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Nonlinear response with dichotomous noise
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Dichotomous noise appears in a wide variety of physical and mathematical models. It has escaped attention
that the standard results for the long time properties cannot be applied when unstable fixed points are crossed
in the asymptotic regime. We show how calculations have to be modified to deal with these cases and present
as a first application full analytic results for hypersensitive transport.
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While the Wiener process together with its “time deriva- ing results are limited to motion that asymptoticallyes not
tive,” the Gaussian white noise, is certainly the method ofcross unstable fixed points of the dynami€ke main pur-
choice to describe Brownian motion, the motion induced bypose of our work is to point out where the existing results
another fundamental stochastic process, namely, the dichotbreak down, and to present the procedure to obtain a fully
mous Markov procesfsee, e.g., Refd.1,2]], has its own general solution for the asymptotic average velocity, includ-
virtues and interest. Systems driven by dichotomous noiséng, as a first direct application, the problem of hypersensi-
can often be described analytically, including the Gaussiative responsg8].
white noise case as a specific limit, and allow the analytic Consider, then, the prototypical stochastic differential
investigation of the effects of the finite correlation time of equation(1). We take the velocity profile(x) to be periodic,
the noise, notably in noise induced transitions, noise induced(x)=v(x+L), with zero averagefgv(x) dx=0. A sche-
phase transitions, stochastic resonance, and ratchets. Dhatic representation of the two configurations assumed by
chotomous noise is often a good representation of the actughe “net potentials” = V(x) — Fx associated with the right
physical situation, e.g., thermal transitions between two conhand sidgwith v(x)=—dV(x)/dx] is shown in Fig. 1. The
figurations or states, and can easily be implemented as &xed points of the dynamics are the points at whith (x)
external noise, with the additional advantage that the support F vanish, i.e., the local extrema of the net potentials. The
of this noise is finite. stochastic dynamicgl) can equivalently be described by the

A widely studied generic stochastic equation that demaster equation for the probability densitifs (x,t) and
scribes the temporal evolution of a single scalar variable ~ p_(x,t) for being atx at timet if £&=+1 and—1, respec-

1S tively, with xe[0,L] and periodic boundary conditions:
X=&(t)v(x) +F, (1) IPLxH _J N
ot~ T (W) EFIPL(X D}
where the dot stands for the time derivatiéét) is a sym-
metric dichotomous Markov process that takes on the values —K[P(x1)=Pz(x1)]. 2
+1 with transition ratek, v(x) is a given velocity profile,
andF is a constant external force. One can of course embel- -V{(x)-Fx

lish this description in a variety of ways such as, e.g., by
allowing for a state- and/or time-dependent external force,
but here we adhere to this simple form. Existing results in-
clude the steady state distributif®14] and first passage time
moments, see, e.g., R¢b]. When Eq.(1) is defined on an
interval with periodic boundary conditions, one can evaluate
the stationary probability flux and from it the average V(x)-Fx
asymptotic drift velocity or diffusion coefficient, a problem
that has recently received a great deal of attention in the
context of Josephson junctions and Brownian mofdk 0 XX L
Although these results are often claimed to be completely
general, our study shows that thisniet the case. Indeed, to
our knowledge, with the exception of R¢¥], all the exist- FIG. 1. The net potentialg V(x) — Fx.

net potentials
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To find analytic expressions for the asymptotic steady . 1 L v(X)
state(i.e., time-independehprobabilities and mean velocity (X)y=F{ 1— j dx
N . : . L[I1-GOL)1Jo  F2-p3(x)
(x), it is more convenient to introduce the sum and differ-

ence probability densitie®(x,t)=P, (x,t)+P_(x,t) and <t L -1
p(x,t)=P_,(x,t)—P_(x,t). Summation of the equations in xf dx’v’(x’)G(x,x’)] . (7
Eq. (2) then immediately leads to the conclusion that in the x

steady state the probability flux associated withP(x),

o b6 etermined, It alsd loats o a ditect reation between the. 1178 Standard resus shown above are applicabe not only
o ] . I the absence of fixed points, but also when the asymptotic
mean velocity in the stationary state and the fl4x)  pehavior is governed bstablefixed points. In this latter case
=[5{lv () +FIP () +[ —v(x) + FIP_(x)}dx=LJ. the dynamics settles into an alternating motion between these
Again in the steady state, subtraction of the equations ifoints, so that they delimit the interval in which the steady
Eq. (2) and the constant flux condition leads to the following state probability is nonzerat]. The associated normalizable

first-order differential equation fap(x): divergences at the fixed points represent regions where the
dp(x) probability density for finding the system is high.
F2_,2 ) (%) — KE +J0'(x)=0, The situation is entirely different, both physically and
[ vi(0)] dx [0)v"(x) 1P0O + 30700 mathematically, when the system can crosstablefixed

3 points within the interval (@Q,) in the long time limit. A
simple illustration is provided by the exampléx) =sinx. In

the absence of an external force, the dynamics is restricted to

gethe.r. with the consLtant flux_condition and the normalizgtionan interval[ kar, (k+1)7] (k integer). Even though the ap-
condition forP(x), JgP(x)dx=1, can be used to determine plication of an external forcingF|<1 cannot induce “es-

P(x), the fluxJ and the mean V9|OCi_t§/5<)-_ o cape” from this interval in either of the separate dynamics
The crux of the problem now resides in finding the solu-J _ ginx+F andx= — sinx+F, running solutions with finite

tion to Eq. (3). This solution is straightforward whe[er average velocity appear when the dynamics switches back

—v*(x)] has no zerogghat is, when the net potentials have g forth between the twis] (see Fig. 1 The explicit cal-

no extrema within the interval (D). In this case the stan-  cyation of this velocity is one of our main goals. Clearly, the

dard.method of variation of parameters leads to the fam'“arsolution(G) is no longer correct because it contains noninte-

solution grable singularitiegsee below at the unstable fixed points
where the probability of finding the system is expected to be

D(X)=— — 2 [CG(X0+H(x0x)] (4 oW nothigh.
|F2—02(x)| ' T For simplicity we restrict our presentation to velocity pro-

files v (x) that are continuously decreasing functionsxain

where C is a constant of integration that arises from the[0,L/2] and symmetric about/2, v(x+L/2)= —v(x). This

general solution to the homogeneous part of B), the implies thatP(x+L/2)=P(x) and p(x+L/2)=—p(x), so

second contribution is the particular solution, and we havehat we can limit our analysis to the intenjdl, L/2]. In this

wherev’(X) =dv(x)/dx. The solution to this equation, to-

defined the functions “minimal scenario,” the equatiorF? — v2(x)=0 has only
two solutions in the interval0,L/2], namely, x;, corre-

z . . . . .
H(zy:x)= | safF2—u2(x) o’ (X' )G(x,x")dX’, sponding to an unstable fixed point in the —1 dynamics
(2.y:) Jy IR ) " (X)GxXT) [F=0(x,)], andx,, a stable fixed point in thé=+1 dy-

namics[ F=—v(X,)], with Xx,>X;. The steady state results

leading to Eq.(3) still apply, but the solution to Eq3) is
. (5>  more delicate than the “blind” integration that yields E§).
Indeed, the coefficient of the first derivative is zero at the
fixed points, which now lie entirely within the support of the
probability distribution. Thus, the equation becomes singular.

The method of variation of parameters for an equation of

the type(3) leads to a solution which is a sum of the general
solution of the homogeneous equation and a particular solu-

y F2—v?(x)

z dx
G(z,y)zex;{ —ZKFJ —_

The usual procedure to determi@eis to require periodicity
of p(x), recalling thatv(x) is periodic. One finally obtains
p(xX)=[J—-FP(x)]/Jv(x), and

P(x)=i|1— v(X) tion of the inhomogeneous equation, as in Ed). The
F [1-G(OL)][F2—0v2(x)] subtlety lies in the determination of the constant of integra-
tion C, which in the previous case was fixed simply by im-
xxboo , posing periodic boundary conditions. In the vicinity of the
X fx dxv" (X)) G(x,X") 1. ©®) stable fixed poink, this straightforward procedure leads to

the dependencB(x)~|x—x,|¥/I""*21=1 which is continu-
The normalization oP(x) determines the value of the flix  ous whenk/|v’(x,)|>1 and divergent but integrable for
and leads to the following result for the mean velocity in thek/|v’(x,)|<1. This result causes no mathematical difficulty
steady state: and is consistent with the physical intuition that probability
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near a stable fixed point should indeed build up, especially e e
when the switching rate is low. At the unstable fixed point L
X1, however, this procedure leads to an apparent noninte-
grable divergence,P(x)~|x—x,| ¥I''C0I=1 " which is
clearly unphysical and mathematically improper in view of
the requirement of normalization. The fallacy lies in the as-
sumption that a single constafit is valid throughout the
region (0L). In fact, the solutior{4) is valid in the separate
intervals[ 0x1), (X1,X5), and ,,L/2], but not necessarily
with the same constant of integratiamall of them. Indeed,
there isexactly onechoice of this constant valid for both
[0xx4) and (X;,X5) such that the divergenceaf is removed,
and another choice valid in the interval,( L/2] that ensures
required continuity and periodicity. In other words, even

though the general solution of the homogeneous equation L T S U ST NURSS S R—" S—

always has a divergence, there exists exactly one solution to 0 0.1 0.2 VL 03 04 05

the full inhomogeneous equatidB) that has no divergence :

and is actually completely smooth &t. This solution is FIG. 2. Probability density?(x) vsx/L for the parameter values

given by Eq.(4) with the choiceC=—H(x;,0;0) in both  {=0.5 I'=0.4, anda=1.0. Histogram: simulation results. Curve:
intervals[0,x;) and (x;,x,) [9]. This choice insures that the exact theory.
coefficient of the divergent term vanishesxatx;. We con-

clude that forxe [0x,), This is our main new result. Note that the above procedure
can be repeated straightforwardly but tediously for more
3 0 (X) co_mplicated cases involving several stable and unstable fixed
P(X)= 2| 1+ —————HXxX) |. (8  points. o -
F |F2—v2(x)| To illustrate our findings with explicit results, we turn to a
particular case of a piecewise linear profile

Note that P(x) is now continuous atx;, and

that lim_ PO)=lim, . P()=IF H1-[2(K/v’ (x)|

vy forxe[OL/2—-2]),
X/

1y s - L X
+1)] '} is indeed finite. , , v(X)= vo<——1——) for xe[L/2—21,L/2), (11)
Forxe (x,,L/2], the resuli(4) for p(x) applies again, but 21 |
now the constant is determined by imposing the continuity —v(x—L/2) forxe[L/2L),

of p(x) atx=L/2. One finds

with I<L/4 and, of course, the periodicity conditian(x

J v(X) +L)=v(x). It is convenient to introduce the following di-
P(x)= =4 1+ ————[H(x,L/2;x) mensionless variables:
F |F2—v%(x)]
f=Flvg, a=lklvg, T'=4l/L. (12
+G(0,L/2)H(x4,0;x)] ¢ - (9)

In this case the functiokl(x,0;0)/v,=T(x) becomesT(x)
=0 forxe[0,L/2—2]) and, forxe[L/2—2I,L/2),
At the stable fixed point,, P(x) has the behavior described

earlier, i.e., it is continuous fdt/|v(x,)|>1 and divergent 14f@ 4af(1-T)
but integrable fok/|v’(x,)|<1. T(x)= 17 ex;{ -
The values of the flud and of the average velocity follow 1- (1-f9)r

from these results by imposing the normalizationPgi):

a

ds. (13

L/2l—1—x/1 _ f—s
XL sgrn(f<—s9) s

<5<>:F[ 1+ éfoxzd SLICYRTN—

X| F2—v?(x)]| Explicit exactresults for the probability densities and for the
resultant average velocity for all valuesfaire available and
2 (L2 v(X) will be detailed elsewherf9]. Here we exhibit only some of
+ [L X|F2—v2(x)| [H(x,L/2;x) these results for the new casec®<1. Figure 2 depicts a
z typical probability densityP(x) vs x/L that clearly shows
-1 the agreement between the exact theoretical results and simu-
+G(0,L/2)H(x,0;x)]] . (10 lations. For the average velocity we find
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: I'T(xy) 4af(1-T) L R COL S R BN S - R TR
Xy=F| 1— ex -1 i
% ( daf p(m—fZ) D anto :

0n.15F o ou=2.0

+F(1—f)“e 4af(l—F)) [ @ a=002

X My e
201+H)* T\ T(1-12) 2 e
¥ ﬂl_
1 {[T[L/2—1(t+1)]-T(x ¥
XU 4T (t+1)]-T(xy)] 4

o

TSI TR

ol )(1+ 1+f)2”‘ p( 4af(1—F))) e
X — exp - ——= :
l o F(l_fZ) (} — : 1 ; 1 i 1 3 1 i
. 1 0 002 (.04 ¢ 0.06 .08 0.1
—T(L/2) f dt——— 1_a}) - (14
-1 [t= e | FIG. 3. Mean velocity as a function of the applied force for

. . ... various values ofxr. Note the hypersensitive response.
The above integrals can be evaluated explicitly for specific P P

values ofa, in particular, fora=1/2, 1, and 2[9]. The

analytic and simulation results for the variation of the aver-<(—Inf)™, can be satisfied by very small forces for moder-
age velocity withf (again with full agreemeitare shown in ~ ately smalla because of the logarithmic dependencefon
Fig. 3. In the limit of slow switching rate, that is, in the see Fig. 3. In this figure one also observes the region of
adiabatic regimer— 0, one recovers the region of hypersen-“normal” (i.e., linea) response for higher forcing or fre-
sitive response discussed in Ref8], namely, (x) quency and, more relevant to our preoccupation here, the
~2v,alT. The physics of this result is explained as follows. strongly nonlinear dependence at very low forcing. In fact in
The stable and unstable fixed points of the dynamics, whiclthe limit f—0, one finds from Eq.(14) that (x)/vg
coincide in the absence of forcing, are shifted apart by an<[2aI'(Inf)2]~1. In other words, hypersensitive response
amount of order ofiF/v, for a small force. Upon each s very pronounced in this region, with the velocity picking
switch of the dichotomous process and for sufficiently slowyp with an infinite derivative at=0.

switching rate, the particle will glide down to the next stable | conclusion, the procedure presented here has resolved
fixed point, crossing the location of the unstable fixed pointy)| technical problems related to steady state dichotomous
of the alternate dyn_almlcs, cf. Fig. 1. As the average timgjynamics, making possible the analytic description of cases
between switches is” *, and the distance coveredli&2, the iy 6lving the crossing of fixed points in the asymptotic re-
mean velocity is jus{x)=Lk/2, independently oF andv,.  gime.

The typical timer for a particle to escape the region around

the fixed point is determined by the relation This work was partially supported by the National Sci-
(IF/vg)exporl)=I. The crucial observation for hypersensi- ence Foundation under Grant Nos. PHY-9970699 and DMS-
tive response is that the necessary conditiogk * or a 0079478.
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