
s

RAPID COMMUNICATIONS

PHYSICAL REVIEW E 66, 045201~R! ~2002!
Saturation of the production of quantum entanglement between weakly coupled mapping system
in a strongly chaotic region
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The production of quantum entanglement between weakly coupled mapping systems, whose classical coun-
terparts are both strongly chaotic, is investigated. In the weak-coupling regime, it is shown that time-
correlation functions of the unperturbed systems determine the entanglement production. In particular, we
elucidate that the increment of the nonlinear parameter of coupled kicked tops does not accelerate the entangle-
ment production in the strongly chaotic region. An approach to the dynamical inhibition of entanglement is
suggested.

DOI: 10.1103/PhysRevE.66.045201 PACS number~s!: 05.45.Mt, 03.65.Ud, 05.70.Ln, 03.67.2a
em
pu
or
n
-

l
e

s
uc

wn
tu
th
o
m

th
e

n-
ce
ro
a
nn
-
el

on
g
e
lt
m

om

iffi-
d

le-
on-

in
ble
en-
ent
Fur-
ms
ro-
t time
duc-
ion

ps

-

s-

f the

in a
ent

opy
In a quantum composite system, even if the subsyst
are remotely separated and the whole system is in a
state, the subsystems generically have a nonclassical c
lation @1#. This striking phenomenon is called quantum e
tanglement@2#, which is utilized not only to achieve the pro
cedures that have no classical analogs~e.g., quantum
information processing@3#!, but also to realize the ‘‘classica
world’’ in which quantum interference phenomena are ‘‘d
cohered’’ as a result of quantum dynamics@4#. Even when
there is no quantum entanglement between subsystem
weak interaction between the subsystems generally prod
quantum entanglement during unitary time evolutions@5#.
This is an important dynamical origin of decoherence@4#.

Through a number of numerical experiments, it is kno
that the productions of entanglements induced by quan
dynamics heavily depend on the qualitative nature of
corresponding classical dynamics, namely, regular or cha
@6–9#, as is easily expected from the studies of ‘‘quantu
chaos’’@10#. On one hand, in classically regular systems,
confinement of phase-space dynamics in a narrow region
closed by KAM tori makes it difficult to produce strong e
tanglements, in general@11#. On the other hand, the absen
of such dynamical barriers in classically chaotic systems p
motes the production of entanglement. Although there
quantum effects on the phase-space dynamics, e.g., tu
ings and localizations@13#, in both regular and chaotic sys
tems, it is confirmed that the scenario above qualitativ
holds @6–9#.

This motivates the next question: In the chaotic regi
does stronger chaos enhance the production of entan
ment? Looking for an analogy of a study on quantum op
systems@14#, Miller and Sarkar obtained a numerical resu
which suggests that the linear instability of classical dyna
ics enhances the production of entanglement@9#. Their nu-
merical experiment however concerns only in theweakly
chaotic region where chaotic seas and tori coexist. The c
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plexity of phase-space dynamics is the source of the d
culty in obtaining a theoretical explanation for Miller an
Sarkar’s result.

Our aim is to provide a theoretical argument of entang
ment production in weakly coupled chaotic systems. In c
trast to Miller and Sarkar’s work, we focus on thestrongly
chaotic region where the effect of tori is small, to facilitate
obtaining a theoretical explanation. Starting from separa
pure states, we examine the productions of quantum
tanglement due to unitary time evolutions. The entanglem
production processes are slow due to the weak coupling.
thermore, the recurrence time of classically chaotic syste
is relatively long. Hence, the entanglement production p
cesses are nearly stationary processes, at least, in a shor
period. This enables us to introduce an entanglement pro
tion rate. We investigate how the entanglement product
rate depends on the nonlinear parameter below.

Our numerical experiments employ coupled kicked to
@9#. First, we introduce their constituent, a kicked top@15#,
which is described by the HamiltonianĤk[p Ĵy/2
1D(t) kĴz

2/(2 j ), whereĴi is thei th component of the angu
lar momentum operator of the top,j is the magnitude of the
angular momentum,k is a nonlinear parameter, andD(t)
[(nPZd(t2n) is a ‘‘periodic delta function.’’ Second, we
employ the following Hamiltonian to describe the whole sy
tem that is composed of two kicked tops:

Ĥ[Ĥk1
^ 1̂11̂^ Ĥk2

1e V̂D~ t !, ~1!

wheree is a coupling constant,V̂[ Ĵ1zĴ2z / j is the interac-
tion Hamiltonian, andJiz is theJz of the i th top. We report
the case where the magnitudes of the angular momenta o
two subsystems are the same value,j.

Since we focus on the case where the total system is
pure state, our choice of a measure of quantum entanglem
between the two subsystems, is the von Neumann entr
©2002 The American Physical Society01-1
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SvN of the first subsystem@16#. Note that the von Neuman
entropy of the second subsystems is equal to that of the
subsystem, when the total system is in a pure state. At
same time, we employ the linear entropySlin instead ofSvN ,
to facilitate theoretical arguments. In our numerical expe
ments, these entropies behave qualitatively similarly.

We examine the productions of quantum entangleme
by observingSvN and Slin , during unitary time evolutions
whose initial states are product~i.e., separable! states. A typi-
cal result in the strongly chaotic region is shown in Fig.
When the coupling constante is small, there is at-linear
entanglement production region, which is wide enough to
called the ‘‘stationary’’ entanglement production. Note th
during the stationary entanglement production, the state
tors of the subsystems are spread over the phase space
subsystems~Fig. 2!. In other words, the phase-space dist
bution of each subsystem is nearly in ‘‘equilibrium.’’ W
accordingly expect that each subsystem plays a role o
chaotic ‘‘heat bath’’ for its partner@20#. The t-linear en-
tanglement production region starts at a time stepT8, after a
short transient to attain the equilibrium of the phase sp
distribution of the subsystems, and ends at a time stepT9,
until the increment of the entropy reaches its equilibriu
~see Fig. 1, largere).

In order to explain thet-linear, stationary entanglemen
production, we employ a time-dependent perturbation the
whose small parameter is a coupling constante, to evaluate
the linear entropySlin(t) at tth step. The resultant formula i

FIG. 1. Time evolutions of quantum entanglement, measured
the entropies of a subsystem. The entropies are scaled bS0

52e2 j 2 @cf. Eq. ~2!#. From bottom to top, we depictSlin with e
51022, 531023, 331023, 1023, 531024, 1024. An estimation
Slin

PT by our perturbation formula~2! is degenerate with the casee
51024. In the inset, the solid line and the dotted line correspond
Slin andSvN , respectively, ate51024. The values of the nonlinea
parameters arek15k257.0, which means that the correspondi
classical tops are strongly chaotic@15#. The magnitude of the angu
lar momenta is chosen to be largej 580, in order to investigate the
semiclassical regime. The center of the initial wave packet, whic
a product of spin-coherent states@17#, is (u1 ,f1 ,u2 ,f2)
5(0.89,0.63,0.89,0.63).
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t

D~m,n!, ~2!

whereS0[2e2 j 2 andD(m,n) is a time-correlation function
of the uncoupled system. Furthermore, since the interac
HamiltonianV̂ takes a bilinear form,D(m,n) is decomposed
as follows

D~m,n![C1~m,n! C2~m,n!, ~3!

where Ci(m,n)[ j 22(^ Ĵiz
mĴiz

n &2^Ĵiz
m&^Ĵiz

n &) is a normalized

correlation function ofĴiz
n , which is evolved by the unper

turbed HamiltonianHue50 until the nth step, with an initial
condition Ĵiz

0 5 Ĵiz , and the expectation valuê•& is respect
to the unperturbed system. The details for obtaining the
mula ~2! will be shown elsewhere@21#.

We remark on the entanglement production formula~2!.
~i! Although we start from the evaluation of the entropy

a subsystem, the formula~2! is in a symmetric form with
respect to the exchange of the two subsystems. This is
sistent with the symmetric nature of quantum entanglem
when the whole system is in a pure state.

~ii ! Since our approach does not take into account
effect of the recurrence, the formula~2! would have qualita-
tively different applicabilities to the classically regular an
chaotic systems. On one hand, for classically regular s
tems, our theory would break down in a relatively short tim
period, due to the smallness of the period of the recurren
On the other hand, for chaotic systems, we numerically c
firmed that our theory works for rather long time periods.

~iii ! Our formula has a similarity with those in phenom
enological descriptions of linear irreversible processes@22#,
in the sense that these theories use time-correlation funct
to describe relaxation phenomena. This is useful both

y

o

is

FIG. 2. The Husimi function@18# of the first subsystem att
515, during the stationary entanglement production region. T
contour and density plots are in normal and logarithmic sca
respectively. Note that this region is beyond the Ehrenfest time@19#.
We choosee51024. Other parameters are the same as in Fig. 1
1-2
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discussing phenomenological arguments and for makin
link with a phenomenological theory and a microscop
theory @22#.

Before applying the formula~2! numerically, let us con-
firm that the time-correlation functionD(m,n), which is the
most important ingredient of the formula~2!, strongly de-
pends on the dynamics of the classical counterparts~Fig. 3!.
On one hand, in the regular case,D(m,n) decays slowly
with large oscillations, as the time intervalum2nu becomes
large. On the other hand, the chaotic dynamics makes
decay ofD(m,n) much faster. Such a rapid convergence
the correlation function, together with the formula~2!, im-
plies thet-linear, stationary entanglement production regi
~see Fig. 1!.

The perturbation formula~2! provides an approximate es
timation of the entanglement production rateG of the
t-linear, stationary entanglement production region:

GPT[S0

1

T92T8
(

m5T8

T9

(
n5T8

T9

D~m,n!, ~4!

where T8 and T9 are the start and the end of thet-linear
entanglement production region, respectively. In the stron
chaotic region, where the effect of tori is small, it is possib
to give an analytical estimation forGPT, Eq. ~4!. Since
D(m,n) is the product of the fluctuations ofJiz , whose dis-
tribution functions become quickly uniform due to the ch
otic dynamics~see Fig. 2!, we assume thatD(m,n) decays
exponentially,

D~m,n!5D0exp~2gum2nu!. ~5!

The prefactorD0 is determined by the magnitude of the flu
tuations ofJ1z andJ2z , whose distribution functions are a
most uniform in strongly chaotic systems~see Fig. 2!. We
accordingly assumeD05(1/3)2, which is independent ofk1
and k2. Furthermore, it is natural to expect that the dec
rate g of D(m,n) increases as the degree of chaos of
classical counterpart becomes stronger~i.e., as the values o
nonlinear parametersk1 andk2 increase!, when the effect of
tori is negligibly small, although we could not obtain a pr

FIG. 3. The t dependence of the correlation functionuD(t
1t,t)u for ~a! a regular system (k15k251.0) and~b! a chaotic
system (k15k257.0) with j 580. Different symbols correspond t
different values oft (1,t540;3,t550;*,t560;h,t570). Note
that ~b! employs a normal-log scale.
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cise nonlinear parameter dependence ofg due to the fact that
the decay is very fast~within a step! in the strongly chaotic
region @see Fig. 3~b!#.

As long as thet-linear region is wide enough, i.e.,T9
2T8@g21, the exponential decay assumption~5! provides
an estimation

GPT.S0D0coth~g/2!. ~6!

This provides our main result: in the limit that the classic
counterpart is strongly chaotic, i.e., in the limitg→`, the
perturbation theory~2! predicts that the entanglement pr
duction rateG converges to a finite value. Furthermore, t
convergence is expected to be fast, wheng is larger than
unity. Our main claim is that the effect of the enhancemen
entanglement due to chaotic dynamics saturates in
strongly chaotic region, in contrast with the weakly chao
systems@7–9#. This prediction is confirmed by our numerica
experiments~Fig. 4!. We explain the reason why the strong
chaotic systems have smaller entanglement production ra
in comparison with the weakly chaotic systems. As the ch
becomes stronger, the correlation time scale of the inte
tion Hamiltonian V̂, which is evolved by the unperturbe
HamiltonianĤ0 in the interaction picture, becomes short
Hence, due to thedynamical averaging, the influence ofV̂ is
effectively reduced. Consequently, the entanglement prod
tion rate is also reduced. In particular, when the chaos
strong enough, the effect of the perturbation onGPT, Eq. ~6!,
comes only from the ‘‘diagonal’’ partD(n,n). This is the
origin of the saturation at largek ~Fig. 4!.

We make a brief remark on our result, in corresponde
with the existing publications which suggest that the e
tanglement production rate is proportional to the Lyapun
exponent of the classical counterpart~i.e., chaos promotes
quantum entanglement! @9,14#. First, although our mode
system in the numerical experiments is the same as M
and Sarkar’s work@9#, the result is qualitatively different
The difference comes from the different ‘‘strength’’ of chao

FIG. 4. Dependences of the entanglement production ratesG,
which is measured by linear entropy, on the nonlinear parametk
5k15k2. In order to show typicalk dependences, we choose se
eral initial conditions~depicted by different marks! that occur in the
chaotic sea. Although the entanglement production heavily depe
on the initial condition in the weakly chaotic region, the disappe
ance of tori weakens the initial condition dependence in the stron
chaotic region. Other parameters are the same as in Fig. 2.
1-3



gl
ifi

na

s

r

th
e
ic
lt

ba
th
e-

le
g
w

time

s-
ion

e

ent
an-

p-
if-

to
In
the

pu-

s-
rsa-

RAPID COMMUNICATIONS

TANAKA, FUJISAKI, AND MIYADERA PHYSICAL REVIEW E 66, 045201~R! ~2002!
In contrast with the strongly chaotic systems, the entan
ment productions of the weakly chaotic systems are sign
cantly influenced by the existence of tori. A crudest expla
tion is provided by the perturbation formula~6!: While the
chaos is not fully developed, a large portion of the pha
space is occupied by tori. This reducesD0, which is the
magnitude of the fluctuation of the interactionV̂. Accord-
ingly, as the chaos become stronger in a weakly chaotic
gion, the development of chaos increasesD0. This results in
the increment of the entanglement production rate. In
strongly chaotic region, the growth ofD0 saturates due to th
breakdown of tori andg takes a major role in the parametr
variation of GPT, Eq. ~6!. Second, we compare our resu
with Zurek and Paz’s work on open systems@14#, since each
subsystem in our numerical experiment acts as a heat
for its partner. The most important difference comes from
fact that the two works focus on completely different r
gions, far before~Zurek and Paz! and far after~ours! the
Ehrenfest time~see, Fig. 2!.

We expect that our result on the saturation of entang
ment between weakly coupled systems is generic in stron
chaotic systems with a ‘‘compact’’ phase space that allo
the assumption~5!. However, we note that our result~6!
-
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heavily depends on the fact that the system is a discrete-
system, i.e., a mapping system.

Finally, we discuss an extension of our result to flow sy
tems. It is straightforward to obtain a perturbative estimat
of the entanglement production rateG}1/g, which implies
the suppressionof the entanglement productions in th
strongly chaotic limitg→`. This is completely opposite to
the case in the weakly chaotic region@6–9#. More thorough
investigations on this point will be reported in subsequ
publications. We remark that a similar suppression of qu
tum relaxation due to strong chaos is reported by Prosen@23#
in perturbative evaluations of fidelity, which is an overla
ping integral between the two states evolved by slightly d
ferent Hamiltonians. As is discussed in Ref.@24#, it is hope-
ful that the suppression of quantum relaxations due
strongly chaotic dynamics will have various applications.
particular, our scenario, which suggests an approach of
dynamical inhibition of entanglement, will also provide im-
portant applications to quantum communications and com
tations, which require protection against decoherence@3,24#.

H.F. thanks Dr. T. Takami and Dr. H. Kamisaka for di
cussion. A.T. thanks Professor A. Shudo for useful conve
tions.
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