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Saturation of the production of quantum entanglement between weakly coupled mapping systems
in a strongly chaotic region
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The production of quantum entanglement between weakly coupled mapping systems, whose classical coun-
terparts are both strongly chaotic, is investigated. In the weak-coupling regime, it is shown that time-
correlation functions of the unperturbed systems determine the entanglement production. In particular, we
elucidate that the increment of the nonlinear parameter of coupled kicked tops does not accelerate the entangle-
ment production in the strongly chaotic region. An approach to the dynamical inhibition of entanglement is
suggested.
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In a quantum composite system, even if the subsystemglexity of phase-space dynamics is the source of the diffi-
are remotely separated and the whole system is in a pureulty in obtaining a theoretical explanation for Miller and
state, the subsystems generically have a nonclassical corrgarkar’s result.
lation [1]. This striking phenomenon is called quantum en- Our aim is to provide a theoretical argument of entangle-
tanglemenf2], which is utilized not only to achieve the pro- ment production in weakly coupled chaotic systems. In con-
cedures that have no classical analo@sg., quantum trast to Miller and Sarkar’s work, we focus on tegongly
information processinfg]), but also to realize the “classical chaotic region where the effect of tori is small, to facilitate in
world” in which quantum interference phenomena are «de-Obtaining a theoretical _explanatlon. Sta_lrtmg from separable
cohered” as a result of quantum dynamfeg. Even when PUre states, we examine _the produ_ctlons of quantum en-
there is no quantum entanglement between subsystems,t%Pglememdue to unitary time evolutions. The entanglement

weak interaction between the subsystems generally produc ég?mugi'gntﬁgof:(fjﬁzrig filr%vev g?il?stsrifa\ll:/eiiggﬁglgn%t;ws_
guantum entanglement during unitary time evoluti¢f$ ' y Y

o : : - is relatively long. Hence, the entanglement production pro-
This is an important dynamlcal_orlgm of quOhere'ﬁ.@ cesses are nearly stationary processes, at least, in a short time
Through a number of numerical experiments, it is known

hat th ducti ¢ I induced b eriod. This enables us to introduce an entanglement produc-
that the productions of entanglements Induced by quanturf,, rie \We investigate how the entanglement production
dynamics heavily depend on the qualitative nature of th

) ) . Gate depends on the nonlinear parameter below.
corresponding classical dynamics, namely, regular or chaotic o, numerical experiments employ coupled kicked tops

[6-9], as is easily expected from the studies of “quantum[g] First, we introduce their constituent, a kicked ],
chaqs [10]. On one hand, in classmglly.regular system;, th%hich is described by the Hamiltoniarfi,= wjy/Z
confinement of phase-space dynamics in a narrow region enJ;A 0 KI2/(2i hered: is theith t of th
closed by KAM tori makes it difficult to produce strong en- lar r$1)m Zm( rjn) W rerteri '? thelt . go;r;\porr:]en n(i)t q N a:(nt%u-
tanglements, in generfll]. On the other hand, the absence ar momentum opeérator ot the topis the magnitude of the
. T . ; angular momentumk is a nonlinear parameter, anii(t)
of such dynamical barriers in classically chaotic systems pro-" : L R
motes the production of entanglement. Although there arZE”EZ‘S(t_n) IS a penqdm Qelta functpn. Second, we
" foct the oh d. . t mploy the following Hamiltonian to describe the whole sys-

quantum etiects on the phase-space dynamics, €.9., NNk, 15t js composed of two kicked tops:
ings and localization§13], in both regular and chaotic sys-
tems, it is confirmed that the scenario above qualitatively N PP A
holds[6-9]. H=H, ®1+1eH, +eVA(t), )

This motivates the next question: In the chaotic region, o
does stronger chaos enhance the production of entangleseree is a coupling constany=J,,J,,/j is the interac-
ment? Looking for an analogy of a study on quantum opertion Hamiltonian, andJ;, is theJ, of theith top. We report
systemg 14], Miller and Sarkar obtained a numerical result the case where the magnitudes of the angular momenta of the
which suggests that the linear instability of classical dynamiwo subsystems are the same value,
ics enhances the production of entanglem{&it Their nu- Since we focus on the case where the total system is in a
merical experiment however concerns only in tiveakly  pure state, our choice of a measure of quantum entanglement
chaotic region where chaotic seas and tori coexist. The conbetween the two subsystems, is the von Neumann entropy

1063-651X/2002/6@4)/0452014)/$20.00 66 045201-1 ©2002 The American Physical Society



RAPID COMMUNICATIONS

TANAKA, FUJISAKI, AND MIYADERA PHYSICAL REVIEW E 66, 045201R) (2002
1 1 1 T[ 4
16 - 80 .j.,......._
» |
12 4 - 0
(]
Q 0% 20 80 120
»n g L
i
e
4 L
0 - T T T 0 ' ! ! )
0 40 80 120 - 0 ) T

t

FIG. 1. Time evolutions of quantum entanglement, measured by
the entropies of a subsystem. The entropies are scale®,by
=2€?%j? [cf. Eq. (2)]. From bottom to top, we depic$;, with e
=102, 5x10 3, 3x10°3, 1073 5x10 4 10 * An estimation

i1 by our perturbation formulg2) is degenerate with the case
=10"* In the inset, the solid line and the dotted line correspond to
Sin andS,y, respectively, ae=10"*. The values of the nonlinear
parameters ar&,;=k,=7.0, which means that the corresponding (t) SOE E D(m,n), 2
classical tops are strongly chaofits]. The magnitude of the angu- m=1n=1
lar momenta is chosen to be large 80, in order to investigate the
semiclassical regime. The center of the initial wave packet, which iyhere Sy=2¢2j2 andD(m,n) is a time-correlation function
a product of spin-coherent statefl7], is (61,¢1,02,42)  of the uncoupled system. Furthermore, since the interaction

=(0.89,0.63,0.89,0.63). HamiltonianV takes a bilinear formD (m,n) is decomposed
as follows

S,y of the first subsysteriil6]. Note that the von Neumann

entropy of the second subsystems i_s equal to that of the first D(m,n)=Cy(m,n) C,(m,n), 3)

subsystem, when the total system is in a pure state. At the

same time, we employ the linear entroy, instead ofS,y,

to facilitate theoretical arguments. In our numerical experi-where C;(m,n)=j ~2((J0J")—(IM(J")) is a normalized

ments, these entropies behave qualitatively similarly. correlation function of)f,, which is evolved by the unper-

We examine the productions of quantum entanglementsurbed HamlltonlarH|e o until the nth step, with an initial
by observingS,y and S;, during unitary time evolutions  condition 3%=1J;,, and the expectation value) is respect
whose initial states are produg@e., separablestates. Atypi- g the unperturbed system. The details for obtaining the for-
cal result in the strongly chaotic region is shown in Fig. 1:myla (2) will be shown elsewherf21].

When the coupling constard is small, there is &-linear We remark on the entanglement production formi@a
entanglement production region, which is wide enough to be (i) Although we start from the evaluation of the entropy of
called the “stationary” entanglement production. Note thata subsystem, the formul@) is in a symmetric form with
during the stationary entanglement production, the state ve¢espect to the exchange of the two subsystems. This is con-
tors of the subsystems are spread over the phase space of #istent with the symmetric nature of quantum entanglement
subsystemgFig. 2). In other words, the phase-space distri-when the whole system is in a pure state.

bution of each subsystem is nearly in “equilibrium.” We (i) Since our approach does not take into account the
accordingly expect that each subsystem plays a role of sffect of the recurrence, the formul@) would have qualita-
chaotic “heat bath” for its partnef20]. The t-linear en- tively different applicabilities to the classically regular and
tanglement production region starts at a time Stépafter a  chaotic systems. On one hand, for classically regular sys-
short transient to attain the equilibrium of the phase spacéeems, our theory would break down in a relatively short time
distribution of the subsystems, and ends at a time $tep period, due to the smallness of the period of the recurrence.
until the increment of the entropy reaches its equilibriumOn the other hand, for chaotic systems, we numerically con-
(see Fig. 1, largee). firmed that our theory works for rather long time periods.

In order to explain thd-linear, stationary entanglement (i) Our formula has a similarity with those in phenom-
production, we employ a time-dependent perturbation theoryenological descriptions of linear irreversible proced%,
whose small parameter is a coupling constanto evaluate in the sense that these theories use time-correlation functions
the linear entropys;,(t) attth step. The resultant formula is to describe relaxation phenomena. This is useful both for

FIG. 2. The Husimi functiof18] of the first subsystem &t

15, during the stationary entanglement production region. The
contour and density plots are in normal and logarithmic scales,
respectively. Note that this region is beyond the Ehrenfest [tireip

We chooses=10"%. Other parameters are the same as in Fig. 1.
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FIG. 3. The 7 dependence of the correlation functiob(t k

+7,1)| for (@) a regular systemki=k,=1.0) and(b) a chaotic
system k; =k,=7.0) with j=80. Different symbols correspond to
different values oft (+,t=40;X,t=50;*,t=60;1,t=70). Note
that (b) employs a normal-log scale.

FIG. 4. Dependences of the entanglement production dates
which is measured by linear entropy, on the nonlinear paranketer
=k;=k,. In order to show typicak dependences, we choose sev-
eral initial conditiongdepicted by different markghat occur in the
discussing phenomenological arguments and for making ghaotic sea. Although the entanglement production heavily depends
link with a phenomenological theory and a microscopicon the initial condition in the weakly chaotic region, the disappear-
theory[22]. ance of tori weakens the initial condition dependence in the strongly

Before applying the formul&) numerically, let us con- chaotic region. Other parameters are the same as in Fig. 2.
firm that the time-correlation functiob (m,n), which is the
most important ingredient of the formul@), strongly de-
pends on the dynamics of the classical counterpéits 3). ) )
On one hand, in the regular casg(m,n) decays slowly egion[see Fig. 8)]. o -
with large oscillations, as the time interah—n| becomes As '0[19 as thet-linear region is wide enough, i.eT,
large. On the other hand, the chaotic dynamics makes the T >7 ~, the exponential decay assumptit) provides
decay ofD(m,n) much faster. Such a rapid convergence ofan estimation
the correlation function, together with the formuld), im-
plies thet-linear, stationary entanglement production region
(see Fig. 1

The perturbation formulé2) provides an approximate es-
timation of the entanglement production rate of the
t-linear, stationary entanglement production region:

cise nonlinear parameter dependence die to the fact that
the decay is very fagiwithin a step in the strongly chaotic

I'PT=s,Dcoth y/2). (6)

This provides our main result: in the limit that the classical
counterpart is strongly chaotic, i.e., in the limit>o, the
perturbation theory2) predicts that the entanglement pro-
duction ratel’ converges to a finite value. Furthermore, the
convergence is expected to be fast, whens larger than
unity. Our main claim is that the effect of the enhancement of
entanglement due to chaotic dynamics saturates in the
strongly chaotic region, in contrast with the weakly chaotic
systemg7-9]. This prediction is confirmed by our numerical
where T' and T"” are the start and the end of titdinear  experimentgFig. 4). We explain the reason why the strongly
entanglement production region, respectively. In the stronglghaotic systems have smaller entanglement production rates,
chaotic region, where the effect of tori is small, it is possiblein comparison with the weakly chaotic systems. As the chaos
to give an analytical estimation fof"", Eq. (4). Since becomes stronger, the correlation time scale of the interac-
D(m,n) is the product of the fluctuations df,, whose dis-  tjon HamiltonianV, which is evolved by the unperturbed
tribution functions become quickly uniform due to the Cha'Hamiltonianlilo in the interaction picture, becomes shorter.

otic dynamics(see Fig. 2, we assume thdD(m,n) decays . i ) ~
y ( 9-2 (m.n) y Hence, due to thdynamical averagingthe influence oV is

exponentially, effectively reduced. Consequently, the entanglement produc-
tion rate is also reduced. In particular, when the chaos is
strong enough, the effect of the perturbationItf, Eq. (6),
comes only from the “diagonal” parD(n,n). This is the
The prefactoD is determined by the magnitude of the fluc- origin of the saturation at large (Fig. 4).

tuations ofJ;, andJ,,, whose distribution functions are al- We make a brief remark on our result, in correspondence
most uniform in strongly chaotic systenfsee Fig. 2 We  with the existing publications which suggest that the en-
accordingly assumB,=(1/3)?, which is independent &,  tanglement production rate is proportional to the Lyapunov
and k,. Furthermore, it is natural to expect that the decayexponent of the classical counterpéite., chaos promotes
rate y of D(m,n) increases as the degree of chaos of theguantum entanglemen{9,14]. First, although our model
classical counterpart becomes stron@er., as the values of system in the numerical experiments is the same as Miller
nonlinear parametells, andk, increasg when the effect of and Sarkar’s worK9], the result is qualitatively different.
tori is negligibly small, although we could not obtain a pre- The difference comes from the different “strength” of chaos.

T T

1
> > D(mn),

T-T m=T" n=T'

rel=s, (4

D(m,n)=Dgexp — y|m—n|).
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In contrast with the strongly chaotic systems, the entangleheavily depends on the fact that the system is a discrete-time
ment productions of the weakly chaotic systems are signifisystem, i.e., a mapping system.

cantly influenced by the existence of tori. A crudest explana- Finally, we discuss an extension of our result to flow sys-
tion is provided by the perturbation formu(é): While the  tems. Itis straightforward to obtain a perturbative estimation
chaos is not fully developed, a large portion of the phasef the entanglement production rafe<1/y, which implies
space is occupied by tori. This reducBg, which is the the suppressionof the entanglement productions in the

magnitude of the fluctuation of the interactidh Accord- strongly chaotic limity— . This is completely opposite to

ingly, as the chaos become stronger in a weakly chaotic ret-he case in the weakly chaofic regip-9]. More thorough

) . ; . investigations on this point will be reported in subsequent
gon, the development of chaos increaBgs Th's results in ublications. We remark that a similar suppression of quan-
the increment of the entanglement production rate. In th

: _ um relaxation due to strong chaos is reported by Prp2gh
strongly chaotic region, the growth bBf, saturates due to the

! . ’ ~ in perturbative evaluations of fidelity, which is an overlap-
breakdown OfPtTO” andy takes a major role in the parametric ing integral between the two states evolved by slightly dif-
variation of I'"', Eqg. (6). Second, we compare our result

4 , g ferent Hamiltonians. As is discussed in Rg#4], it is hope-
with Zurek and Paz's work on open systefid], since each | that the suppression of quantum relaxations due to

subsystem in our numerical experiment acts as a heat balfyongly chaotic dynamics will have various applications. In
for its partner. The most important difference comes from theparticular, our scenario, which suggests an approach of the
fact that the two works focus on completely different re- qynamical inhibition of entanglemenwill also provide im-
gions, far before(Zurek and Pazand far after(ours the  oriant applications to quantum communications and compu-

Ehrenfest time(see, Fig. 2 _ tations, which require protection against decoherd8¢24).
We expect that our result on the saturation of entangle-

ment between weakly coupled systems is generic in strongly H.F. thanks Dr. T. Takami and Dr. H. Kamisaka for dis-
chaotic systems with a “compact” phase space that allowsussion. A.T. thanks Professor A. Shudo for useful conversa-
the assumptior(5). However, we note that our resu6) tions.
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