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We uncover the dynamics at the chaos thresholdof the logistic map and find that it consists of trajec-
tories made of intertwined power laws that reproduce the entire period-doubling cascade that ocgurs for
<um. . We corroborate this structure analytically via the Feigenbaum renormalization-R@gransforma-
tion and find that the sensitivity to initial conditions has precisely the form gfexponential, of which we
determine they index and theg-generalized Lyapunov coefficient,. Our results are an unequivocal valida-
tion of the applicability of the nonextensive generalization of Boltzmann-Gibbs statistical mechanics to critical
points of nonlinear maps.
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Critical points of nonlinear maps offer a suitable play- the sensitivity to initial conditiong; for large iteration time
ground for testing the validity of the nonextensive generali-t ceases to obey exponential behavior, exhibiting instead a
zation of the Boltzmann-Gibb$BG) statistical mechanics power-law behaviof4]. In order to describe the dynamics at
proposed by Tsallis over a decade ddo2]. Here we de- such critical points, the-exponential expression
scribe universal properties related to the dynamics of iterates
at the onset of chaos in unimodal mdg$ which provide a g=expy(Ng) =[1-(q—D)Aqt] M@=, (1)
literal confirmation of the generalized nonextensive theory.

To this end we employ the celebrated one-dimensional logiscONt@ining ag-generalized Lyapunov coefficient,, has
tic map,fﬂ(x)zl—ﬂ|x|2,— 1=x=1, and the properties of been proposefb]. This expression is based on the nonexten-

its renormalization-grougRG) fixed point, to present evi- sive entropy of Tsalli$_2]._ln addition to this, general_iza_ltions
dence of previously unexposed scaling properties at the onsf@" the Kolmogorov-Sinai entropi¢, and for the Pesin iden-
of chaosu= ... At this state, the most prominent of the 1Y Aq= Kq, Aq>0 have also been introducgs] (the stan-
map critical points, the trajectories of the iterates exhibit arfard expressions are recovered witgen 1). Several recent
intricate structure, that we describe and show is governed b udies[5-8] that probed numerically the onset of chaos of
the Feigenbaum RG transformatifg]. e logistic map and its generalization to nonllneaﬂl?yl

The domain of validity of BG statistical mechanics has[fu,s“_(x)z1_r“|>,<|§’_1$Xg 1], have revealed a series of
been implicitly challenged by the proposal of its nonexten-Precise connections between the Tsallis entropic irglerd
sive generalization. Subsequent studies have offered expeffl® map basic parameters. Here we present RG analytical
mental and numerical evidence that point out both the inagr€sults that corroborate the previously known valueyait
equacy of the standard BG statistics and the plausiblé- for =2, and also determink, for the first time.
competence of the generalized theory in describing various 10 State our results more precisely, we recollect the fol-
types of phenomena and systems. This theoretical develofRWing properties. The logistic map exhibits several types of
ment represents an exceptional event in the long and trustofinite set; of critical points that appear as its control param-
worthy history of BG statistical mechanics. However, it is €t€r u varies; these correspond, amongst others, to period-
still in the process of being converted into a rigorously cor-doubling and chaotic-band-splitting transitidis§. The accu-
roborated and fully understood fact. The suggested circumMulation point of the period doublings and also of the band
stances under which the generalized theory is believed to bRPIIttings is the Feigenbaum attractor that marks the thresh-
applicable, at least with regards to nonlinear dynamical syse!d between periodic and chaotic orbits, g
tems, are those associated to a phase space with power-lawt-401 5 . ... Thelocations of period doublingsat u
sensitivity to initial conditions, to the consequent vanishing=u,<pu.) and band splittinggat u= w,> u..) obey, for
of the largest Lyapunov exponent, and to a fractal or multilarge n, power laws of the formu,—up.~48 " and u.
fractal geometrical structur2]. Here we show that our re- — ~ 5" where§=4.662 . .. is one of the twd-eigen-
sults for the dynamics at the onset of chaos in unimodabaum’s universal constants. For our use below, we recall also
maps constitute an ynequn{oc_:al proof of th_e_unlver_sal Va“d’the sequence of parameter valu_asemployed to define the
ity of the nonextensive statistics at such critical points. diametersd,, of the bifurcation forks that form the period-

In fact, at the chaos thresholds well as at other critical doubling cascade sequence At=_ the map displays a

oints of the mapthe Lyapunov exponert; vanishes, and e L Mn . X
P p yap P ! “superstable” periodic orbit of length'2 which contains the
pointx=0. For largen, the distances ta=0 of the iterate

*Email address: baldovin@chpf.br positions in such 2 cycle that are closest ta=0, d,

on—1 .
"Email address: robledo@fisica.unam.mx Ef%ﬂ )(O), have constant ratiosd,/d,,=—«a, where
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FIG. 1. Absolute values of positions of the first ten iteratiens
for two trajectories of the logistic map with initial conditiong
=0 (empty circle$ and xo=6=5%10"2 (full circles). Plotted

quantities are dimensionless.
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FIG. 2. Absolute values of positions of the first 1000 iteratiens
for two trajectories of the logistic map with initial conditiong
=0 (empty circley and x,=46=10"* (full circles) in logarithmic
scales. The power-law decay of several time subsequences can be
clearly appreciated.

k=0,1, ... . As weshow below, the values for the trajectory

a=2.502 . .. is thesecond of the Feigenbaum constants.SUPsequence=2", with x,=0, are asymptotically given by
A set of diameters with scaling properties similar to those of<-=dn, N=0. More generally, each position subsequence

d, can also be defined for the band splitting sequ€i®e

7=2"+2""K  obtained with x,=0, is given by

n—k-1
For clarity of presentation of our results we shall only useg(zk”)(O)dﬁ, wheredﬁzf(;2 )(0) andn=k. The itiner-
n

absolute values of positions, so that the dynamics of iterateg
do not carry information on the self-similar properties of
“left” and “right” symbolic dynamic sequenced3]. This

choice does not affect results of the sensitivity to initial con-

ditions. Below,d, means/d,|.

The main points in the following analysis are as follows.

(1) The iteratesat u., follow trajectories that proceed in a
concerted manner according to the entire period-doublin
cascade, which takes place for w., . The positions of the
trajectories are given, in fact, in terms of the diameter

d,(u,) of the 2 supercycles.

ry of the iterate starting at,=0 can be clearly observed in

Fig. 2. The position approaches the origip=0 progres-

sively asn increases every time that=2", but in between

the values 2 and 2'*! it returns in an oscillatory manner

towardsx;=1, repeating twice the positions visited in the

previous cycle between"2! and 2" and introducing a new
osition between these two subcycles. For smdhe posi-

ions are approximately repeated, but they become accurately

reproduced as increases. The whole time series has the

Speriod-doubling structure.

To interpret the dynamics in Figs. 1 and 2 in terms of the

(2) As a consequence, the sensitivity to initial conditionSRg transformation, we considd®® appliedn times to the
also evolves in agreement with the period-doubling cascadgiyed-point mapg(x), i.e.,

(3) The bounds, or envelopes, as well as other monotonic

subsequences, of both a single-trajectarand of the sensi-
tivity to initial conditions &, have precisely the form of g
exponential. For§, we have q=1—In2/Ina and X\,

=Inalln 2.

(4) These results are obtainable via the fixed-point solu
tion g(x) of the RG-doubling transformation, consisting of dy
functional composition and rescalinBf (x)= af (f(x/@)).

9(x)=RMg(x)=a"g®(x/a"). ©

We determine the trajectory positions at times 2", with

Xo=0. Sinceg(0)=1, we haveg®"(0)=a ", and because

/dpi1=a with dy=1 impliesd,=a ", we also have
d,=g@"(0). Thus, we obtain the diametet, to be the

To begin, we show in Fig. 1 the absolute values of thepositionsx,n. This result can be expressed agexponential
positions of two trajectories of the logistic map with initial if we shift the time variable by one unit=2"-1, and re-

conditionsx,=0 andx,= 6=5X10"2 for the first ten itera-
tions 7. For =1 the positions are;=1 andx;=1-3.5

arrangea " as (1+t) " *"2 We obtain

%1072, and it can be observed that the difference between X;=eXP(Aqgt), 3

the two positions at times=2, 4, and 8 grows progres-
sively. In Fig. 2 we show the same first trajectory=0 and
a second one&,=6=10"*, up to 7=1000. In the logarith-

with Q=1+In2/Ina and Ag=—Ina/ln2. Other position
subsequences=2"+2""¥ can be put in the form of] ex-

mic scales it can be clearly appreciated that they consist gfonentials with the same values Qfand A, .
interwoven monotonic position subsequences with power- The expression for the sensitivity to initial conditions can
law decay. We are interested in the position subsequencd® derived with the use of the following approximate prop-

that are generated by the time subsequenceg”+2" K,

erty (that becomes asymptotically exact in the limit>©):
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n o .
g(z)(dj):_n_ 2j_n:dn_l’«cod2jfn1n$1- 4
a" o«

2500 A
To prove the above, note first thg(zn)(dj)zg(zn”j)(O)
=a "g@ " D(0), or, since g@ "*Y(0)=g(d;_,), 2000
g®)(d))=a""g(d;_,). The preceding equality, together
with g(d;_p)=1—u..d? \=1—pu.a® 2, yields Eq.(4).

> 1500 |
Now, the distance between positioxs:(d;) =g‘?)(d;) and
Xn(d) =g@"(d;) at time r=2" can be written with the use
of EQ. (4) as Xpn(d;)—Xon(dj) =[Xz0(d;) —Xo0(d;) Ja" or 1000 1
with use of the shifted time variable=2"—-1 as
xu(d)) = x(dh) =[xo()) = Xo( ) ] . (5) %00 —y(0=13281
r?=0.99988
The sensitivity to initial conditiong; is defined as 0 ‘ ‘ ‘ ‘
0 500 1000 1500 2000

&= lim [x(dj)—x(di)[/|xo(dj) =Xo(di)[.  (6)
|Axo|—0 FIG. 3. Theq logarithm of sensitivity to initial conditiong; vs
. . ) ) t, with g=1-In2/Ina=0.24% ... andinitial conditions xq=0
where limyy | o is equivalent to ||rﬂjﬂx'i#j- § canthenbe  andx,= =102 (circles. The full line is the linear regression

written, considering thai"=(1+1)" “'""? as theq exponen-  Y(1). As required, the numerical results reproduce a straight line
tial with a slope very close tag=In a/ln2=1.32% . . ..

&=expy(Aqt), (7) " low monotonic paths set by the form of the map itself, and
are alsog exponentials. For these types of critical points the

whereq=1-In2/na and Ay=Ina/in2. Notice thatq=2  gaiic ang dynamic properties are simply related and obey

—Q as exp(y)=1/expy(—y). The previous construction ap- o1 ressions of the same fofh0,11. Not only the entropic
plies strictly to initial positions that lie on the attractor; nev-

ertheless, we remark that all other positions tend to the at:—?dex q can be plainly identified, but thergeneralized
” ; apunov coefficieni, turns out to be given by the expan-
tractor with a power-law behavigsee Refs[10,11)), so that yapunov C18MA g N aw y xP

- . . . . sion coefficientu. Unequivocal corroboration of these results
after an initial transient their dynamics becomes practically, » < heen obtained recenfly]

indistinguishable from the situation we describe here. In Fi
3 we show theg logarithm of & vst (with g=1—In2/Ina
=0.244 .. .), from a numerical simulation of two trajecto-
ries with initial conditionsx,=0 andx,= =10 8. The re-
sult is a straight line with slope very close ¥g=In &/In 2 e (2" - ) i )
—1.32% . ... This corroborates the RG predictidthe q  (—@)"f, * (X/(=a)"); likewise, the fractal dimension of
logarithm, Irbyz(yl‘q—l)/(l—q), is the inverse of exyy)]. the attractord;=0.53804518 ... isobtained considering
Interestingly, bothx; /xq and &, can be seen to satisfy the also the sam@&—« limit on the positions of the 2cycles
dynamical fixed-point relation$i(t) = ah(h(t/a)) with « [3,12]. As we have seen here, the multifractal attractqr at
=2Y0Q~1) and a=2YA"1), respectively. In relation to this, imprints an involved structure into the time evolution of the
we note that the static fixed-point solutidii (x)/x to the iterates, which can be resolved in terms of simpler mono-
Feigenbaum RG recursion relation for the case of the tangembnic time subsequences. Remarkably, these subsequences
bifurcation, obtained by Hu and Rudni¢B,9] to study the and the sensitivity to initial conditiong; are analytically
intermittency transition in thé-logistic map, has the form of reproduced by the same RG transformation originally ap-
a g exponential withg=2. This has been pointed out re- plied to describe static properties. These quantities evolve as
cently[10,11], where in addition it has been shown that this universalg exponentials, witlg and\, simply expressed in
solution applies too, but now witly=3, to the period- terms ofa. We observe then a connection between dynamic
doubling transitions that take place at<w... We recall  properties of a strange attractor at the edge of chaos, such as
that, for the transition to periodicity of order the RG trans- the g-generalized Lyapunov coefficient and the static proper-
formation is applied to thath compositionf("™ of the origi- ties, described by the set of distancd#that make up this
nal map in the neighborhood of one of th@oints tangentto  multifractal; this is in accordance with the Kaplan-Yorke
the line with unit slope, and a shift is made of the origin of conjecture 3].
coordinates to that point. The RG fixed-point mag i€x) Under some conditions, exemplified here by critical
=xequ(u><q*1), whereu is the leading expansion coefficient points in nonlinear maps, the Lyapunov exponents of a sys-
of £ and where the recursion relation is satisfied withtem that measure the strength of phase space mixing vanish.
a=2Y@"1_|n the neighborhood of the intermittency and When this happens, dynamic processes become sluggish in
period-doubling transitions the time evolution of iterates fol-exploring their permissible configurations and may be ca-

9- At the onset of chaos, both static and dynamical proper-
ties are more complex. The celebrated RG fixed-point map
static solution is obtained as a power series of a smooth
unimodal trascendental function, the univensak oo limit of
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pable of covering only a small fraction of the available phaseat chaos boundary criticalities in other classes of dynamical
space, even in the limit—c. This fraction may have a systems, such as period doubling in bimoks] and other
fractal dimension smaller than the total dimension of phasenultiparameter magd 7], and quasiperiodicity in dissipative
space. These are thought to be the conditions for failure ofystems[18]. More generally, the properties discussed here
BG statistics and applicability of its nonextensive generali-are likely to hold strictly for other types of systems or situ-
zation [2], and the significance of our analytically backed ations that possess equivalent phase space limitations. Those
results with no approximations is a contribution towards thesystems for which experimental and numerical evidences
clarification of this issue. At the onset of chaos of unimodalhave accumulated on BG statistics inadequacy and nonexten-
maps, the reduced phase subspace is represented by #iee statistics competencf2] warrant examination. The
strange attractor, a Cantor subset of the interval<x more that is learned on mechanisms and circumstances lead-
<1. Itis important to point out that in this case the permis-ing to a hindered phase space, the clearer the physical under-
sible positions(configurationy are asymptotically confined standing of the applicability of the nonextensive theory will
by the attractor and this acts as an inescapable barrier taecome.
movement to other locations. By construction, the dynamics
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