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Spiking neuron models with excitatory or inhibitory synaptic couplings
and synchronization phenomena
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We investigate synchronization phenomena in a system of two piecewise-linear-type model neurons with
excitatory or inhibitory synaptic couplings. Employing the phase plane analysis and a singular perturbation
approach to split the dynamics into slow and fast ones, we construct analytically the Poiraaref the
solution to the piecewise-linear equations. We investigate conditions for the occurrence of synchronized oscil-
lations of in phase as well as of antiphase in terms of parameters representing the strength of the synaptic
coupling and the decaying relaxation rate of the synaptic dynamics. We present the results of numerical
simulations that agree with our theoretical ones.
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[. INTRODUCTION above-mentioned chemical synapses will be the relationship
between the types of entrainment of oscillations and syn-
Synchronous firing of neurons that has been observed iapses together with synchronization-desynchronization tran-
the cat visual cortex has attracted much attention from resitions.
searcherd1-4]. In order to understand highly integrated = Many computer simulation experiments conducted previ-
neural information processing in physiological nervous sysously have demonstrated that neuronal ensembles become
tems, theoretical studies of synchronization phenomena iasynchronized and synchronized by mutual excitation and
neuronal networks have been extensively undertdker8]. mutual inhibition, respectively12—15. A theoretical study
Synchronized oscillations exhibited by coupled oscillatorbased on the two integrate-and-fire oscillator models and on
systems are one example of cooperative phenomena. Théwo phase oscillator models with synaptic coupling having
dynamic behavior is becoming an active area of statisticalhe « function, has given an explanation of how the synaptic
mechanics of nonequilibrium phase transitions. Variougime constant governs the stability of phase-locked solutions.
kinds of coupled oscillators ranging from theoretically trac- It was confirmed that inhibitory synchronization and excita-
table models to physiologically relevant ones and from smaltory asynchronization occur when the synaptic relaxation
size populations to large size ones have been proposed anate is largg16].
extensively studied. The study based on simulations of either two or more
In physiologically relevant oscillator models, either or synaptically interconnected neurons has extensively been
both of the oscillators whose components and couplings bezonducted to explore the collective behavior. Systematic ex-
tween them are made realistic in some sense. A unit compgloration of the parameter space of model dynamics, how-
nent may take the form of an oscillator that is made asver, has been lacking. We consider that the study of two
simple as possible like the integrate-and-fire-type oscillatocoupled neurons can still yield a useful insight into the syn-
or the FitzHugh-NagumdFHN)-type oscillator, while in a chronization phenomena found in larger neural networks
more realistic model, an oscillator based on the Hodgkin{17-21].
Huxley (HH) equations or multicompartment model can be The aim of this paper is to study an exactly solvable
conveniently used to explain the result of any physiologicaimodel of a system of two coupled neurons from the view
experiments. point of finding how the static as well as dynamic properties
For couplings between oscillators, one can consider tw@f synaptic couplings affect the scheme of synchronization of
types of couplings found in the real nervous system: theoscillations.
chemical synapse and the electrical synapse. We use the two interconnected neural oscillators of the
Electrical synapse§9—11 are diffusive-type couplings piecewise linear type with excitatory or inhibitory synaptic
and have linear membrane potentials, whereas chemical syneuplings [22,23. Moreover, we note the so-called two-
apses contain nonlinear couplings. The latter have been motene-scale motion that arises from the fact that a neuron’s
often used than the former, a fact that has recently begun tonpulse consists of fast and slow motions. This idea allows
attract attention as a possible mechanism for synchronizeds to employ the singular perturbation approf2h—27 to
oscillations in the inhibitory interconnected network. split the dynamics into slow and fast or@8—-33. We then
Modeling of chemical synapses, which are classified intagnore the fast dynamics and give attention only to the slow
excitatory and inhibitory ones, may include either the dy-ones as we let the time-scale parameter approach 0. For the
namics representing a certain chemical gating kinetics or thmodeling of the synaptic couplings, we incorporate first-
so-calleda function. One of the key issues of synchroniza-order kinetics of the gating variable for inactivation instead
tion phenomena exhibited by coupled oscillators with theof employing thea-function.
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We make full use of the Poincaraap of the solutions to @
the piecewise-linear equations, which is constructed analyti-
cally, for example, by considering the state of two neurons s
that occur immediately after one of them fires as the iterated
points in the Poincare surface. Such a map enables us t T
investigate conditions for the occurrence of synchronized os-
cillations of the in phasé0 phase lagas well as the an-
tiphase [W;—W,|~0.5), in terms of the parameters of the W o}
synaptic coupling. In the case of excitatory coupling, if the
decaying relaxation rate is large, two neurons become syn
chronized in the in phases or antiphases, depending on th
initial conditions. However, when the rate is small, they be-
come synchronized in the in phase. In the case of inhibitory -5
coupling, two neurons become synchronized in the an-
tiphases or quasiantiphases, depending on the decaying re
laxation rate. We summarize the result by drawing a phase
diagram of the parameter space of the strength and the dew)
caying relaxation rate of the synaptic couplings and compare
this result with numerical simulations. The simulations are ‘,H_\

05

-0.5

conducted using the fourth-order Runge-Kutta method for
the HH, the FHN, and the piecewise-linear models.

The outline of the paper is as follows. In Sec. I, the os
coupled FHN model with a piecewise-linear approximation

is presented together with the model of synaptic kinetics. The Wt \ \
separation between the slow dynamics and the fast ones i 05

made by introducing the time-scale parameter. We then ob- A - \

tain three fundamental types of solutions for the time evolu-

tions of the two coupled neurons in the limit that the time- 8
scale parameter tends to 0. In Sec. lll, using the three type: , , , ‘ ,
of solutions, we construct one- or two-dimensional Poincare N * K ¢ ! 2 s

maps under the assumption that the in phase or antiphasc \

synchronized solutions. exist.. In the case c_)f excitatory cou- FIG. 1. Phase plane of the piecewise-linear mo#l.e=0.1.
p!lngfs, we use a one-dlme_nSIOHaI m_a_lp for m-p_hase SynCthB) €—0. The solid lines indicate dynamical flow. The broken lines
nization and conduct the linear stability analysis. In Sec. 1V,
we present the results of numerical simulations that agre
with those of our analysis. We give a summary and brief
discussions in Sec. V.

present the nullclines, that i&/=0 and W=0. Here we seia
=0.8,b=0.01, andc=4/3.

(V,W) representing time evolution ofM(W) as shown in
Fig. 1(a), whereV has the invertetN-shaped nullcline ana
has the one that is a straight line with a positive slope. We
also call the flow around the left branch the silent, or inactive

We begin by describing two interconnected neural Oscii_phase and its r|ght branch, the active phase. We call the local

lators of the piecewise-linear type with excitatory or inhibi- Minima of theV nulicline the left knee point and its local
tory synaptic couplings, maxima the right knee point. The reason for introducing the

time-scale parameter will be explained later.

Il. MODEL BASED ON THE FHN TYPE NEURONS WITH
THE PIECEWISE-LINEAR APPROXIMATION

V, 0 For the synaptic couplingggn, we incorporate the first-
ar Vit Vit L= [Vim 1= Wi+l g, (1) order kinetics instead of using the function, to write
dw, 10 —G. s 3
S =e(Vita-bW) (i=12), 2) syn— CGsyrSi. &)

wherea, b, andc are constantl®)_ represents the synaptic wherei represents the counterpart of neuicand G, the
Jo . syn ynap synaptic strength. It represents an excitatory coupling when

coupling, ande(>0) is a small time-scale parameter. We 0<Ggyn<[(1+a)/b]—(2—c), and an inhibitory one when

assume @c<2, —1<a/[b(2—c)—1]<1 and 2-c<1b r_ 7 a)/b]+(2—c)<Ggy,<0. We consider tha; obeys

so that the model represents an oscillatory system exhlbltmb1e following equation:

a spontaneous and periodic firingis the excitable variable

describing something similar to an action potenti#lis the

recovery variable and is like the total ionic channel in the B=aF(V-)(l—S-)—e,BS-

HH model. It is often convenient to use the phase plane dt ] ! I
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where F(V) is the sigmoid function with threshold and
small o, anda and 8 represent the synaptic rising and de-
caying relaxation rates, respectively.

F(V)= (1=12, (4)

To split the slow dynamics from the fast ones, we rewrite

the piecewise-linear model by changing the time scale to
= et:

g = CVit Vit 1= |Vi=1| - W+ Geysi, (5)
dw,
F=Vi+a—bWi, (6)
ds [a(l-s)—eBs; (Vi>0),
E—S_ i Bsi [ )

dr | —eBs (V;<96).

As e becomes smaller, the motions in the active and silent

PHYSICAL REVIEW B6, 041903 (2002

s’ (1)=1. (12)

Case(2). Neuroni is not firing in the silent phase, while
neuron;j is firing in the active onei(j=1,2)

W, (1) =[W, " (7p)—D_]Je br@I-m0 4 p

(13
W]+ —(7.) _ W]+ —(To)e—[b+(llc)](7— 70)
+A,(1— e~ [b+(1e)](7- ro))
+ BSii(TO)(eiﬁ(Ti 70) — @~ [P (HO)(7=70))
(14
s (1)=s] (ro)e A ™), (15
s/ (1)=1. (16)

Case(3). Both two neurons(=1,2) are not firing in the
silent phase

W, (1) :WF*(TO)e*[le/C)](T* 70)

phases become slower, while the switching ones between

them become faster and its trajectory on tenN plane
roughly follows a line of constantV, .
Then, taking the limite—0, one obtains a simplified

model where transitions between the silent and active phases

become instantaneous. In other words, Wpr ands; when
V>0, it suffices to consider the manifold obtained by set-
ting dV;/d7=0, andds;/d7=0

+A_(1_ e*[b+(l/C)](T* 70))
+ st—(TO)(e—ﬁ(T— T0) — e—[b+(1/c)](7'— 7'0))’
(17)

s (1)=s (7p)e A= 70), (18

+2+ Gy
O:_CV|+|V|+1|_|V|_1|_W|+Gsynsr, (8) a-+ T
W, D= !
d—T'=Vi+a—bV\/i, (9) b+~
ds [0—s=1 (V,>0), 2
d_s: | | (10 are C G
T —Bs; (Vi<9). A= o B= : . Cc= (s:yn
These equations are the simplified version of the b+~ b+ -—8

piecewise-linear model. They ignore the switching motions
between the active and silent phases and give attention oniyhe above solutions allow us to analyze and understand syn-

to the active and silent phases. We depict Fidp) 1o show
that a trajectory follows a straight line of consta&jit to enter

chronization phenomena in our present model, thatlis,
(2), and(4), in the limit e—0.

the active and silent phases after arriving at the left and right

knee points, respectively. In both Figgalland Xb), it can
be noted that the transition—0 leaves the structure of the
phase space intact.

We proceed to solve Eq&3)—(10). In solving these equa-
tions, we have to consider the following three fundamental
cases according to whether neurérendj are firing or not.
Here we consider the solutions in the caseBefb+ (1/c).
The case of=b+(1/c) is also satisfied by the following
analysis.

Case(1). Both the two neurong(=1,2) are firing in the
active phase

W (1) =[W; ¥ (70)— D, Je b+ 4 p |
(11

IIl. ANALYSIS USING THE POINCARE ~MAP

To systematically understand the behavior of the dynam-
ics of the two coupled neurons, we analytically construct the
Poincaremap corresponding to the time evolution of the sys-
tem with the use of the three fundamental types of solutions,
Egs. (11)—(18). To this end, it is convenient to specify a
temporal firing pattern diagram that represents how each
neuron switches between the active and silent phases. Ac-
cording to the features of the temporal firing pattern diagram,
we can construct one- or two-dimensional Poincaraps.
They enable us to gain some solutions exhibiting synchroni-
zation phenomena in the two neurons with excitatory or in-
hibitory synaptic couplings.
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A. In-phase synchronization
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Similarly, suppose that fofA;,A;+A,], neurons 1 and 2

We begin by investigating the case of an excitatory cou2'® Silent. At=A,+A,, using casé3), the state of the two
pling. This case will allow the in-phase synchronization of "€urons is denoted by

the firing of two neurons and enable us to examine the one-
dimensional Poincaremap for the analysis of such synchro-
nization behavior.

We construct the Poincaraap by focusing on the states
of two neurons that occur immediately after neuron 1's en-
tering the silent phase with neuron 2 remaining in the active
phase. LetV{”, WiV, s{V | ands{™ denote the values of
W; ands; for the nth occurrence of such states.The Poincare
map can be defined as a map frot” to WS"* 1) . We then
support that

Wi F(0)=W; *(0) =WV + G, s,
W; F(0)=Wj ~(0)=Wg,

s; (0)=s; (0)=s{",

W (A+Ay) =W, (A;)e [PHIoIa
+A7(1_e*[b+(l/c)]A2)+ BSE(Al)

X(e*,BAz_e*[b+(1/C)]A2)’ (25)

W, “(A;+A) =W, "(A)e [PHERI42

+A_(1-e P*(A0142) 1 Bg I (Ag)

x(e—ﬁAz_e—[b+(l/C)]A2)' (26)
s;(A1+Ay)=s](A)e P, (27)
S, (A1+Ay)=s,(A)e P2, (28)

s3(0)=sy,

Here we consider the case where neuron 2 arrives at the left
knee point earlier than neuron 1. The conditions for the oc-
currence of this case can be specified in term&gf, and 5

where time 0 is set to be the one when neuron 1 stops firingS 1S shown in Appendix A. SuctG,,, 8) regionli.e., ()]
to enter the silent phase and hence the initial state of neurodd the Gsy-3 plane is displayed in Fig.(d). We then obtain

1 and 2 isW{V=2-c ands{V=s{"=1. The Poincaresur-

face in this case corresponds to the surface denoted by

f(Wy,V1)=0, W;=2-c+Ggy, and s;=s,=1, where
f(W,V) is a function of the active phase of teenulicline of
neuron 1.

W, “(A1+Az)=—(2-¢)+Ggysi(Ay)e P2, (29)

Moreover, as both the two neurons start firing to enter the
active phase, the state of the two neurons is changed as fol-
lows:

Suppose that during time intervgd,A], neuron 1 is in
the silent phase while neuron 2 remains in the active phase
and also that at=A;, neuron 2 stops firing to enter the
inactive phase. Then, using cag¢in the Sec. Il, the state of

Wi (Ap+Ay) =W "(Aj+Ay),

the two neurons at=A, is denoted by
Wi (A=W " (Ay)=[W; "(0)~D_]
x e [PTARIA1LD (19

WS (A =W; ~(0)e [P+ (WOlALL A [1— g~ [D+(T0)IA

+Bs; (0)(e Phi—g [T (1AL (20)
s; (Ay)=s; (0)e F4s, (21)
S; (A)=s,(Ay)=1. (22

W3 T(A1+ A7) =W; "(A1+4,),
Sp(Ar+Ag)—s (A+4p)=1,
S (A1FA5)—s; (A +4)=1,

where we have considered the case Watalue of neuron 1
is larger than the value of the left knee point\bhulicline of
neuron 1:

W, ~(Ag+Ay)>W, (A +Ay). (30)

As analyzed in Appendix B,Gsy,,8) in the region(l) of the

When neuron 2 stops firing, we also obtain the state of twgarameter space of Fig.(& ensures the above-mentioned

neurons as
W3 (A1) =W, (A;)=(2—c)+Ggyp. (23

We know the value oA ; by comparing Eqs20) and(23) as
the solution ofQ4(A;)=0, where

Qu(A)=[(2—-¢c)~A,]+(Gsyn—B)sy (0)e #1
—[W; ~(0)—A,—Ble [Prlti=0, (24

case.

Here we explain the reason why the two neurons can si-
multaneously fire. In the phase plane analysisMimailicline
of neuron 1 is shifted upward by receiving an excitatory
input from neuron 2. Then the state of neuron \Xt; (W,),
can come below the local minima of the upward-shifiéd
nullcline. Therefore it is forced to start entering the right
branch of the new nulicline.

Then we get the time duratioh, of neuron 2 staying in
the inactive phase by comparing E¢25) and(29)
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(a) Suppose that forA;+A,,A;+A,+ Ag], both the two neu-
' ' ' rons are in the active phase and thattatA;+A,+Ag,
neuron 1 stops firing. Then, making use of céBethe state
of two neurons is given by

Wi (A +Ay+Ag)=[W] "(A;+A,)—D,]

w

)]

Xe—[b+(l/c)]A3+ D+ (32)
B 1
W, (A + A+ A5) =W, (A +A,+Ag)
B =[W; "(A;+A4,)—D]
xe [b+0As4 D | (33
{n
oot Neuron 1 should be at the right knee point of the upward-
shifted V nulicline when it finishes firing. We then obtain
0,006 1 Wl(A1+A2+A3) as
Bl N | Wi (A +Ay+Ag) =Wy "(Aj+Ay+A3)=(2-C)+Ggyp.
‘ (36)
ooz} 1 We also obtain the duration of neuron 1’s action potertial
by comparing Egs(32) and(36),
0 s L L L L L ‘
0 20 40 60 80 100 120 140 160 l (2_ C) _,’_ G _ D
Gsyn Az=— 1 In " Sy i . (37)
(© 5 : . . ' . . ‘ b+ — Wl (A1+A2)+Gsyn_D+
. . — c

Note that Eq.(33), which implicitly involvesW" , rep-
resents the state of neuron 2 when neuron 1 stops firing
again. We arrive at then(+ 1)th iterate of the Poincamaap.

We now obtain the explicit expression for the one-
dimensional Poincarmap in terms ofV{",

KWE) =W D=W5 ~(A;+A,+A5).  (39)

It is convenient to define the phase differencentlt iterate
between two neurons as

0 20 0 % w0 0 2 ™ e XnE(Z_C)+Gsyn_ W(Zn) (x,=0). (39

. . o ~ From Eq. (38), we straightforwardly obtain a one-
FIG. 2. Phase diagrams about in-phase synchronization with exdimensional return map for the phase differencenat {)th
citatory coupling.(a) Gs,+8 diagram with respect to a firing order jterate
and a firing configuration(b) (a)-extended diagram shows a firing
order and a stability of in-phase soluticfg) Gsy,+(d F('”)/dX)|x:o FO(X)=(2-¢)+Ggyn— K[(2—€)+ Ggyn—Xa]  (X,=0).
diagram of the stability of the in-phase solution. The solid, dotted, (40)
and broken lines are shown wh@s=0.001, 0.01, and 0.1, respec-
tively. This return map can be used in a wide region of the param-
B i eter space 06y, and 8. To be more precise, as far as the
Qa(Az)=[—(2—c)=A_1+(Gsyn—B)s; (A)e P22 case withx,<1 is concerned, E40) is valid for (Ggyn,8)
Ty A e b (L) Ay in the region(l) of Gsy+B plane[Fig. 2@]. This is because
[W; (A1) —A-—Bs; (Ay)]e #=0. the condition Eq(30) assumed in obtaining E¢40) can be
(31 shown to hold for the regiofl) of Fig. 2(a) in the case with
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xn<1 (see Appendix A We have two other return maps for regidiig and(lll) of the G+ plane of Fig. 2a). They are
studied in Appendix B.

We now investigate the mag,. ;=F"(x,). Note thax=0 is a fixed point solution ok, ;=F (" (x,) and gives rise to the
in-phase synchronization of the two neurons. Stability of this solution is examined by the linear stability analysis,

drF® 1
dx x:O_ 1
_B(B_Gsyn)_ b+ E [(Z_C)+Gsyn_A+_B]
« (2_0)+Gsyn_D+
[(2—C)+(Ggyn—B)—A_Je [P*(WOIT2 Be~ATa4 A_—D,
1
b+ = |[(2—¢)+Ggyp=D_Je " N2 B[(Gyy - B)e [°7 (HONT2+ Be AT2] . (4D)
|

This equation can also be obtained by a more intuitive man- dF" (0) dF((0)
ner as given in Appendix B. Stability condition is given by ax  dx (44)

0<dF"/dx|,_o<1. For any Gsy,,B8) in region(l) of Fig.

2(a), we find that the above condition is satisfied and that the ) .

in-phase synchronized solution is stable. It is noted that for e show the plot ofiF*"™> (0)/dx as a function ofGsy,
(Gsyn:B) in region(l), the approach to the=0 solution is for several fixed values qQ_m Fig. 2(0). We see.that gxpept
monotonic with time. The return map for regidh) can be fo_r very I.Icimallﬂ, the stability condition Eq(42) is satisfied
obtained in a similar manner as the above for reglonThe ~ With dF(")/(0)dx<1 for everyGs,,>0. It is noted that the
only difference comes from the fact that neuron 1 arrives afo neurons are attracted to the in-phase synchronized solu-
the left knee earlier than neuron 2, to jump up the activdion With alternating the firing order. However, fog
phase. However, the same inequalith, (A +4,)  =0.0004, dF"©@/dx can increase beyond 1 and break
>W, ~(A,+A,) that region(l) holds implies that neuron 1 down the stability condition of Eq43) for a certain interval

jumps down to the inactive phase earlier than neuron 29f Gsyn- Then in the black region of Fig.(B), the in-phase

Thus, monotonic approach to=0 can also follow. We then synchronized so_lution is u_nstable. In addition, the quasi-in-
omit the analysis because the stability &0 can be phase §ynchron|zed sqlunon emﬁlrlges(,m():orrespondmg L
checked by numerical simulation. Finally, we study the re—St""bIe fixed point solution fox=F*eF7 (x) given byx

turn map for the regior(lll). In the case of regionlll),

W; (A1 +A)<W, (A;+A,) when both the two neurons

jump up from the inactive phase to the active one. We define B. Antiphase synchronization

the prl?se difference ang-1)th iterate aWnH:W(ZnH)_ There can be several temporal firing patterns leading to
~W{"" (>0) at the time that neuron 2 reaches the rightantiphase synchronization of the two coupled neurons. The
knee point of the upward-shifted nullcline. Hence we have  simplest and most important case will be given by Table I:

the mapy,,;=F"(x,). Iterating this map once more, we supposing both the two neurons to be inactive, one neuron

have the map fronx, to X, that expects to fire earlier can stop firing to become inactive
before the other neuron starts to fire. We consider an initial
Xns2=FM" (y, ;1) =FMep x . (42  condition (nth iterate as the following:

W; ~(0)=W, " (0)=W{V+Gq, s,
Sincex=0 is a fixed point of the map, its stability is deter- 1 (0)=W; (0)=W] syrS2

mined by _ . .
TABLE |. Time evolution of neurons 1 and 2 in the case of

antiphase synchronization. The number of the case is in Sec. Il

dFM ORI (x) _dF(”')[F('”)(X)] “ +” and “-” indicate that each neuron is in the active phase and

silent phase.
dx <=0 dF( (x) £ ()= p
dF(III)(X)’ dF(III)(O) 2 Duration Case Neuron 1 Neuron 2
X = <
dx | _, [ dx L oay 2 + -
[A1,t5] - -

43 [ta,to+A,]
[to+A,,A,+A1]

W N W
I
+

where we easily find the following equation:
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W, ~(0)=W, "(0)=wW§",
sy (0)=s{",

s; (0)=s{",

where time (0) is set to be the one immediately after neuron

1 fires and hence the initial state of neuron W§"=—(2
—c) ands{"=1. We calculate the time evolution of Table |
in the same manner as in the above Sec. Il A.

Suppose that during time intervied,A1], neuron 2 is si-
lent while neuron 1 keeps firing. At= A, neuron 1, arriving
at the right knee of th&/; nullcline that is vertically shifted
by Ggyrs2(A4), stops firing to jump down to the inactive
phase. Hered, is the time duration of neuron 1's action
potential. Then it follows that

Wi (A1) =W; ~(A1)=(2-C) +Ggyrs; (0)e A2,

Similarly, suppose that fdrA,t,], both the two neurons
are in the silent phase. Att,, neuron 2 begins to fire when
it is at the left knee o/, nullcline that is vertically shifted

by Gsymsi1(tz). The equations representing the state of neu-

ron 2 are then given by

W, " (t2) =W (1)

—(2=C)+Ggysy (ty+Aq)e Allz=20),
- e
S; (ta)—s; ()= 1.

We next assume that fdit,,t,+A,], neuron 1 is in the
silent phase but neuron 2 is in the active phaset#t,

PHYSICAL REVIEW E6, 041903 (2002

(a)

T
08 F

06 |

0.2

(n+1)

W

=
T

02k

rys

06+ ™ i 12 Y
S L i

) b : . . L
-0.6 -0.4 -0.2 0 0.2 0.4 086 08
)

W2
(b)

(Nn+1)

FIG. 3. Whole Poincarenap wheng is large(e.g.,3=4.5 and
Geyn=0.2). (@ WS D=F (W s, o) with s,,~0.009. The dotted

+A4,, neuron 2 stops firing to jump down to the silent phasgjne indicates the 45° line. This Poincareap consists of three

and is at the right knee o¥, nullcline that is vertically
shifted byGgys1(t,+A5). HereA, is the time duration of
neuron 2’s action potential. Then it follows that

W3~ (ty+An) =W, ~(tr+Ay)
=(2—0C)+Ggysy (tp)e P2,

Suppose finally that foft,+A,,A;+A7], two neurons
are in the silent phase. A=A+ A7, neuron 1 begins to fire
again and is at the left knee df; nullcline that is vertically
shifted byGg,s,(A;+A7). We obtain the state of neuron 1
as follows:

Wi (A +AD =W, (A;+A7)

_(Z_C)+Gsyn32_(t2+A2)

X e*B(AﬁAi*Az*tz),
S;(A+A)—s (A +A])=1.

We now write down the Poincammap of the solution to

Egs.(8), (9), and(10) for studying the antiphase synchroni-
zation

branchesT'1 (Sec. Il A), T2 (Sec. llI B, or Table ), andT3 (not
shown herg (b) si""V=F(W{V s{"). The grid plane shows the
45° plane.

L(W(Zn) 13(2n)) — (W(2n+ 1) ,S(2n+ 1))

=[W; (A +A7),8; (A +Ay)]. (45
More precisely, we define the antiphase synchronized solu-
tion as the fixed point of the above map.

IV. RESULTS AND CONCLUSIONS

The whole PoincarenapF (W4 ,s{V) is defined forw{"
in the entire regior —(2—c),(2—c) + Ggy,| in the case of
excitatory coupling(or [ —(2—c)+Ggy,(2—c)] when in-
hibitory). This map can be obtained by incorporating other
temporal firing pattern diagrams as well as the temporal fir-
ing pattern diagram of Sec. Il A and Table I. An example of
the mapF (W5, s{V) is shown in Figs. 3 and 6. Figure3
and 3b), respectively, displayWs'*H=F(W5",sil) with
si8~0.009 andsy" " Y=F(WS,s8), respectively, for an
excitatory coupling. On the other hand, Figagand &b)
representWs" D= F (WY i) and s P =F(W§Y ,siV),
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(a) . . , . the two-dimensional map and the 45° plane in Fig)B
The fixed point (-0.667,0.000) of th&1 branch represents
. ‘ s the in-phase synchronized solution, while the fixed point
(—0.205,0.009) of ther2 branch represents the antiphase
\ synchronized solution. Figurega and 3b) also show that
as time elapses the trajectory of neuron 2’s ststited from
an arbitrary initial conditiopis eventually attracted into ei-
ther of the two fixed points. Such behavior is shown in Fig.
5: In Fig. 5a), the blank region represents the in-phase syn-
chronized solution, while the vertical striped region repre-
sents the antiphase synchronized solution. Figtog $hows
the plot of|W,—Wj,]| for large times as a function ¢8 for
. ‘ ‘ . fixed value of Ggy,. Figure c) shows the plot of|\W,
0 2 4 5 8 10 —W,| for large times of neuron 2’s initial condition
T (WS ,s§?) for fixed values ofGs,, and3. We then find that
(b) the antiphase as well as the in-phase synchronizations are
' determined by the differing initial state of neuron 2. The
in-phase synchronized solution given by the fixed point of
ZR 1 T1 branch corresponds to the one of regitih) in Fig. 2(a);
the occurrence of the alternating firing order of neurons 1
r " 1 and 2 in approaching the fixed point can be seen by noting
the trajectory following a square path in Figb3 The fact
V ot 1 that s(“”) can take 1 implies that neuron 2 can fire earlier
than neuron 1 and one has reversal of firing ordeGJ{,n
becomes larger than a certain critical vaIGé” (B), two
neurons are attracted to the fixed point W|thout alternating
the firing order. This is shown in regiorip and(ll) in Fig.
2(a).
3 s s s ; For (Ggyn,B) other than the above-mentioned condition,
the antiphase synchronized solution disappears. In such a
Case, ifG,,is larger than a certain critical val C”‘ , only
FIG. 4. Synchronization phenomena whgris large. The two  the in-phase synchronized solution remains in eX|stence The
neurons become synchronized (@ the antiphase antb) the in  solution demonstrates that although two neurons fire simul-
phase. taneously, they are attracted to the solution without alternat-
ing the firing order. However iGsyn<G§;',§, two neurons
respectively, for an inhibitory coupling. On the basis of suchare attracted to the in-phase synchronized solution with al-
Poincaremaps together with the results of the temporal firingternating the firing order. Hersg;‘rﬁ is determined by the
pattern diagram in Secs. IIlA and IlI B, we deal with in- solid line in Figs. 2a) and 2b).
phase as well as antiphase synchronized solutions together Moreover, as shown in Fig.(8), when 3 is sufficiently
with the transient dynamics setting into them. smaller (e.g., =0.0001), there exists a certaiG{y,,3)
Now seta=0.8b=0.01¢=3,6=0.0. We show the re- region that has the following synchronization phenomenon:
sults of the synchronization behavior of our system obtainedhithough two neurons fire simultaneously, they cannot be
theoretically and by numerical simulations. attracted to the in-phase solution witk=0 but to the nearly
in-phase one with a small phase differengze=Q).

A. Excitatory synaptic coupling

In the case of excitatory synaptic coupling, there occur B. Inhibitory synaptic coupling

three types of behavior of synchronization for large times When 3 is smalle.g., 3=0.001), the whole Poincare
according to the values @,,andB. Wheng is large(e.g., ~ map for the case with inhibitory synaptic coupling gives only
B=4.5) andGs,, is small, we have the anti-phalses shown one stable fixed point in Table I. The trajectory started from
in Fig. 4@] and in-phas¢as shown in Fig. é)] synchro-  an arbitrary initial state of neuron 2 is attracted to the fixed
nized solutions depending on the initial condition. Figure 3point. It represents the antiphase synchronized solution,
shows a typical whole Poincareap of the system with such which is shown in Fig. 6.

a condition forGgy, and 8. In Fig. 3, the solid lines with However, Wher;G becomes larger than the critical value,
arrows represent trajectories that are obtained from iteratioriie whole Poincarenap yields a pair of stable fixed points in
of the map. We see that there exist two fixed points that ardable I. The pair arises from the occurrence of bifurcation at
given by intersections of the one-dimensional cross sectiothe critical value of3. This map is demonstrated in Figs.
of the whole Poincarenap and the 45° line in Fig.(8 [or  7(@ and 7b). Figures Ta) and 7b) show W{*1
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FIG. 6. Synchronization phenomena wheris small. The two
06 . . . ‘ neurons become synchronized in the antiphase.
ost ] =FW ) and si""V=F(W sy, respectively. The
pair of stable fixed points represent a kind of antiphase syn-
o4 b i chronized solution. Such synchronized solutions, however,
may happen to be viewed as a kind of in-phase synchronized
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FIG. 5. Phase diagrams concerning the in-phase and antiphas wW
synchronizations with excitatory coupling when the initial state of 2
neuron 2 isW4”=—0.25 ands}”=0.0. (a) B~ Gy, diagram.(b) FIG. 7. Two-dimensional Poincamap wheng is large(e.g.,
B-|W,—WS,| diagram forGsy,=0.2. (c) Neuron 2's initial state and  g=5.0 and Goyn=—0.2). (@ WE D=F(W s). (b) st D)

|W,—W;| diagram wherGs,,=0.2 andB=4.5. — (W sy
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(@) . . ' ' . (@)
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(W W,
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(b)

FIG. 8. Synchronization phenomena wheiis large. In both(a) FIG. 9. Phase diagram in inhibitory coupling when the initial
and (b), the two neurons become synchronized with a short phasetate of neuron 2 isV§"=—0.25 ands{”=0.0. () B-|W,—W,]|
interval. Neuron 2's initial configuration replaces neuron 1’s firing diagram due to the differing level db, the solid, dotted, and
order with that of neuron 2. broken lines are shown whe@g,,=—0.06, —0.24, and—0.46,

respectively(b) Neuron 2’s initial state anfW,—W,| diagram due
the differing level of3. The solid plane whe=5.0 andGg,,

. . t
solution because two neurons become synchronized at _870'2_ The grid plane whep=0.1 andGs,,= 0.3,

short intervals. This phenomenon is demonstrated in Figs.
8(a) and 8&b). We call this type of synchronized solution the
quasiantiphase synchronized solution. We then find that neureurons. The analysis has enabled us to explain the in-phase
ron 2’s initial configuration replaces neuron 1’s firing order or antiphase synchronizations exhibited by a pair of synapti-
with that of neuron 2. cally interconnected neurons in a concrete and systematic
As a result, the above conclusion is shown in Figg) 9 manner. In addition to the commonly known in-phase and
and g9b). Figure 9a) indicates the plot of the phase differ- antiphase synchronizations, we have found the occurrences
ence of neurons 1 and 2 &s-= as a function ofg for of quasi-in-phase and quasiantiphase synchronization. These
several fixed values oBg,,. As 8 becomes larger to pass Phenomena, to the best of our knowledge, have not been
through a critical value of3, the two neurons switch from reported or studied so far. In the case of excitatory coupling,
antiphase to quasiantiphase synchronization. Figut® 9 When the decaying relaxation rate is large, two neurons get
shows such a behavior: whes is large (e.g., 3=5.0 and ~ Synchronized in the in phase or antiphase depending on ini-
Ggyn=—0.2), |W,—W,| depends on the initial state of neu- tial conditions fpr neurons. However, if it is small, they _be-
ron 2 and is separated by it. Howevergdfis small(e.g.,8  come synchronized in the in phase. On the other hand, in the
=0.1 andG,,,= —0.3), the phase difference is constant, andcase of inhibitory coupling, if the decaying relaxation rate is

independent from the initial state. small, the neurons become synchronized in the antiphase.
However, as it becomes larger than the critical valugBpf
V. SUMMARY AND DISCUSSION they become synchronized in the quasiantiphase.

Moreover, we have had a clear view of the behavior of
Our analysis is based on the construction of the Poincargansient dynamics setting into the in-phase synchronized
map for the dynamics of the coupled piecewise-linear modestate. In this study, there occur two types of firing patterns
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with respect to firing order. We obtained the boundary linetion, and synchronization in the in phase or antiphase, re-

between the two transient firing patterns in the phase diaspectively.

gram of Ggy,, and 3. Therefore, the key feature that determines which of in-
Our theoretical results indicate that excitation rather tharphase and antiphase synchronized firings occurs in coupled

inhibition produces synchrony when synaptic response dueeurons with synaptic interaction depends crucially on the

to activation of neurons occurs instantaneously and decayssing time of the synaptic response aadAccordingly, we

very slowly. This should be contrasted with the result ofwill have to investigate the synchronization phenomena, in-

previous work based on theoretical and simulation basedluding in the largee.

studies: Inhibition rather than excitation was reported to pro-

duce synchrony in the case when synaptic rising times araPPENDIX A: LINEAR ANALYSIS OF THE FIRING TIME

larger than the width of an action potential. In this study, we DIFEERENCE OF NEURONS NEAR THE LEFT

neglected to take into account the effect of the synaptic rising KNEE POINT
time by assuming, for the sake of simplicity, that the synaptic , ) .
rising time is sufficiently small. We investigate the condition for the occurrence of the

In spite of the analysis based on taking the limit:0 case where neuron 2 arrives at the knee point earlier than

our results agree with those of numerical simulations for thé'euron 1.

original Eqs.(1) and(2) with smalle. Furthermore, they are e analyze the state of neuror(dr neuron 2 at the left
also qualitatively in agreement with the result of numericalknee point in phase plane, supposihgto be infinitesimally
simulations for the HH model with sma#l (e=0.05). This ~SMall A;=5s;, we setA,=T,+Js, (or A;=T,+3sy).
implies the validity of our approach of taking—0 limitand ~ Where it takesT, for two neurons to jump down simulta-

of using piecewise-linear model for investigating the Syn_neously to the inactive phase and enter simultaneously into
chronization phenomena of two coupled neurons. On théhe active phase. Considering the moment when neuron 1
other hand, wher becomes large, in the present piecewise-arrives at the left knee point of nulicline, we have

linear model, we have found by numerical simulations that

the in-phase synchronization occurs in the two inhibitory—(2—c)+Gsyne‘5(T2+552)

synaptic coupled neurons. The occurrence of such phenom-

e)r/1a(iF:1hibitor3F/) synchrony was also reported by Wanrg); and  —1(2=¢)=Ggy~D_Je [*0NM-—D_—A_—B}
Buzsai [12] for the HH model which had extremely rapid w @~ [bH(UO(T2+85) B B(Tat05) f A (A1)
rising and slowly decaying synaptic response times. Excita-

tory and inhibitory synaptic couplings lead to asynchroniza-Up to the first order ings; and ds,, we obtainss,:

1
(b+ E) [(2—¢)—Ggyn—D_]e [P+OIT2

5s,= 5s,. (A2)

1
b+ E) [(2—C)+(Geyn—B)—A_)e P+ p(B—G ) e AT2

Similarly, suppose that neuron 2 arrives at the left knee point. Using the aforementioned analysis, wésjbtain

B(B_ Gsyn)(e—BTZ_ e—[b+(1/C)]T2)
_ S, .
_[b+ (1/C)][(2_C)+ (Gsyn_ B) _A—]ei[b+(llc)]T2_B(B_ Gsyn)eim—2 '

4

Sz

(A3)

By &s,— 8s;, we can determine which of neurons 1 and (Il) and (Ill) demonstrate that neuron 1 arrives at the left
2 arrives earlier at the left knee point. Then the broken line irknee earlier than neuron 2¢,— §5,<0).
Fig. 2(@ which corresponds t&s,— 8s,=0, gives us the
resulting equation: ]
APPENDIX B: POINCARE MAPS FOR IN-PHASE
SYNCHRONIZATION

[(2_ C) + Gsyn_ Di]e—[b+(1/c)]T2_ B(Gsyn_ B)

1
b+~
Cc

According to inequality 8s,—ds,>(or<) 0 and
Wi (A1 +A)>(or<) W, " (Ag+A)) [see Eq.(30)], we
have three cases of temporal firing pattern diagrams based on
which the corresponding Poincaneap can be constructed.
In Fig. 2(a), region(l) indicates that neuron 2 reaches the leftThe three cases are displayed (&8s (11), and (Ill) in the
knee earlier than neuron 1§,— 8s,>0), whereas regions phase diagram of Fig.(d).

X (e PTa— g [0+ (1OIT2) =, (A4)
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Region(l). 8s,—85,>0 andW; (A +A,)>W, (A,
+A5). Using Egs.(24), (25), (26), (31), and(37), we have
the return map from Eq40)

F(')(x):[(Z—C)+Gsyn_D+]( 1- m

hl(A11A2)>
hi(Aq,A,)={[(2—¢)+Ggyn— D_Je [P*(10l4

+D,—A_—Ble [P*(Old2 Be=Alap A

ha(Ag,A)=—(2—C)+Gg e Pl2%4D,  (BI)
whereA (x) andA,(A;) satisfy the following equations:
[(2-C)~A.]+(Ggyp~B)e P
—[(2=c)+Ggy—x—A, —BJe [P*Wlhi=0, (B2
[~(2-C)=A_]+(Ggyp=B)e A41742
—[(2=c)=A_+(Ggyq—B)e Fh1]e [PH(IRIA2= g,
(B3)

Region (II). 8s,—685,<0 and W; (A;+A)y)
>W, (A;+A,). We have
g2(A1,45)
F(x)=[(2—¢)+Ggyy—D (1——.
( ) [( ) syn +] 91(A1,A2)

(B4)

Region (Il1). 8s,—8s,<0 and W; ~(A;+A)<W, (A,
+A5). We obtain

_gl(AlaAz))

) (N =7(2— — a(A. A
FPP () =[(2=¢)+Gsyn D+](1 92(A1,4,)

(BS)
01(A1,A5)=—(2—c)+Ggy e P42,

PHYSICAL REVIEW E66, 041903 (2002

92(A1 1A2) = [(2_ c)+ (Gsyn_ B)e_BAl_A—]e_[b+(l/C)]A2
+Be Al1TAd LA

whereA(x) andA,(A,), respectively, satisfy EqB2) and
the following equation:

[_(Z_C)_A—]+(Gsyn_ B)eiﬁAz
_[(2_ C)+ Gsyn_ D—]e_[b+(1lc)]A1
+(D_—A_—B)e [PT(I0)]A2=q (B6)

To conduct linear stability analysis &f,. ;=F("(x,), we
calculate the derivation df("(x,) atx=0,
B &F(')+8F(') dA,|dA)|
o \dAy T 9A, dA;) dx ]|,

drF®
dx

1:°'A2:T2‘
(B7)

Using Eq.(B3), T, satisfies
[_(Z_C)_Af]_"(Gsyn_ B)e_BTZ
—[(2=¢)—A_+Ggy,—BJe [PT(RIT2=,
(B8)
It then follows that Eq(41) holds. Similarly, from Eq(B8),
we obtain Eq.(44). Furthermore, the phase boundary be-
tween the phases ofll) and (Ill), which is defined by

W; (A;+A)=W, (A;+A,) with infinitesimally small
A4, turns out to be given bgF("/dx|,_,=0

1
(b+ < [(2—C)+Ggyn—D_]e [PHOIT2

— Bl(Ggyn—B)e [P*(1ONT2 4 Be~AT2] =,
(B9)
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