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Field-theoretic renormalization group for a nonlinear diffusion equation
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This paper is an attempt to relate two vast areas of the applicability of the renormalization(B@up
field-theoretic models and partial differential equations. It is shown that the Green function of a nonlinear
diffusion equation can be viewed as a correlation function in a field-theoretic model with an ultralocal term,
concentrated at a space-time point. This field theory is shown to be multiplicatively renormalizable, so that the
RG equations can be derived in a standard fashion, and the RG funé¢tieng function and anomalous
dimensiong can be calculated within a controlled approximation. A direct calculation carried out in the
two-loop approximation for the nonlinearity of the forgf, wherea>1 is not necessarily integer, confirms
the validity and self-consistency of the approach. The explicit self-similar solution is obtained for the infrared
asymptotic region, with exactly known exponents; its range of validity and relationship to previous treatments
are briefly discussed.
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I. INTRODUCTION avoiding random walkg13-15. After its field-theoretic
formulation had been founfll4], it became clear that the
The renormalization grougRG) has proved to be the modelin its original formulation was not renormalizable, and
most efficient tool for studying self-similar scaling behavior. the direct application of the RG to it would lead to com-
This tool first appeared within the context of quantum fieldpletely erroneous results. The renormalizable version of the
theory[1], and was then successfully applied to a variety ofmodel can be obtained by adding infinitely many terms to the
problems as disparate as phase transitions, polymer dilute@figinal action, see Ref15].
random walks, hydrodynamical turbulence, growth pro- It has long been known, however, that symmetries of the
cesses, and so on. See, e.g., the monogrehBk the pro- RG-type also appear in various physical problems described
ceedingg 4], and references therein. by ordinary or partial differential equations and integro-
The most powerful and well-developed formulation of the differential equations, whose solutions exhibit self-similar
RG is the field-theoretic one, see Refs—3. It is this ver-  scaling behaviof16]. Since then, the list of such problems
sion of the RG that is simplest and most convenient in prachas been essentially increasing; see, e.g., Re7s-24 and
tical calculations, especially in higher orders. It is also im-references therein. As a rule, the field-theoretic formulation
portant that it has a reliable basis in the form of quantumfor these models does not exigtr, at least, is not known
field renormalization theory, including the renormalization ofand the derivation of the corresponding RG equations is
composite operators and operator product expansion. For thisnontrivial task. Quoting the authors of RE24], “the pro-
reason, the first step in the RG analysis of a given problem i§edure of revealing RG transformat®n. . in any partial
to reformulate it as a field-theoretic model. This means tha€ase . . . up to now is noti@gular one. In practice, it needs
the quantities under study should be represented as funéome imagination and atypical manipulation ‘invented’ for
tional averages with the weight eS(@), where¢ is a clas-  every particular case.” In Ref24], a general approach was
sical random field(or set of fields and S(¢) is a certain  Proposed to construct RG symmetries for certain classes of
action functional. For parabolic differential equations with anpartial differential equations, but its relationship to the field-
additive random source, such a formulation is provided bytheoretic RG techniques is not clear.
the well-known Martin-Siggia-RoséMSR) formalism, see The present paper is an attempt to “bridge the gap” be-
Refs. [5,6]. In problems involving fluctuation effects in tween these two vast areas of the applicability of the RG:
chemical reactions, the somewhat more complicated apield-theoretic models and partial differential equations. To
proach of Doi[7] (see also Refg8,9]) has also been widely be specific, we shall consider nonlinear diffusion equation of
used[10—17. No general recipe, however, seems to exist tothe form
cast a nonlinear problem to a field-theoretic form.
Such a reformulation, however, is by no means superflu-
ous: once the field-theoretic formulation has been found, it dip=rod*p+V(¢), (1.1
becomes possible to apply standard taplswer counting of
the one-irreducible correlation functions, ¢tto verify the
renormalizability of the model, i.e., the applicability of the where ¢(x)=¢(t,x) is a scalar field,vq is the diffusion
RG technique, to derive corresponding RG equations, and teoefficient, #* is the Laplace operator, and(¢) is some
calculate its coefficientsq functions and anomalous dimen- nonlinearity dependent on the fielbl and its spatial deriva-
siong within controlled approximations. An instructive ex- tives. Within the RG context, various special examples of
ample is provided by the model of the so-called true selfEqg. (1.1) were studied earlier in Ref§18—22. In practical
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calculations, we shall confine ourselves to the nonlinearity of TABLE I. Canonical dimensions of the fields and parameters in
the formV(¢) = —\y¢*, wherea>1 is not necessarily an the model(2.3).

integer.

We shall show that the problefi.1) can be cast into a F ¢ ¢'. 9 v, Vg M 9
f|el_d—theoret|c_ model anq apply th(_a standard RG formalis K d 0 P 1 21d(1-a)=¢
to it to establish the scaling behavior and to calculate corre-,, 0 0 1 0 0
sponding anomalous dimensions. Then we shall discuss thdé d 0 0 1 .

range of applicability of the results obtained and their rela-_~
tionship to the previous RG treatments of the model.

The analysis of ultravioletUV) divergences is based on
Il. FIELD-THEORETIC FORMULATION AND the analysis of canonical dimensions, see Rgfs.3]. Dy-
RENORMALIZATION OF THE PROBLEM namical models of the typ@.3), in contrast to static models,
have two scales—the length scdleand the time scald.
Therefore, the canonical dimension of any quarftia field
or a parameter in the action functiopad described by two
3,G= 1o’ G+V(G)+ S(X—Xg) 2.1) numbers—the momentum dimensidé and lEhe freguency
dimensiondg—determined so thgF ]~[L] %[ T] 9. The
for the Green functiorG(x|e). It will be shown later that dimensions are found from the obvious normalization condi-
the large-scale asymptotic behavior of this problem survivedions di=—dk=1, d¢=d?=0, d*=df=0, d°=—-d*=1,
for all integrable initial conditiongi.e., such thafdx¢(0x)  and from the requirement that each term of the action func-
converge} In Eqg. (2.1) we denote 8(x—xg)=d(t tional be dimensionlesgvith respect to the momentum and
—t0) 89(x—x,), whered is the dimensionality of thex  frequency dimensions separatelfrhen, based orni'é and

We begin the analysis of the Cauchy probléhtl) with a
localized initial condition that corresponds to the equation

space, an@,={Xq,vp,\o} is the full set of parameters. ¢, one can introduce the total canonical dimensihn
The functional derivation of the MSR formalisf6] can ~ =df+2d2 (in the free theoryg,d%), which plays in the

be adopted to represent the solution of E41) as a func-  theory of renormalization of dynamical models the same role

tional integral over the doubled set of fields,and ¢": as the conventionalmomentum dimension does in static

problems; see Ref$2,3].

, , , Now let us turn to the special case of the mogel) with
G(X|e°):f D¢ fDquS(x)exp[S(qS )+ b (Xo)]. the extended action of th(fform -
(2.2
Here the normalization constant is included into the differ- S'(¢',¢)=f dxep’ (X){ = de(X) + vod*B(X)

ential D¢’ D¢, the action functional has the form
—Govod“(X)}+ &' (Xo), (2.4

S(¢'1¢):f dxe’ (X){— 3 p(X) + vod® (X) + V($(X))}, where we have introduced the new paramefge\/ v,
(2.3  which plays the part of the coupling const&atformal small
parameter of the ordinary perturbation theo@anonical di-
with dx=dt dx. The last term in Eq(2.1) can be treated as mensions for the modéR.4) are given in Table I, including
an addition to the “interaction’V(¢) and gives rise to the the dimensions of renormalized parameters, which will ap-
last term in the exponential of E(R.2). The term quadratic pear later on. From Table I, it follows that the model is
in ¢’, typical to the MSR actions, is absent in E@.3)  logarithmic (the coupling constang, is dimensionlegsfor
owing to the absence of the random force in EqQl). 2+d(1-«a)=0. In what follows, we fix the exponeni in
Representatioii2.2) shows that the Green functid@.l) Eq.(2.4) and consider the model in variable space dimension
can be viewed as the correlation functig(x)expp’(Xp)) in ~ d=(2—¢)/(a—1). Then the UV divergences take on the
the field-theoretic model with the actid@.3). It is not con-  form of the poles ire=2+d(1— «) in the correlation func-
venient, however, to deal with the exponential composite options. The interaction is therefore irrelevdin the sense of
erator exy’. A more useful interpretation is the following: Wilson) for <0, marginal(logarithmig for e=0, and rel-
the integral(2.2) describes the correlation functidm(x)) evant for e>0; compare the analysis in Reff19]. This
for the extended actio8’ =S+ ¢'(Xp) with an “ultralocal”  means that fore=0, the ordinary perturbation expansion
interaction term concentrated on a single space-time poirfi.e., series irg) fails to give correct infrarediR) behavior
Xg- and has to be summed up. The desired summation can be
The renormalization of field-theoretic models with ul- accomplished using the renormalization group.
tralocal terms, concentrated on surfaces, was studied in Ref. It is a result of the renormalization theory that for the
[25] in detail. The analysis of Ref25], which we also natu- analysis of UV divergences of all correlation functions of the
rally take to apply to our case, has shown that the standarfields ¢ and ¢’ it is sufficient to consider one-particle-
renormalization theory is applicable to such models, withirreducible(1PI) correlation functions, whose graphical rep-
some obvious modificatiofsee below resentation contains only graphs that remain connected after
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the removal of ondarbitrary) line (i.e., a free-field correla-
tion or response functigrof the graph. G=9eo—-+e —g
The total canonical dimension of an arbitrary 1PI correla-
tion function

T'(Xg, ooy XNG Yo - -2 0YN S Xo)

B 5N+N'F(¢,¢/)
OP(Xq) - - - 0hp(XN) ' (Y1) - - ' (Ynr)

in the time-coordinate representation is given by the reIatiorP]0

+ ag?

, (2.9

FIG. 1. First Feynman graphs for the Green function of the
nlinear diffusion equatiof2.1) for V(G)= —\,G?2.
dr=N(d+2=dy)+N'(d+2-dy), (2.6 (it would be embarrassing to depict the diagrams for frac-
tional «, but the idea is the sameThe lines with a slash

whereN andN’ are the numbers of corresponding fields. lndenote the bare propagator

Eq. (2.5 I'(¢,¢') is the (dimensionlessgenerating func-
tional of 1Pl Green functions. It should be noted, however, exd — r¥/dvqt]
that due to the presence of the ultralocal term in the action, A(t,r)=(pd"' o= g(t)—o
the functionall'(¢, ¢') is notthe Legendre transform of the (4rwot) 92
functional  W(J,3')=Ing(J3,J"), where  G(J,J)

=[D¢' [DpexdS (¢ ,¢)+Ip+I ¢')] is the generating The end with a slash corresponds to the figld and the end
functional of Green functions of the model. Moreover, con-Without a slash corresponds ¢ The initial (left) point in
trary to the usual field theories, the functionalgy,J’)  €ach diagram corresponds %o and the final(right) point
does not include all connected graphsgﬁﬂﬂj')_ By defi- with a variable number of attached lines Corresponmoto
nition of the generating functional, the 1Pl Green functionThe crucial point is that, as is easily seen from Fig. 1, all
with N external ¢ legs andN’ external ¢’ legs may be possible 1Pl subdiagrams entering into the diagrams of
obtained byN functional differentiations of'(¢,¢’) with ~ Pelong to the only 1PI functiofi(x;xo); no other 1PI func-
respect to the fieldp andN’ differentiations with respect to tions are involved. The functio® appears to be “closed
¢'. The canonical dimensions of the functional derivativeswith respect to the renormalization,” i.e., we can eliminate
are related to the dimensions of the corresponding fields a§€ir UV divergences by the only counterterm corresponding
d¥[/6p]=d—dY, d°[8/6¢]=1-d%, and similarly for 10 its 1Pl part’(x;xo). o _
the auxiliary fielde’. Then the total canonical dimension of _ Moreover, the renormalization of the only function
the function(2.5) in the frequency-momentum representation! (X:Xo) is in fact sufficient to completely renormalize all
(obtained by the Fourier transformation with respect to alifunctions withN’>1. A typical diagram foN’=3 is shown
N+N’ independent differences of the time and coordinatd? Fig- 2. It is clear that any such diagram reduces to a
argumentsis obtained from Eq(2.6) by subtracting the term product of blocks that belong to the S|mplgst function with
(N+N')(d+2) and has the form N’=1 (we recall that there is no integration oves, the

(2.9

dF:_d¢N_d¢rN,:_dN, (27)

where the data from Table | are used in the last equality.

The quantity(2.7) is the formal index of the UV diver-
gence for the functiol’. Like for usual(local) models, su-
perficial UV divergences, whose removal requires counter-
terms, can be present only in those functidhgor which
d=dr|,—o is a non-negative integer, see Rdfs-3].

From Eq.(2.7) we conclude that for any positivd; such
divergences can exist only in the 1PI functions wiNi=0
and arbitrary value oN’. For all these functiong=0, that
is, the divergences are logarithmic and the corresponding
counterterms in the frequency-momentum representation are
constants.

At first glance, we have established that the md@ed)
requires infinitely many counterterms, and hence it is not
renormalizable. However, it turns out to be sufficient to

renormalize the 1PI Green functidi(x;x,) only to render FIG. 2. A three-loop Feynman graph for the three-point corre-
the model finite, as we shall now show. o lation function of the nonlinear diffusion equati¢@.1) for V(G)
The first few Feynman diagrams Gfare shown in Fig. 1 = —\,G? illustrating the factorization property (X;,X»,X3:Xo)

for a=2; the symmetry coefficients are shown for general =T"(xy ;%) (X2;X0) ' (X3;Xg).

046105-3



N. V. ANTONOV AND JUHA HONKONEN PHYSICAL REVIEW E66, 046105 (2002

only point that connects the blogks herefore, the diagram Here,A(t,x) is the diffusion propagatdi2.8). Fourier trans-
contains no superficial divergences; all its divergences aréorming I')(t,x) with respect ta, we arrive at the expres-
those of the subdiagrams and they are completely removesion
by the renormalization of the function with’=1. This is
equally true for any diagram of any function wilt' >1. (1) __ f“’ PA(+_t
In the generic case, all the loops are created by the pres-r (k) No 0 drAt=tLk)
ence of a single local vertex with any number 6f legs,
from which continuous chains of retarded diffusion propaga- f

dqg , , ~
tors emanate. Due to the structure of the nonlinear term these (2m)0 A, a(@At’ k-ag)atk—q),
chains do not branch, but they may mergee single ¢’
field in the nonlinearity allows only one outgoing propagator (2.10
from each ordinary vertex, whereas upddncoming chains
are allowed. A little reflection along the lines sketched

above shows then that all divergent 1Pl Green functions ar

whereA (t,k) is the spatial Fourier transform of the diffusion
Fernel (2.8). From the point of view of RG, the IR relevant
erms are given by the leading terms of the gradient expan-

factorized, i o e ~ i
sion of the initial condition:a(gq)=a(0)+o0(q)/q. This al-

F(Xq, oo XniXo) =T(X1:Xg) - - - T'(Xn i Xo) - lows one to replacé2.10 by

Thus, we are left with the only counterterm to the function o dq

I'(x;Xo). It is constant(see abovg which in the time- I'(1)('E,|<)~—?\0J’ dt'A(t—t',k)J JA,q)

coordinate representation corresponds to the funcéifn 0 (2m)

—x )= S(t — (d)(y— i i ~

Xg)=d6(t—1tg) 6'“(x—Xg). In the action functional, after X A(t' k—q)a2(0),

the integration over the field argument, this giv@5(X,).
SU%h lte_rm is presle_nt(ljn thel _e>|<_ten_de(|j ac@rﬁ)hso tr:at our  which corresponds to the localized initial condition with the
model is renormalized multiplicatively, with the only renor- G T AN

malization constant, which we denoke The renormalized amplitudea(0)=fdxa(x).

action has the form Ill. RG EQUATIONS AND RG FUNCTIONS

5§(¢’,¢)=f dx ¢’ (X){— dyp(X) + vA2(X) It follows from Eqgs.(2.3), (2.4), and(2.9) that the original
and renormalized action functionals satisfy the relation
—gruf P (X)) + 2 (Xo). (2.9 S (Z¢',Z 1p,e0)=Sk(¢',b,e,u), if the bare and renor-

malized parameters are related as follows:

Here and below thg and v are the renormalized analogs of B
. . e vo=7, 0o=0 eza 1 (31)
the bare parameterg; is the reference mass in the minimal o=V, JoTYM '
SUbtr?Ct'OWMS) scheme, which we use in practlc_:al calcula- with the only renormalization constadtfrom Eq.(2.9). This
tions; and the constart depends on the dimensionless pa-. . . e
: X implies the relationG(ey)=2""Gg(e,u) for the corre-
rameteryy, «, ande. The renormalized Green functi@y, . : . i . oo
A o . sponding Green functions in EqR.2); i.e., this quantity is
which is finite fore —0, is given by the representati¢B.2) R ) ~
with the substitutiors’ — S_. . multiplicatively renormalizable. We us®, to denote the
R differential operationud,, for fixed e, and operate on both
sides of this equation with it. This gives the basic RG equa-

|tion

If we now replace the local initial condition with an inte-
grable one, ¢(0x)=a(x), then—after  Fourier
transforming—we obtain wave-vector integrals in which al
thg propaggt(?r Imes startlﬂg from the—lirlll-t:(al condition con- [D,+B(9)dg— 7(9)]Gr(e, ) =0, 3.2
tain a multiplicative factora(k)= fdxe a(x). For the
|arge'sca|e asymptotic analySiS Using RG it is sufficient thhere ’DM+E(g)(9g is nothing else than the operatign#
keep the Ieading small WaVe'number tgrms in all the |ineSexpressed in the renorma"zed Variab|es_ In EQZ), we
which amounts to the replacememtk) —a(0)=fdxa(x),  have writtenD,=xd, for any variablex, and the RG func-

and we thus return to loop integrals of the problem withtions (the 8 function and the anomalous dimensiopy are
localized initial condition in whichf dx a(x) is the amplitude defined as
of the initial & function.

To clarify the idea, consider the one-loop graph of Fig. 1, 7(9)55M Inz, IBgE@Mg:g[—g—(a—l) y(9)].
whose analytic expression with the initial conditi@i{0,x) 3.3
=a(x) is

The relation betweer8 and vy results from the definitions

) o PR and the relation$3.1).

X = )‘Of dyfo drA(t=t'x y)f dy, We shall see below that, for smal>0, an IR stable
fixed pointg, of the RG equatioii3.2) exists in the physical

, , regiong>0, i.e., 8(9,)=0, B'(g,)>0. The functionsG
XA(t ,Y—Y1)a(Y1)f dy,A(t",y—yz)alyz). and Gg coincide up to a constart.e., independent of the
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time and space variablefactor Z and the choice of the pa- while the product of two such functions can be represented
rametergbaree, or renormalizece, «) and can equally be as a single integral of a function of the same form with the
used in the analysis of the IR behavior. The general solutiomid of the generalized Feynman formula,

of the RG equations is discussed in detail, e.g., in R&{8].

It follows from this solution that, when an IR stable fixed Fa:a)F(Bib)— F(a+pB) (1
point is present, the leading term of the IR behavior of the ' ' F(a)I'(B) Jo
function Gr=G satisfies Eq.(3.2) with the substitutiong

dss Y(1-s)p 1

—0,, XF(a+B;ast+b(1-5)).
[D,— 7*]Gr(e,u)=0. (3.4)  For the sake of brevity, below we give only the final result,
. . 2 2
In our case, the value of the anomalous dimension at the _q, U aum U 3
fixed point is found exactly owing to the relation betwe@n Z=1+ P + 252 28|“+O(u ), 37

andy in Eq. (3.3),
Y =v9,)=—¢ella—1)=d=2[(a—-1). (3.9

Dimensional considerations yield  Gg(t,r) U=
= (wt) " 92&(1k wPv,r?/tv), whereé is some function of di-

mensionless variables. The dependence annot displayed 54 have writtefl .= a In a+a®@ Y] with the convergent
explicitly, because the derivatives with respect to this paraMzjngle integral “ “

eter do not enter into Eq3.4). It follows from Eq.(3.4) that

where we have introduced a new coupling constant

(4977) afll(afl) (38)

¢ satisfies—at the fixed point—the equatiofDg 1ds RO

—vy*[2]&(s,y)=0, its general solution is &(s,y) l,= fo g{[S(a—l)Jrl]( e D(s+1)(a—1)
=sV*/2X(y), wherey is an arbitrary function of the second

variabley. For the Green functiof2.2) we then obtain +1] WD) g~ Wa=1y (3.9

G(t,r)~Ggr(t,r)~t~ 9277 2y (r2jty) =t~ YDy (r2ty),  in particular,T,=2 In(4/3) andi;=6[In(3—/5)+In(3/2)].
Then for the corresponding function we obtaing,,
where the form on the “scaling functionf(r?/tv) is not =% u=—ufe+ B,d,In 21, where we have used the last

determined by Eq(3.4). The dependence on the parametersrelaﬁon in Eq.(3.1) and the fact tha’f?ﬂ=,8uz9u for the func-

v and,L_L can be easily restored from the dimensionality con-; dependent only on. This yields
siderationg(see Table)l,

. —eu
Bl =1 ") Dynz” (3.10

Although the value ofy* in Eg. (3.5 and the solutior(3.6) Substituting Eq(3.7) into Ea. (3.10 ai
have been obtained without practical calculation of the con- ubstituting Eq(3.7) into Eq.(3.10 gives

G(t,r)~(vot) YDy (r?/tyy). (3.6)

stant Z and functions(3.3), such calculation is needed to W= —ule—ula—1+u(a—DT.1+0(u*

check the existence, positivity, and IR stability of the fixed Aulu) o=l 1)+ ua= 1)1+ O )i3-11)
point. Within thee expansion, these facts can be verified

already in the simplest one-loop calculation. Note that the poles im in the constanZ cancel out in the

In order to check the validity and self-consistency of thefunction (3.11); this is a manifestation of the general fact that
approach, we calculated the const@ntip to the two-loop the RG functions must be UV finite, i.e., finite as>0. The
approximation. The calculation is performed in the cancellation is possible by virtue of the correlation that exists
frequency-momentume, k) representation and calls for the between theu/s and (u/e)? terms in Eq.(3.7) and can be
formulas derived in Ref.26] for a model of critical dynam- used as an additional check of the consistency of the ap-

ics. proach. The simpldlinear dependence or is a feature
Two key points are as follows: the convolution of two specific to the MS scheme.

functions of the fornF («;a)=(—iw a+k?) ~“is a function From Eg.(3.11) we find an explicit expression for the

of the same form, coordinate of the fixed point,
F(a;a)F(B;b)=K(a,B;a,b)F(a+p—di2—1;a+b), & g2

U, = +T, +0(&%). (3.12
- - (a—1) (a—1)2
wherea andb are both positive and the coefficient has the

form As already said above, for small positiveand a>1 the
K(a,B;a,b)=ad2" apd2-B(g+p)a+p-d-1 fixed point is positive and IR stablgg/,(u, )=+ O(&?).

In the casex=1 the interactiorV(¢) = — ¢ reduces to

XT(a+B—d2—1)IT(a)T(B)(4m)?, a “mass term,” Eq.(2.1) becomes linear with the solution
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tion (3.6), however, does not predict any deviation from the
canonical value=2, since there is no renormalization of
the diffusion coefficient in the MS scheme we have used. In
Ref. [22] with the use of a different renormalization proce-
dure it was concluded that- 2= 0O(&?). We think, however,
that it is not consistent to prescribe physical quantities values
of the orderO(&?) on the basis of thene-loopcalculation
carried out in Ref[22], but a two-loop analysis is required

We have applied the field-theoretic renormalization group/r this accuracy. . _
to the nonstochastic differential equati¢®.l) and estab- "€ RG analysis allows one to derive the RG equation
lished the scaling behavior in the IR asymptotic range, as #9orously and to prove that the behavi@:6) is indeed re-
consequence of the existence of the IR stable fixed point iglized fore>0, go>0 in the IR asymptotic range, specified
the physical range of parameters. The same asymptotic b&Y the relationg~r? andr <7, where p=g, ' is the UV
havior is shown to be valid for integrable initial conditions scale. The general solution of E@.2) interpolates between
which thus constitute the universality class of this fixedthe ordinary perturbation theory for E¢.1) and the self-
point. similar asymptotic expressiofB8.6). The scaling function

The key points are the formulation of the problem as ax(y) can be calculated within the expansion; in the lowest
field-theoretic model with an ultralocal term concentrated aorder one easily obtaing(y) =exq —(y/2)?]+ O(z).
a space-time point and the fact that this model appears mul- We hope that the ideas presented above might be useful in
tiplicatively renormalizable, in spite of the naive power other models containing ultralocal contributions, which have
counting that indicates nonrenormalizability. several charges and hence richer IR behavior. Another direc-

The two-loop calculation confirms internal consistency oftion of generalization would be the analysis of Green func-
the approach. tions of vector quantities.

The simple explicit form of the scaling dimensions fol-
lows from the fact that there is only one independent renor-
malization constant in the problem. In particular, this ex-

exfd — Nt — r?/4vyt]

Ga=l(tvr):0(t) (47TV0t)d/2

in which the purely time-dependent decay factor is exponen
tial instead of the powerlike one in E¢B.6).

IV. DISCUSSION
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