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Nonlinear response with dichotomous noise
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Dichotomous noise appears in a wide variety of physical and mathematical models. It has escaped attention
that the standard results for the long time properties cannot be applied when unstable fixed points are crossed
in the asymptotic regime. We show how calculations have to be modified to deal with these cases and present
as a first application full analytic results for hypersensitive transport.
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While the Wiener process together with its ‘‘time deriv
tive,’’ the Gaussian white noise, is certainly the method
choice to describe Brownian motion, the motion induced
another fundamental stochastic process, namely, the dich
mous Markov process@see, e.g., Refs.@1,2##, has its own
virtues and interest. Systems driven by dichotomous no
can often be described analytically, including the Gauss
white noise case as a specific limit, and allow the analy
investigation of the effects of the finite correlation time
the noise, notably in noise induced transitions, noise indu
phase transitions, stochastic resonance, and ratchets
chotomous noise is often a good representation of the ac
physical situation, e.g., thermal transitions between two c
figurations or states, and can easily be implemented a
external noise, with the additional advantage that the sup
of this noise is finite.

A widely studied generic stochastic equation that d
scribes the temporal evolution of a single scalar variablex(t)
is

ẋ5j~ t !v~x!1F, ~1!

where the dot stands for the time derivative,j(t) is a sym-
metric dichotomous Markov process that takes on the va
61 with transition ratek, v(x) is a given velocity profile,
andF is a constant external force. One can of course em
lish this description in a variety of ways such as, e.g.,
allowing for a state- and/or time-dependent external for
but here we adhere to this simple form. Existing results
clude the steady state distribution@3,4# and first passage tim
moments, see, e.g., Ref.@5#. When Eq.~1! is defined on an
interval with periodic boundary conditions, one can evalu
the stationary probability flux and from it the avera
asymptotic drift velocity or diffusion coefficient, a problem
that has recently received a great deal of attention in
context of Josephson junctions and Brownian motors@6#.
Although these results are often claimed to be comple
general, our study shows that this isnot the case. Indeed, to
our knowledge, with the exception of Ref.@7#, all the exist-
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ing results are limited to motion that asymptoticallydoes not
cross unstable fixed points of the dynamics. The main pur-
pose of our work is to point out where the existing resu
break down, and to present the procedure to obtain a f
general solution for the asymptotic average velocity, inclu
ing, as a first direct application, the problem of hypersen
tive response@8#.

Consider, then, the prototypical stochastic different
equation~1!. We take the velocity profilev(x) to be periodic,
v(x)5v(x1L), with zero average,*0

Lv(x) dx50. A sche-
matic representation of the two configurations assumed
the ‘‘net potentials’’7V(x)2Fx associated with the righ
hand side@with v(x)[2dV(x)/dx] is shown in Fig. 1. The
fixed points of the dynamics are the points at which6v(x)
1F vanish, i.e., the local extrema of the net potentials. T
stochastic dynamics~1! can equivalently be described by th
master equation for the probability densitiesP1(x,t) and
P2(x,t) for being atx at time t if j511 and21, respec-
tively, with xP@0,L# and periodic boundary conditions:

]P6~x,t !

]t
57

]

]x
$@v~x!6F#P6~x,t !%

2k@P6~x,t !2P7~x,t !#. ~2!

FIG. 1. The net potentials7V(x)2Fx.
©2002 The American Physical Society03-1
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To find analytic expressions for the asymptotic stea
state~i.e., time-independent! probabilities and mean velocit

^ẋ&, it is more convenient to introduce the sum and diff
ence probability densitiesP(x,t)5P1(x,t)1P2(x,t) and
p(x,t)5P1(x,t)2P2(x,t). Summation of the equations i
Eq. ~2! then immediately leads to the conclusion that in t
steady state the probability fluxJ associated withP(x),
namely,J5FP(x)1v(x)p(x), is a constant whose value
to be determined. It also leads to a direct relation between
mean velocity in the stationary state and the flux,^ẋ&
5*0

L$@v(x)1F#P1(x)1@2v(x)1F#P2(x)%dx5LJ.
Again in the steady state, subtraction of the equation

Eq. ~2! and the constant flux condition leads to the followi
first-order differential equation forp(x):

@F22v2~x!#
dp~x!

dx
22@v~x! v8~x!2kF#p~x!1Jv8~x!50,

~3!

wherev8(x)5dv(x)/dx. The solution to this equation, to
gether with the constant flux condition and the normalizat
condition forP(x), *0

LP(x)dx51, can be used to determin

P(x), the fluxJ and the mean velocitŷẋ&.
The crux of the problem now resides in finding the so

tion to Eq. ~3!. This solution is straightforward when@F2

2v2(x)# has no zeroes, that is, when the net potentials hav
no extrema within the interval (0,L). In this case the stan
dard method of variation of parameters leads to the fam
solution

p~x!52
J

uF22v2~x!u
@CG~x,0!1H~x,0;x!#, ~4!

where C is a constant of integration that arises from t
general solution to the homogeneous part of Eq.~3!, the
second contribution is the particular solution, and we ha
defined the functions

H~z,y;x!5E
y

z

sgn@F22v2~x8!#v8~x8!G~x,x8!dx8,

G~z,y![expF22kFE
y

z dx

F22v2~x!
G . ~5!

The usual procedure to determineC is to require periodicity
of p(x), recalling thatv(x) is periodic. One finally obtains
p(x)5@J2FP(x)#/Jv(x), and

P~x!5
J

F H 12
v~x!

@12G~0,L !#@F22v2~x!#

3E
x

x1L

dx8v8~x8!G~x,x8!J . ~6!

The normalization ofP(x) determines the value of the fluxJ
and leads to the following result for the mean velocity in t
steady state:
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^ẋ&5FH 12
1

L@12G~0,L !#
E

0

L

dx
v~x!

F22v2~x!

3E
x

x1L

dx8v8~x8!G~x,x8!J 21

. ~7!

The standard results shown above are applicable not
in the absence of fixed points, but also when the asympt
behavior is governed bystablefixed points. In this latter case
the dynamics settles into an alternating motion between th
points, so that they delimit the interval in which the stea
state probability is nonzero@4#. The associated normalizabl
divergences at the fixed points represent regions where
probability density for finding the system is high.

The situation is entirely different, both physically an
mathematically, when the system can crossunstablefixed
points within the interval (0,L) in the long time limit. A
simple illustration is provided by the examplev(x)5sinx. In
the absence of an external force, the dynamics is restricte
an interval@kp,(k11)p# (k integer). Even though the ap
plication of an external forcinguFu,1 cannot induce ‘‘es-
cape’’ from this interval in either of the separate dynam
ẋ5sinx1F and ẋ52sinx1F, running solutions with finite
average velocity appear when the dynamics switches b
and forth between the two@8# ~see Fig. 1!. The explicit cal-
culation of this velocity is one of our main goals. Clearly, t
solution~6! is no longer correct because it contains nonin
grable singularities~see below! at the unstable fixed point
where the probability of finding the system is expected to
low, not high.

For simplicity we restrict our presentation to velocity pr
files v(x) that are continuously decreasing functions ofx on
@0,L/2# and symmetric aboutL/2, v(x1L/2)52v(x). This
implies thatP(x1L/2)5P(x) and p(x1L/2)52p(x), so
that we can limit our analysis to the interval@0,L/2#. In this
‘‘minimal scenario,’’ the equationF2 2 v2(x)50 has only
two solutions in the interval@0,L/2#, namely, x1, corre-
sponding to an unstable fixed point in thej521 dynamics
@F5v(x1)#, andx2, a stable fixed point in thej511 dy-
namics@F52v(x2)#, with x2.x1. The steady state result
leading to Eq.~3! still apply, but the solution to Eq.~3! is
more delicate than the ‘‘blind’’ integration that yields Eq.~6!.
Indeed, the coefficient of the first derivative is zero at t
fixed points, which now lie entirely within the support of th
probability distribution. Thus, the equation becomes singu

The method of variation of parameters for an equation
the type~3! leads to a solution which is a sum of the gene
solution of the homogeneous equation and a particular s
tion of the inhomogeneous equation, as in Eq.~4!. The
subtlety lies in the determination of the constant of integ
tion C, which in the previous case was fixed simply by im
posing periodic boundary conditions. In the vicinity of th
stable fixed pointx2 this straightforward procedure leads
the dependenceP(x);ux2x2uk/uv8(x2)u21, which is continu-
ous whenk/uv8(x2)u.1 and divergent but integrable fo
k/uv8(x2)u<1. This result causes no mathematical difficu
and is consistent with the physical intuition that probabil
3-2
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near a stable fixed point should indeed build up, especi
when the switching rate is low. At the unstable fixed po
x1, however, this procedure leads to an apparent noni
grable divergence,P(x);ux2x1u2k/uv8(x1)u21, which is
clearly unphysical and mathematically improper in view
the requirement of normalization. The fallacy lies in the a
sumption that a single constantC is valid throughout the
region (0,L). In fact, the solution~4! is valid in the separate
intervals@0,x1), (x1 ,x2), and (x2 ,L/2#, but not necessarily
with the same constant of integrationin all of them. Indeed,
there isexactly onechoice of this constant valid for both
@0,x1) and (x1 ,x2) such that the divergence atx1 is removed,
and another choice valid in the interval (x2 ,L/2# that ensures
required continuity and periodicity. In other words, ev
though the general solution of the homogeneous equa
always has a divergence, there exists exactly one solutio
the full inhomogeneous equation~3! that has no divergence
and is actually completely smooth atx1. This solution is
given by Eq.~4! with the choiceC52H(x1,0;0) in both
intervals@0,x1) and (x1 ,x2) @9#. This choice insures that th
coefficient of the divergent term vanishes atx5x1. We con-
clude that forxP@0,x2),

P~x!5
J

F F11
v~x!

uF22v2~x!u
H~x,x1 ;x!G . ~8!

Note that P(x) is now continuous at x1, and
that lim

x↘x1
P(x)5 lim

x↗x1
P(x)5JF21$12@2(k/uv8(x1)u

11)#21% is indeed finite.
For xP(x2 ,L/2#, the result~4! for p(x) applies again, but

now the constantC is determined by imposing the continuit
of p(x) at x5L/2. One finds

P~x!5
J

F H 11
v~x!

uF22v2~x!u
@H~x,L/2;x!

1G~0,L/2!H~x1,0;x!#J . ~9!

At the stable fixed pointx2 , P(x) has the behavior describe
earlier, i.e., it is continuous fork/uv28(x2)u.1 and divergent
but integrable fork/uv8(x2)u<1.

The values of the fluxJ and of the average velocity follow
from these results by imposing the normalization ofP(x):

^ẋ&5FH 11
2

LE0

x2
dx

v~x!

uF22v2~x!u
H~x,x1 ;x!

1
2

LEx2

L/2

dx
v~x!

uF22v2~x!u
@H~x,L/2;x!

1G~0,L/2!H~x,0;x!#J 21

. ~10!
04560
ly
t
e-

f
-

n
to

This is our main new result. Note that the above proced
can be repeated straightforwardly but tediously for mo
complicated cases involving several stable and unstable fi
points.

To illustrate our findings with explicit results, we turn to
particular case of a piecewise linear profile

v~x!5H v0 for xP@0,L/222l !,

v0S L

2 l
212

x

l D for xP@L/222l ,L/2!,

2v~x2L/2! for xP@L/2,L !,

~11!

with l<L/4 and, of course, the periodicity conditionv(x
1L)5v(x). It is convenient to introduce the following di
mensionless variables:

f 5F/v0 , a5 lk/v0 , G54l /L. ~12!

In this case the functionH(x,0;0)/v0[T(x) becomesT(x)
50 for xP@0,L/222l ) and, forxP@L/222l ,L/2),

T~x!5U11 f

12 fU
a

expF2
4a f ~12G!

~12 f 2!G
G

3E
1

L/2l 212x/ l

sgn~ f 22s2!U f 2s

f 1sU
a

ds. ~13!

Explicit exactresults for the probability densities and for th
resultant average velocity for all values off are available and
will be detailed elsewhere@9#. Here we exhibit only some o
these results for the new case 0, f ,1. Figure 2 depicts a
typical probability densityP(x) vs x/L that clearly shows
the agreement between the exact theoretical results and s
lations. For the average velocity we find

FIG. 2. Probability densityP(x) vs x/L for the parameter values
f 50.5, G50.4, anda51.0. Histogram: simulation results. Curve
exact theory.
3-3
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^ẋ&5FS 12
GT~x1!

4a f FexpS 4a f ~12G!

G~12 f 2!
D 21G

1
G~12 f !a

2~11 f !a
expS 4a f ~12G!

G~12 f 2!
D

3H E
21

1

dt
t@T@L/22 l ~ t11!#2T~x1!#

ut2 f u11aut1 f u12a

1FT~x1!X11S 11 f

12 f D
2a

expS 2
4a f ~12G!

G~12 f 2!
D C

2T~L/2!G E
21

2 f

dt
t

ut2 f u11aut1 f u12a J D 21

. ~14!

The above integrals can be evaluated explicitly for spec
values ofa, in particular, fora51/2, 1, and 2@9#. The
analytic and simulation results for the variation of the av
age velocity withf ~again with full agreement! are shown in
Fig. 3. In the limit of slow switching rate, that is, in th
adiabatic regimea→0, one recovers the region of hyperse
sitive response discussed in Ref.@8#, namely, ^ ẋ&
'2v0a/G. The physics of this result is explained as follow
The stable and unstable fixed points of the dynamics, wh
coincide in the absence of forcing, are shifted apart by
amount of order oflF /v0 for a small force. Upon each
switch of the dichotomous process and for sufficiently sl
switching rate, the particle will glide down to the next stab
fixed point, crossing the location of the unstable fixed po
of the alternate dynamics, cf. Fig. 1. As the average ti
between switches isk21, and the distance covered isL/2, the
mean velocity is just̂ ẋ&5Lk/2, independently ofF andv0.
The typical timet for a particle to escape the region arou
the fixed point is determined by the relatio
( lF /v0)exp(v0t/l)'l. The crucial observation for hypersens
tive response is that the necessary condition,t!k21 or a
nd

,

s.

-

04560
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!(2ln f)21, can be satisfied by very small forces for mode
ately smalla because of the logarithmic dependence onf,
see Fig. 3. In this figure one also observes the region
‘‘normal’’ ~i.e., linear! response for higher forcing or fre
quency and, more relevant to our preoccupation here,
strongly nonlinear dependence at very low forcing. In fact

the limit f→0, one finds from Eq.~14! that ^ ẋ&/v0

'@2aG( ln f )2#21. In other words, hypersensitive respon
is very pronounced in this region, with the velocity pickin
up with an infinite derivative atf 50.

In conclusion, the procedure presented here has reso
all technical problems related to steady state dichotom
dynamics, making possible the analytic description of ca
involving the crossing of fixed points in the asymptotic r
gime.

This work was partially supported by the National Sc
ence Foundation under Grant Nos. PHY-9970699 and DM
0079478.

FIG. 3. Mean velocity as a function of the applied force f
various values ofa. Note the hypersensitive response.
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