential equations with
additive random source, such a formulation is provided
the well-known Martin-Siggia-Rose~MSR! formalism, see
Refs. @5,6#. In problems involving fluctuation effects in
chemical reactions, the somewhat more complicated
proach of Doi@7# ~see also Refs.@8,9#! has also been widely
used@10–12#. No general recipe, however, seems to exis
cast a nonlinear problem to a field-theoretic form.

Such a reformulation, however, is by no means super
ous: once the field-theoretic formulation has been found
becomes possible to apply standard tools~power counting of
the one-irreducible correlation functions, etc.! to verify the
renormalizability of the model, i.e., the applicability of th
RG technique, to derive corresponding RG equations, an
calculate its coefficients (b functions and anomalous dimen
sions! within controlled approximations. An instructive ex
ample is provided by the model of the so-called true s
1063-651X/2002/66~4!/046105~7!/$20.00 66 0461
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avoiding random walks@13–15#. After its field-theoretic
formulation had been found@14#, it became clear that the
model in its original formulation was not renormalizable, a
the direct application of the RG to it would lead to com
pletely erroneous results. The renormalizable version of
model can be obtained by adding infinitely many terms to
original action, see Ref.@15#.

It has long been known, however, that symmetries of
RG-type also appear in various physical problems descri
by ordinary or partial differential equations and integr
differential equations, whose solutions exhibit self-simi
scaling behavior@16#. Since then, the list of such problem
has been essentially increasing; see, e.g., Refs.@17–24# and
references therein. As a rule, the field-theoretic formulat
for these models does not exist~or, at least, is not known!,
and the derivation of the corresponding RG equations
a nontrivial task. Quoting the authors of Ref.@24#, ‘‘the pro-
cedure of revealing RG transformations . . . in any partial
case . . . up to now is not aregular one. In practice, it need
some imagination and atypical manipulation ‘invented’ f
every particular case.’’ In Ref.@24#, a general approach wa
proposed to construct RG symmetries for certain classe
partial differential equations, but its relationship to the fie
theoretic RG techniques is not clear.

The present paper is an attempt to ‘‘bridge the gap’’ b
tween these two vast areas of the applicability of the R
field-theoretic models and partial differential equations.
be specific, we shall consider nonlinear diffusion equation
the form

] tf5n0]2f1V~f!, ~1.1!

where f(x)[f(t,x) is a scalar field,n0 is the diffusion
coefficient, ]2 is the Laplace operator, andV(f) is some
nonlinearity dependent on the fieldf and its spatial deriva-
tives. Within the RG context, various special examples
Eq. ~1.1! were studied earlier in Refs.@18–22#. In practical
©2002 The American Physical Society05-1
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calculations, we shall confine ourselves to the nonlinearity
the formV(f)52l0fa, wherea.1 is not necessarily an
integer.

We shall show that the problem~1.1! can be cast into a
field-theoretic model and apply the standard RG formali
to it to establish the scaling behavior and to calculate co
sponding anomalous dimensions. Then we shall discuss
range of applicability of the results obtained and their re
tionship to the previous RG treatments of the model.

II. FIELD-THEORETIC FORMULATION AND
RENORMALIZATION OF THE PROBLEM

We begin the analysis of the Cauchy problem~1.1! with a
localized initial condition that corresponds to the equatio

] tG5n0]2G1V~G!1d~x2x0! ~2.1!

for the Green functionG(xue0). It will be shown later that
the large-scale asymptotic behavior of this problem survi
for all integrable initial conditions@i.e., such that*dxf(0,x)
converges#. In Eq. ~2.1! we denote d(x2x0)[d(t
2t0)d (d)(x2x0), where d is the dimensionality of thex
space, ande05$x0 ,n0 ,l0% is the full set of parameters.

The functional derivation of the MSR formalism@6# can
be adopted to represent the solution of Eq.~2.1! as a func-
tional integral over the doubled set of fields,f andf8:

G~xue0!5E Df8E Dff~x!exp@S~f8,f!1f8~x0!#.

~2.2!

Here the normalization constant is included into the diff
ential Df8Df, the action functional has the form

S~f8,f!5E dxf8~x!$2] tf~x!1n0]2f~x!1V„f~x!…%,

~2.3!

with dx5dt dx. The last term in Eq.~2.1! can be treated a
an addition to the ‘‘interaction’’V(f) and gives rise to the
last term in the exponential of Eq.~2.2!. The term quadratic
in f8, typical to the MSR actions, is absent in Eq.~2.3!
owing to the absence of the random force in Eq.~1.1!.

Representation~2.2! shows that the Green function~2.1!
can be viewed as the correlation function^f(x)expf8(x0)& in
the field-theoretic model with the action~2.3!. It is not con-
venient, however, to deal with the exponential composite
erator expf8. A more useful interpretation is the following
the integral~2.2! describes the correlation function^f(x)&
for the extended actionS85S1f8(x0) with an ‘‘ultralocal’’
interaction term concentrated on a single space-time p
x0.

The renormalization of field-theoretic models with u
tralocal terms, concentrated on surfaces, was studied in
@25# in detail. The analysis of Ref.@25#, which we also natu-
rally take to apply to our case, has shown that the stand
renormalization theory is applicable to such models, w
some obvious modification~see below!.
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The analysis of ultraviolet~UV! divergences is based o
the analysis of canonical dimensions, see Refs.@1–3#. Dy-
namical models of the type~2.3!, in contrast to static models
have two scales—the length scaleL and the time scaleT.
Therefore, the canonical dimension of any quantityF ~a field
or a parameter in the action functional! is described by two
numbers—the momentum dimensiondF

k and the frequency

dimensiondF
v—determined so that@F#;@L#2dF

k
@T#2dF

v
. The

dimensions are found from the obvious normalization con
tions dk

k52dx
k51, dk

v5dx
v50, dv

k 5dt
k50, dv

v52dt
v51,

and from the requirement that each term of the action fu
tional be dimensionless~with respect to the momentum an
frequency dimensions separately!. Then, based ondF

k and
dF

v , one can introduce the total canonical dimensiondF

5dF
k 12dF

v ~in the free theory,] t}]2), which plays in the
theory of renormalization of dynamical models the same r
as the conventional~momentum! dimension does in static
problems; see Refs.@2,3#.

Now let us turn to the special case of the model~2.1! with
the extended action of the form

S8~f8,f!5E dxf8~x!$2] tf~x!1n0]2f~x!

2g0n0fa~x!%1f8~x0!, ~2.4!

where we have introduced the new parameterg0[l0 /n0,
which plays the part of the coupling constant~a formal small
parameter of the ordinary perturbation theory!. Canonical di-
mensions for the model~2.4! are given in Table I, including
the dimensions of renormalized parameters, which will a
pear later on. From Table I, it follows that the model
logarithmic ~the coupling constantg0 is dimensionless! for
21d(12a)50. In what follows, we fix the exponenta in
Eq. ~2.4! and consider the model in variable space dimens
d5(22«)/(a21). Then the UV divergences take on th
form of the poles in«[21d(12a) in the correlation func-
tions. The interaction is therefore irrelevant~in the sense of
Wilson! for «,0, marginal~logarithmic! for «50, and rel-
evant for «.0; compare the analysis in Ref.@19#. This
means that for«>0, the ordinary perturbation expansio
~i.e., series ing0) fails to give correct infrared~IR! behavior
and has to be summed up. The desired summation ca
accomplished using the renormalization group.

It is a result of the renormalization theory that for th
analysis of UV divergences of all correlation functions of t
fields f and f8 it is sufficient to consider one-particle
irreducible~1PI! correlation functions, whose graphical re
resentation contains only graphs that remain connected

TABLE I. Canonical dimensions of the fields and parameters
the model~2.3!.

F f f8, g n, n0 m g0

dF
k d 0 22 1 21d(12a)[«

dF
v 0 0 1 0 0

dF d 0 0 1 «
5-2



la

tio

In

e
io
e

n

on

e
s

f
on
a
at

.

te

in
a

no
to

l

ac-

all
f

te
ing

n
ll

a
ith

he

re-
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the removal of one~arbitrary! line ~i.e., a free-field correla-
tion or response function! of the graph.

The total canonical dimension of an arbitrary 1PI corre
tion function

G~x1 , . . . , xN ; y1 , . . . ,yN8 ; x0!

5
dN1N8G~f,f8!

df~x1!•••df~xN!df8~y1!•••df8~yN8!
, ~2.5!

in the time-coordinate representation is given by the rela

dG5N~d122df!1N8~d122df8!, ~2.6!

whereN andN8 are the numbers of corresponding fields.
Eq. ~2.5! G(f,f8) is the ~dimensionless! generating func-
tional of 1PI Green functions. It should be noted, howev
that due to the presence of the ultralocal term in the act
the functionalG(f,f8) is not the Legendre transform of th
functional W(J,J8)5 ln G(J,J8), where G(J,J8)
5*Df8*Df exp@S8(f8,f)1Jf1J8f8)] is the generating
functional of Green functions of the model. Moreover, co
trary to the usual field theories, the functional lnG(J,J8)
does not include all connected graphs ofG(J,J8). By defi-
nition of the generating functional, the 1PI Green functi
with N external f legs andN8 external f8 legs may be
obtained byN functional differentiations ofG(f,f8) with
respect to the fieldf andN8 differentiations with respect to
f8. The canonical dimensions of the functional derivativ
are related to the dimensions of the corresponding field
dk@d/df#5d2df

k , dv@d/df#512df
v , and similarly for

the auxiliary fieldf8. Then the total canonical dimension o
the function~2.5! in the frequency-momentum representati
~obtained by the Fourier transformation with respect to
N1N8 independent differences of the time and coordin
arguments! is obtained from Eq.~2.6! by subtracting the term
(N1N8)(d12) and has the form

dG52dfN2df8N852dN, ~2.7!

where the data from Table I are used in the last equality
The quantity~2.7! is the formal index of the UV diver-

gence for the functionG. Like for usual~local! models, su-
perficial UV divergences, whose removal requires coun
terms, can be present only in those functionsG for which
d[dGu«50 is a non-negative integer, see Refs.@1–3#.

From Eq.~2.7! we conclude that for any positived, such
divergences can exist only in the 1PI functions withN50
and arbitrary value ofN8. For all these functionsd50, that
is, the divergences are logarithmic and the correspond
counterterms in the frequency-momentum representation
constants.

At first glance, we have established that the model~2.4!
requires infinitely many counterterms, and hence it is
renormalizable. However, it turns out to be sufficient
renormalize the 1PI Green functionG(x;x0) only to render
the model finite, as we shall now show.

The first few Feynman diagrams ofG are shown in Fig. 1
for a52; the symmetry coefficients are shown for generaa
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~it would be embarrassing to depict the diagrams for fr
tional a, but the idea is the same!. The lines with a slash
denote the bare propagator

D~ t,r !5^ff8&05u~ t !
exp@2r 2/4n0t#

~4pn0t !d/2
. ~2.8!

The end with a slash corresponds to the fieldf8, and the end
without a slash corresponds tof. The initial ~left! point in
each diagram corresponds tox, and the final~right! point
with a variable number of attached lines corresponds tox0.
The crucial point is that, as is easily seen from Fig. 1,
possible 1PI subdiagrams entering into the diagrams oG
belong to the only 1PI functionG(x;x0); no other 1PI func-
tions are involved. The functionG appears to be ‘‘closed
with respect to the renormalization,’’ i.e., we can elimina
their UV divergences by the only counterterm correspond
to its 1PI partG(x;x0).

Moreover, the renormalization of the only functio
G(x;x0) is in fact sufficient to completely renormalize a
functions withN8.1. A typical diagram forN853 is shown
in Fig. 2. It is clear that any such diagram reduces to
product of blocks that belong to the simplest function w
N851 ~we recall that there is no integration overx0, the

FIG. 1. First Feynman graphs for the Green function of t
nonlinear diffusion equation~2.1! for V(G)52l0G2.

FIG. 2. A three-loop Feynman graph for the three-point cor
lation function of the nonlinear diffusion equation~2.1! for V(G)
52l0G2 illustrating the factorization propertyG(x1 ,x2 ,x3 ;x0)
5G(x1 ;x0)G(x2 ;x0)G(x3 ;x0).
5-3
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only point that connects the blocks!. Therefore, the diagram
contains no superficial divergences; all its divergences
those of the subdiagrams and they are completely remo
by the renormalization of the function withN851. This is
equally true for any diagram of any function withN8.1.

In the generic case, all the loops are created by the p
ence of a single local vertex with any number off8 legs,
from which continuous chains of retarded diffusion propa
tors emanate. Due to the structure of the nonlinear term th
chains do not branch, but they may merge~the singlef8
field in the nonlinearity allows only one outgoing propaga
from each ordinary vertex, whereas up toa incoming chains
are allowed!. A little reflection along the lines sketche
above shows then that all divergent 1PI Green functions
factorized,

G~x1 , . . . ,xN ;x0!5G~x1 ;x0!•••G~xN ;x0!.

Thus, we are left with the only counterterm to the functi
G(x;x0). It is constant ~see above!, which in the time-
coordinate representation corresponds to the functiond(x
2x0)[d(t2t0)d (d)(x2x0). In the action functional, afte
the integration over the field argument, this givesf8(x0).
Such term is present in the extended action~2.4!, so that our
model is renormalized multiplicatively, with the only reno
malization constant, which we denoteZ. The renormalized
action has the form

SR8 ~f8,f!5E dx f8~x!$2] tf~x!1n]2f~x!

2gnm«fa~x!%1Zf8~x0!. ~2.9!

Here and below theg andn are the renormalized analogs
the bare parameters;m is the reference mass in the minim
subtraction~MS! scheme, which we use in practical calcul
tions; and the constantZ depends on the dimensionless p
rametersg, a, and«. The renormalized Green functionGR ,
which is finite for«→0, is given by the representation~2.2!
with the substitutionS8→SR8 .

If we now replace the local initial condition with an inte
grable one, f(0,x)5a(x), then—after Fourier
transforming—we obtain wave-vector integrals in which
the propagator lines starting from the initial condition co
tain a multiplicative factorã(k)5*dx e2 ik•xa(x). For the
large-scale asymptotic analysis using RG it is sufficient
keep the leading small wave-number terms in all the lin
which amounts to the replacementã(k)→ã(0)5*dx a(x),
and we thus return to loop integrals of the problem w
localized initial condition in which*dx a(x) is the amplitude
of the initial d function.

To clarify the idea, consider the one-loop graph of Fig.
whose analytic expression with the initial conditionf(0,x)
5a(x) is

G (1)~ t,x!52l0E dyE
0

`

dt8D~ t2t8,x2y!E dy1

3D~ t8,y2y1!a~y1!E dy2D~ t8,y2y2!a~y2!.
04610
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Here,D(t,x) is the diffusion propagator~2.8!. Fourier trans-
forming G (1)(t,x) with respect tox, we arrive at the expres
sion

G (1)~ t,k!52l0E
0

`

dt8D~ t2t8,k!

3E dq

~2p!d
D~ t8,q!ã~q!D~ t8,k2q!ã~k2q! ,

~2.10!

whereD(t,k) is the spatial Fourier transform of the diffusio
kernel ~2.8!. From the point of view of RG, the IR relevan
terms are given by the leading terms of the gradient exp
sion of the initial condition:ã(q)5ã(0)1o(q)/q. This al-
lows one to replace~2.10! by

G (1)~ t,k!;2l0E
0

`

dt8D~ t2t8,k!E dq

~2p!d
D~ t8,q!

3D~ t8,k2q!ã2~0!,

which corresponds to the localized initial condition with th
amplitudeã(0)5*dx a(x).

III. RG EQUATIONS AND RG FUNCTIONS

It follows from Eqs.~2.3!, ~2.4!, and~2.9! that the original
and renormalized action functionals satisfy the relat
S8(Zf8,Z21f,e0)5SR8 (f8,f,e,m), if the bare and renor-
malized parameters are related as follows:

n05n, g05gm«Za21, ~3.1!

with the only renormalization constantZ from Eq.~2.9!. This
implies the relationG(e0)5Z21GR(e,m) for the corre-
sponding Green functions in Eq.~2.2!; i.e., this quantity is
multiplicatively renormalizable. We useD̃m to denote the
differential operationm]m for fixed e0 and operate on both
sides of this equation with it. This gives the basic RG eq
tion

@Dm1b~g!]g2g~g!#GR~e,m!50, ~3.2!

where Dm1b(g)]g is nothing else than the operationD̃m
expressed in the renormalized variables. In Eq.~3.2!, we
have writtenDx[x]x for any variablex, and the RG func-
tions ~the b function and the anomalous dimensionsg) are
defined as

g~g![D̃m ln Z, bg[D̃mg5g@2«2~a21! g~g!#.
~3.3!

The relation betweenb and g results from the definitions
and the relations~3.1!.

We shall see below that, for small«.0, an IR stable
fixed pointg* of the RG equation~3.2! exists in the physical
region g.0, i.e., b(g* )50, b8(g* ).0. The functionsG
and GR coincide up to a constant~i.e., independent of the
5-4
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time and space variables! factor Z and the choice of the pa
rameters~baree0 or renormalizede, m) and can equally be
used in the analysis of the IR behavior. The general solu
of the RG equations is discussed in detail, e.g., in Refs.@2,3#.
It follows from this solution that, when an IR stable fixe
point is present, the leading term of the IR behavior of
function GR}G satisfies Eq.~3.2! with the substitutiong
→g* ,

@Dm2g* #GR~e,m!50. ~3.4!

In our case, the value of the anomalous dimension at
fixed point is found exactly owing to the relation betweenb
andg in Eq. ~3.3!,

g* [g~g* !52«/~a21!5d22/~a21!. ~3.5!

Dimensional considerations yield GR(t,r )
5(nt)2d/2j(1/tm2n,r 2/tn), wherej is some function of di-
mensionless variables. The dependence ong is not displayed
explicitly, because the derivatives with respect to this para
eter do not enter into Eq.~3.4!. It follows from Eq.~3.4! that
j satisfies—at the fixed point—the equation@Ds
2g* /2#j(s,y)50, its general solution is j(s,y)
5sg* /2x(y), wherex is an arbitrary function of the secon
variabley. For the Green function~2.2! we then obtain

G~ t,r !;GR~ t,r !;t2d/21g* /2x~r 2/tn!5t21/(a21)x~r 2/tn!,

where the form on the ‘‘scaling function’’x(r 2/tn) is not
determined by Eq.~3.4!. The dependence on the paramet
n andm can be easily restored from the dimensionality co
siderations~see Table I!,

G~ t,r !;~n0t !21/(a21)x~r 2/tn0!. ~3.6!

Although the value ofg* in Eq. ~3.5! and the solution~3.6!
have been obtained without practical calculation of the c
stant Z and functions~3.3!, such calculation is needed t
check the existence, positivity, and IR stability of the fix
point. Within the « expansion, these facts can be verifi
already in the simplest one-loop calculation.

In order to check the validity and self-consistency of t
approach, we calculated the constantZ up to the two-loop
approximation. The calculation is performed in th
frequency-momentum (v, k) representation and calls for th
formulas derived in Ref.@26# for a model of critical dynam-
ics.

Two key points are as follows: the convolution of tw
functions of the formF(a;a)[(2 iv a1k2)2a is a function
of the same form,

F~a;a!F~b;b!5K~a,b;a,b!F~a1b2d/221;a1b!,

wherea and b are both positive and the coefficient has t
form

K~a,b;a,b!5ad/22abd/22b~a1b!a1b2d21

3G~a1b2d/221!/G~a!G~b!~4p!d/2,
04610
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while the product of two such functions can be represen
as a single integral of a function of the same form with t
aid of the generalized Feynman formula,

F~a;a!F~b;b!5
G~a1b!

G~a!G~b!
E

0

1

ds sa21~12s!b21

3F„a1b;as1b~12s!….

For the sake of brevity, below we give only the final resu

Z511
u

«
1

au2

2«2
2

u2

2«
Ĩ a1O~u3!, ~3.7!

where we have introduced a new coupling constant

u[
g

~4p!
a21/(a21) ~3.8!

and have writtenĨ a[a ln a1aa/(a21)Ia with the convergent
single integral

I a[E
0

1ds

s
$@s~a21!11# (22a)/(a21)@~s11!~a21!

11#21/(a21)2a21/(a21)%, ~3.9!

in particular, Ĩ 252 ln(4/3) andĨ 356@ ln(32A5)1 ln(3/2)#.
Then for the correspondingb function we obtainbu

[D̃mu52u@«1bu]uln Za21#, where we have used the la
relation in Eq.~3.1! and the fact thatD̃m5bu]u for the func-
tions dependent only onu. This yields

bu~u!5
2«u

11~a21!Duln Z
. ~3.10!

Substituting Eq.~3.7! into Eq. ~3.10! gives

bu~u!52u@«2u~a21!1u2~a21! Ĩ a#1O~u4!.
~3.11!

Note that the poles in« in the constantZ cancel out in the
function~3.11!; this is a manifestation of the general fact th
the RG functions must be UV finite, i.e., finite as«→0. The
cancellation is possible by virtue of the correlation that exi
between theu/« and (u/«)2 terms in Eq.~3.7! and can be
used as an additional check of the consistency of the
proach. The simple~linear! dependence on« is a feature
specific to the MS scheme.

From Eq. ~3.11! we find an explicit expression for th
coordinate of the fixed point,

u* 5
«

~a21!
1 Ĩ a

«2

~a21!2
1O~«3!. ~3.12!

As already said above, for small positive« and a.1 the
fixed point is positive and IR stable:bu8(u* )5«1O(«2).

In the casea51 the interactionV(f)52l0f reduces to
a ‘‘mass term,’’ Eq.~2.1! becomes linear with the solution
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Ga51~ t,r !5u~ t !
exp@2l0t2r 2/4n0t#

~4pn0t !d/2
,

in which the purely time-dependent decay factor is expon
tial instead of the powerlike one in Eq.~3.6!.

IV. DISCUSSION

We have applied the field-theoretic renormalization gro
to the nonstochastic differential equation~2.1! and estab-
lished the scaling behavior in the IR asymptotic range, a
consequence of the existence of the IR stable fixed poin
the physical range of parameters. The same asymptotic
havior is shown to be valid for integrable initial condition
which thus constitute the universality class of this fix
point.

The key points are the formulation of the problem as
field-theoretic model with an ultralocal term concentrated
a space-time point and the fact that this model appears m
tiplicatively renormalizable, in spite of the naive pow
counting that indicates nonrenormalizability.

The two-loop calculation confirms internal consistency
the approach.

The simple explicit form of the scaling dimensions fo
lows from the fact that there is only one independent ren
malization constant in the problem. In particular, this e
plains a simple valuez52 of the exponent in the argumen
r 2/t2/z of the scaling function~3.6! ~in models of dynamical
critical phenomena@2,3# and some models of nonlinear di
fusion @27# this exponent differs from 2!.

Recently, it has been conjectured@22# that the dynamic
exponentzÞ2 in the present problem. Our asymptotic so
a

e

9
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l-

f

r-
-

-

tion ~3.6!, however, does not predict any deviation from t
canonical valuez52, since there is no renormalization o
the diffusion coefficient in the MS scheme we have used
Ref. @22# with the use of a different renormalization proc
dure it was concluded thatz225O(«2). We think, however,
that it is not consistent to prescribe physical quantities val
of the orderO(«2) on the basis of theone-loopcalculation
carried out in Ref.@22#, but a two-loop analysis is require
for this accuracy.

The RG analysis allows one to derive the RG equat
rigorously and to prove that the behavior~3.6! is indeed re-
alized for«.0, g0.0 in the IR asymptotic range, specifie
by the relationst;r 2 and r !h, whereh.g0

21/« is the UV
scale. The general solution of Eq.~3.2! interpolates between
the ordinary perturbation theory for Eq.~2.1! and the self-
similar asymptotic expression~3.6!. The scaling function
x(y) can be calculated within the« expansion; in the lowes
order one easily obtainsx(y)5exp@2(y/2)2#1O(«).

We hope that the ideas presented above might be usef
other models containing ultralocal contributions, which ha
several charges and hence richer IR behavior. Another di
tion of generalization would be the analysis of Green fun
tions of vector quantities.

ACKNOWLEDGMENTS

We thank L. Ts. Adzhemyan, A. Kupiainen, M. Yu. Nal
mov, and A. N. Vasil’ev for discussions. The work was su
ported by the Grant Center for Natural Sciences~Grant No.
E00-3-24!, the Nordic Grant for Network Cooperation wit
the Baltic Countries and Northwest Russia Grant No. FI
18/2001, and the Academy of Finland~Grant No. 79781!.
.

.

@1# N. N. Bogoliubov and D. V. Shirkov,Introduction to the
Theory of Quantized Fields~Wiley, New York, 1980!.

@2# J. Zinn-Justin,Quantum Field Theory and Critical Phenomen
~Clarendon, Oxford, 1989!.

@3# A. N. Vasil’ev, Quantum-Field Renormalization Group in th
Theory of Critical Phenomena and Stochastic Dynamics~St.
Petersburg Institute of Nuclear Physics, St. Petersburg, 19!
@in Russian# @English translation: Gordon & Breach, in prep
ration#.

@4# Proceedings of the International Conference, Renormalizat
Group, edited by D. V. Shirkov, D. I. Kazakov, and A. A
Vladimirov ~World Scientific, Singapore, 1988!; Proceedings
of the Second International Conference, Renormalizat
Group ’91, edited by D. V. Shirkov and V. B. Priezzhev~World
Scientific, Singapore, 1991!; Proceedings of the Third Interna
tional Conference, Renormalization Group ’96, edited by D. V.
Shirkov, D. I. Kazakov, and V. B. Priezzhev~Joint Institute for
Nuclear Research, Dubna, 1997!.

@5# P.C. Martin, E.D. Siggia, and H.A. Rose, Phys. Rev. A8, 423
~1973!.

@6# H.K. Janssen, Z. Phys. B23, 377 ~1976!; R. Bausch,
H.K. Janssen, and H. Wagner,ibid. 24, 113 ~1976!; C.
De Dominicis, J. Phys.~Paris!, Colloq. 37, C1-247~1976!.
8

n

n

@7# M. Doi, J. Phys. A9, 1465~1976!; 9, 1479~1976!.
@8# Ya.B. Zel’dovich and A.A. Ovchinnikov, Zh. Eksp. Teor. Fiz

74, 1588~1978! @Sov. Phys. JETP47, 829 ~1978!#.
@9# P. Grassberger and M. Scheunert, Fortschr. Phys.28, 547

~1980!.
@10# L. Peliti, J. Phys. A19, L365 ~1986!.
@11# B.P. Lee, J. Phys. A27, 2633~1994!.
@12# J. Cardy and U.C. Ta¨uber, Phys. Rev. Lett.77, 4780~1996!; J.

Stat. Phys.90, 1 ~1998!.
@13# D.J. Amit, G. Parisi, and L. Peliti, Phys. Rev. B27, 1635

~1983!.
@14# S.P. Obukhov and L. Peliti, J. Phys. A16, L147 ~1983!; S.A.

Bulgadaev and S.P. Obukhov, Phys. Lett.98A, 399 ~1983!; L.
Peliti, Phys. Rep.103, 225 ~1984!.
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