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Spiking neuron models with excitatory or inhibitory synaptic couplings
and synchronization phenomena

Yasuomi D. Sato and Masatoshi Shiino
Department of Applied Physics, Faculty of Science, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-ku,

Tokyo 152-0033, Japan
~Received 16 January 2002; published 10 October 2002!

We investigate synchronization phenomena in a system of two piecewise-linear-type model neurons with
excitatory or inhibitory synaptic couplings. Employing the phase plane analysis and a singular perturbation
approach to split the dynamics into slow and fast ones, we construct analytically the Poincare´ map of the
solution to the piecewise-linear equations. We investigate conditions for the occurrence of synchronized oscil-
lations of in phase as well as of antiphase in terms of parameters representing the strength of the synaptic
coupling and the decaying relaxation rate of the synaptic dynamics. We present the results of numerical
simulations that agree with our theoretical ones.

DOI: 10.1103/PhysRevE.66.041903 PACS number~s!: 87.10.1e, 02.60.Cb, 05.45.Xt
d
re
d
ys
a

to
h

ic
u
c
a
a

or
b
p
a
to

in
be
ca

tw
th

sy
o

n
iz

nt
y
th
a
th

hip
yn-
ran-

vi-
ome

and

on
ng
tic
ns.

ta-
ion

re
een
ex-
w-

two
n-
rks

le
ew
ies

of

the
ic
-
n’s
ws

ow
r the
st-
ad
I. INTRODUCTION

Synchronous firing of neurons that has been observe
the cat visual cortex has attracted much attention from
searchers@1–4#. In order to understand highly integrate
neural information processing in physiological nervous s
tems, theoretical studies of synchronization phenomen
neuronal networks have been extensively undertaken@5–8#.
Synchronized oscillations exhibited by coupled oscilla
systems are one example of cooperative phenomena. T
dynamic behavior is becoming an active area of statist
mechanics of nonequilibrium phase transitions. Vario
kinds of coupled oscillators ranging from theoretically tra
table models to physiologically relevant ones and from sm
size populations to large size ones have been proposed
extensively studied.

In physiologically relevant oscillator models, either
both of the oscillators whose components and couplings
tween them are made realistic in some sense. A unit com
nent may take the form of an oscillator that is made
simple as possible like the integrate-and-fire-type oscilla
or the FitzHugh-Nagumo~FHN!-type oscillator, while in a
more realistic model, an oscillator based on the Hodgk
Huxley ~HH! equations or multicompartment model can
conveniently used to explain the result of any physiologi
experiments.

For couplings between oscillators, one can consider
types of couplings found in the real nervous system:
chemical synapse and the electrical synapse.

Electrical synapses@9–11# are diffusive-type couplings
and have linear membrane potentials, whereas chemical
apses contain nonlinear couplings. The latter have been m
often used than the former, a fact that has recently begu
attract attention as a possible mechanism for synchron
oscillations in the inhibitory interconnected network.

Modeling of chemical synapses, which are classified i
excitatory and inhibitory ones, may include either the d
namics representing a certain chemical gating kinetics or
so-calleda function. One of the key issues of synchroniz
tion phenomena exhibited by coupled oscillators with
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above-mentioned chemical synapses will be the relations
between the types of entrainment of oscillations and s
apses together with synchronization-desynchronization t
sitions.

Many computer simulation experiments conducted pre
ously have demonstrated that neuronal ensembles bec
asynchronized and synchronized by mutual excitation
mutual inhibition, respectively@12–15#. A theoretical study
based on the two integrate-and-fire oscillator models and
two phase oscillator models with synaptic coupling havi
thea function, has given an explanation of how the synap
time constant governs the stability of phase-locked solutio
It was confirmed that inhibitory synchronization and exci
tory asynchronization occur when the synaptic relaxat
rate is large@16#.

The study based on simulations of either two or mo
synaptically interconnected neurons has extensively b
conducted to explore the collective behavior. Systematic
ploration of the parameter space of model dynamics, ho
ever, has been lacking. We consider that the study of
coupled neurons can still yield a useful insight into the sy
chronization phenomena found in larger neural netwo
@17–21#.

The aim of this paper is to study an exactly solvab
model of a system of two coupled neurons from the vi
point of finding how the static as well as dynamic propert
of synaptic couplings affect the scheme of synchronization
oscillations.

We use the two interconnected neural oscillators of
piecewise linear type with excitatory or inhibitory synapt
couplings @22,23#. Moreover, we note the so-called two
time-scale motion that arises from the fact that a neuro
impulse consists of fast and slow motions. This idea allo
us to employ the singular perturbation approach@24–27# to
split the dynamics into slow and fast ones@28–33#. We then
ignore the fast dynamics and give attention only to the sl
ones as we let the time-scale parameter approach 0. Fo
modeling of the synaptic couplings, we incorporate fir
order kinetics of the gating variable for inactivation inste
of employing thea-function.
©2002 The American Physical Society03-1
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We make full use of the Poincare´ map of the solutions to
the piecewise-linear equations, which is constructed ana
cally, for example, by considering the state of two neuro
that occur immediately after one of them fires as the itera
points in the Poincare surface. Such a map enables u
investigate conditions for the occurrence of synchronized
cillations of the in phase~0 phase lag! as well as the an-
tiphase (uW12W2u'0.5), in terms of the parameters of th
synaptic coupling. In the case of excitatory coupling, if t
decaying relaxation rate is large, two neurons become s
chronized in the in phases or antiphases, depending on
initial conditions. However, when the rate is small, they b
come synchronized in the in phase. In the case of inhibit
coupling, two neurons become synchronized in the
tiphases or quasiantiphases, depending on the decayin
laxation rate. We summarize the result by drawing a ph
diagram of the parameter space of the strength and the
caying relaxation rate of the synaptic couplings and comp
this result with numerical simulations. The simulations a
conducted using the fourth-order Runge-Kutta method
the HH, the FHN, and the piecewise-linear models.

The outline of the paper is as follows. In Sec. II, th
coupled FHN model with a piecewise-linear approximati
is presented together with the model of synaptic kinetics. T
separation between the slow dynamics and the fast one
made by introducing the time-scale parameter. We then
tain three fundamental types of solutions for the time evo
tions of the two coupled neurons in the limit that the tim
scale parameter tends to 0. In Sec. III, using the three ty
of solutions, we construct one- or two-dimensional Poinc´
maps under the assumption that the in phase or antip
synchronized solutions exist. In the case of excitatory c
plings, we use a one-dimensional map for in-phase sync
nization and conduct the linear stability analysis. In Sec.
we present the results of numerical simulations that ag
with those of our analysis. We give a summary and br
discussions in Sec. V.

II. MODEL BASED ON THE FHN TYPE NEURONS WITH
THE PIECEWISE-LINEAR APPROXIMATION

We begin by describing two interconnected neural os
lators of the piecewise-linear type with excitatory or inhib
tory synaptic couplings,

dVi

dt
52cVi1uVi11u2uVi21u2Wi1I syn

( i ) , ~1!

dWi

dt
5e~Vi1a2bWi ! ~ i 51,2!, ~2!

wherea, b, andc are constant,I syn
( i ) represents the synapti

coupling, ande(.0) is a small time-scale parameter. W
assume 0,c,2, 21,a/@b(22c)21#,1 and 22c,1/b
so that the model represents an oscillatory system exhib
a spontaneous and periodic firing.V is the excitable variable
describing something similar to an action potential.W is the
recovery variable and is like the total ionic channel in t
HH model. It is often convenient to use the phase pla
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(V,W) representing time evolution of (V,W) as shown in
Fig. 1~a!, whereV has the invertedN-shaped nullcline andW
has the one that is a straight line with a positive slope.
also call the flow around the left branch the silent, or inact
phase and its right branch, the active phase. We call the l
minima of theV nullcline the left knee point and its loca
maxima the right knee point. The reason for introducing
time-scale parametere will be explained later.

For the synaptic couplingI syn
( i ) , we incorporate the first-

order kinetics instead of using thea function, to write

I syn
( i ) 5Gsynsī , ~3!

where ī represents the counterpart of neuroni andGsyn the
synaptic strength. It represents an excitatory coupling w
0,Gsyn,@(11a)/b#2(22c), and an inhibitory one when
@(211a)/b#1(22c),Gsyn,0. We consider thatsj obeys
the following equation:

dsj

dt
5aF~Vj !~12sj !2ebsj ,

FIG. 1. Phase plane of the piecewise-linear model.~a! e50.1.
~b! e→0. The solid lines indicate dynamical flow. The broken lin

present the nullclines, that is,V̇50 and Ẇ50. Here we seta
50.8, b50.01, andc54/3.
3-2
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F~Vj !5
1

11expS 2
Vj2u

s D ~ j 51,2!, ~4!

where F(V) is the sigmoid function with thresholdu and
small s, anda andb represent the synaptic rising and d
caying relaxation rates, respectively.

To split the slow dynamics from the fast ones, we rewr
the piecewise-linear model by changing the time scale tt
5et:

e
dVi

dt
52cVi1uVi11u2uVi21u2Wi1Gsynsī , ~5!

dWi

dt
5Vi1a2bWi , ~6!

e
dsi

dt
5H a~12si !2ebsi ~Vi.u!,

2ebsi ~Vi,u!.
~7!

As e becomes smaller, the motions in the active and sil
phases become slower, while the switching ones betw
them become faster and its trajectory on theV-W plane
roughly follows a line of constantWi .

Then, taking the limite→0, one obtains a simplified
model where transitions between the silent and active ph
become instantaneous. In other words, forVi , andsi when
Vi.u, it suffices to consider the manifold obtained by s
ting dVi /dt50, anddsi /dt50

052cVi1uVi11u2uVi21u2Wi1Gsynsī , ~8!

dWi

dt
5Vi1a2bWi , ~9!

dsi

dt
5H 0→si51 ~Vi.u!,

2bsi ~Vi,u!.
~10!

These equations are the simplified version of
piecewise-linear model. They ignore the switching motio
between the active and silent phases and give attention
to the active and silent phases. We depict Fig. 1~b! to show
that a trajectory follows a straight line of constantWi to enter
the active and silent phases after arriving at the left and r
knee points, respectively. In both Figs. 1~a! and 1~b!, it can
be noted that the transitione→0 leaves the structure of th
phase space intact.

We proceed to solve Eqs.~8!–~10!. In solving these equa
tions, we have to consider the following three fundamen
cases according to whether neuronsi and j are firing or not.
Here we consider the solutions in the case ofb5” b1(1/c).
The case ofb5b1(1/c) is also satisfied by the following
analysis.

Case~1!. Both the two neuronsi (51,2) are firing in the
active phase

Wi
11~t!5@Wi

11~t0!2D1#e2[b1(1/c)]( t2t0)1D1 ,
~11!
04190
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si
1~t!51. ~12!

Case~2!. Neuroni is not firing in the silent phase, while
neuronj is firing in the active one (i , j 51,2)

Wi
21~t!5@Wi

21~t0!2D2#e2[b1(1/c)]( t2t0)1D2 ,
~13!

Wj
12~t!5Wj

12~t0!e2[b1(1/c)]( t2t0)

1A1~12e2[b1(1/c)]( t2t0)!

1Bsi
2~t0!~e2b(t2t0)2e2[b1(1/c)]( t2t0)!,

~14!

si
2~t!5sj

2~t0!e2b(t2t0), ~15!

sj
1~t!51. ~16!

Case~3!. Both two neuronsi (51,2) are not firing in the
silent phase

Wi
22~t!5Wi

22~t0!e2[b1(1/c)]( t2t0)

1A2~12e2[b1(1/c)]( t2t0)!

1Bsj
2~t0!~e2b(t2t0)2e2[b1(1/c)]( t2t0)!,

~17!

si
2~t!5si

2~t0!e2b(t2t0), ~18!

D65

a1
621Gsyn

c

b1
1

c

,

A65

a6
2

c

b1
1

c

, B5
C

b1
1

c
2b

, C5
Gsyn

c
.

The above solutions allow us to analyze and understand
chronization phenomena in our present model, that is,~1!,
~2!, and~4!, in the limit e→0.

III. ANALYSIS USING THE POINCARE ´ MAP

To systematically understand the behavior of the dyna
ics of the two coupled neurons, we analytically construct
Poincare´ map corresponding to the time evolution of the sy
tem with the use of the three fundamental types of solutio
Eqs. ~11!–~18!. To this end, it is convenient to specify
temporal firing pattern diagram that represents how e
neuron switches between the active and silent phases.
cording to the features of the temporal firing pattern diagra
we can construct one- or two-dimensional Poincare´ maps.
They enable us to gain some solutions exhibiting synchro
zation phenomena in the two neurons with excitatory or
hibitory synaptic couplings.
3-3
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A. In-phase synchronization

We begin by investigating the case of an excitatory c
pling. This case will allow the in-phase synchronization
the firing of two neurons and enable us to examine the o
dimensional Poincare´ map for the analysis of such synchr
nization behavior.

We construct the Poincare´ map by focusing on the state
of two neurons that occur immediately after neuron 1’s
tering the silent phase with neuron 2 remaining in the ac
phase. LetW1

(n) , W2
(n) , s1

(n) , ands2
(n) denote the values o

Wi andsi for thenth occurrence of such states.The Poinc´
map can be defined as a map fromW2

(n) to W2
(n11) . We then

support that

W1
11~0!5W1

21~0![W1
(n)1Gsyns2

(n) ,

W2
11~0!5W2

12~0![W2
(n) ,

s1
1~0!5s1

2~0![s1
(n) ,

s2
1~0![s2

(n) ,

where time 0 is set to be the one when neuron 1 stops fi
to enter the silent phase and hence the initial state of neu
1 and 2 isW1

(n)522c ands1
(n)5s2

(n)51. The Poincare´ sur-
face in this case corresponds to the surface denoted
f (W1 ,V1)50, W1522c1Gsyn, and s15s251, where
f (W,V) is a function of the active phase of theV nullcline of
neuron 1.

Suppose that during time interval@0,D1#, neuron 1 is in
the silent phase while neuron 2 remains in the active ph
and also that att5D1, neuron 2 stops firing to enter th
inactive phase. Then, using case~2! in the Sec. II, the state o
the two neurons att5D1 is denoted by

W1
21~D1!5W1

22~D1!5@W1
21~0!2D2#

3e2[b1(1/c)]D11D2 , ~19!

W2
12~D1!5W2

12~0!e2[b1(1/c)]D11A1@12e2[b1(1/c)]D1#

1Bs1
2~0!~e2bD12e2[b1(1/c)]D1!, ~20!

s1
2~D1!5s1

2~0!e2bD1, ~21!

s2
1~D1!5s2

2~D1!51. ~22!

When neuron 2 stops firing, we also obtain the state of
neurons as

W2
12~D1!5W2

22~D1!5~22c!1Gsyn. ~23!

We know the value ofD1 by comparing Eqs.~20! and~23! as
the solution ofQ1(D1)50, where

Q1~D1!5@~22c!2A1#1~Gsyn2B!s1
2~0!e2bD1

2@W2
12~0!2A12B#e2[b1(1/c)]D150. ~24!
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Similarly, suppose that for@D1 ,D11D2#, neurons 1 and 2
are silent. Att5D11D2, using case~3!, the state of the two
neurons is denoted by

W1
22~D11D2!5W1

22~D1!e2[b1(1/c)]D2

1A2~12e2[b1(1/c)]D2!1Bs2
2~D1!

3~e2bD22e2[b1(1/c)]D2!, ~25!

W2
22~D11D2!5W2

22~D1!e2[b1(1/c)]D2

1A2~12e2[b1(1/c)]D2!1Bs1
2~D1!

3~e2bD22e2[b1(1/c)]D2!, ~26!

s1
2~D11D2!5s1

2~D1!e2bD2, ~27!

s2
2~D11D2!5s2

2~D1!e2bD2. ~28!

Here we consider the case where neuron 2 arrives at the
knee point earlier than neuron 1. The conditions for the
currence of this case can be specified in terms ofGsyn andb
as is shown in Appendix A. Such (Gsyn,b) region @i.e., ~I!#
in theGsyn-b plane is displayed in Fig. 2~a!. We then obtain

W2
22~D11D2!52~22c!1Gsyns1~D1!e2bD2. ~29!

Moreover, as both the two neurons start firing to enter
active phase, the state of the two neurons is changed as
lows:

W1
22~D11D2!5W1

11~D11D2!,

W2
22~D11D2!5W2

11~D11D2!,

s1
2~D11D2!→s1

1~D11D2!51,

s2
2~D11D2!→s2

1~D11D2!51,

where we have considered the case thatW value of neuron 1
is larger than the value of the left knee point ofV nullcline of
neuron 1:

W1
22~D11D2!.W2

22~D11D2!. ~30!

As analyzed in Appendix B, (Gsyn,b) in the region~I! of the
parameter space of Fig. 2~a! ensures the above-mentione
case.

Here we explain the reason why the two neurons can
multaneously fire. In the phase plane analysis, theV nullcline
of neuron 1 is shifted upward by receiving an excitato
input from neuron 2. Then the state of neuron 1, (V1 ,W1),
can come below the local minima of the upward-shiftedV
nullcline. Therefore it is forced to start entering the rig
branch of the new nullcline.

Then we get the time durationD2 of neuron 2 staying in
the inactive phase by comparing Eqs.~25! and ~29!
3-4
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Q2~D2!5@2~22c!2A2#1~Gsyn2B!s1
2~D1!e2bD2

2@W2
22~D1!2A22Bs1

2~D1!#e2[b1(1/c)]D250.

~31!

FIG. 2. Phase diagrams about in-phase synchronization with
citatory coupling.~a! Gsyn-b diagram with respect to a firing orde
and a firing configuration.~b! ~a!-extended diagram shows a firin
order and a stability of in-phase solution.~c! Gsyn-(dF(III) /dx)ux50

diagram of the stability of the in-phase solution. The solid, dott
and broken lines are shown whenb50.001, 0.01, and 0.1, respec
tively.
04190
Suppose that for@D11D2 ,D11D21D3#, both the two neu-
rons are in the active phase and that att5D11D21D3,
neuron 1 stops firing. Then, making use of case~1!, the state
of two neurons is given by

W1
11~D11D21D3!5@W1

11~D11D2!2D1#

3e2[b1(1/c)]D31D1 , ~32!

W2
11~D11D21D3!5W2

12~D11D21D3!

5@W2
11~D11D2!2D1#

3e2[b1(1/c)]D31D1 , ~33!

s1
1~D11D21D3!5s1

2~D11D21D3!51, ~34!

s2
1~D11D21D3!51. ~35!

Neuron 1 should be at the right knee point of the upwa
shifted V nullcline when it finishes firing. We then obtai
W1(D11D21D3) as

W1
11~D11D21D3!5W1

21~D11D21D3!5~22c!1Gsyn.
~36!

We also obtain the duration of neuron 1’s action potentialD3
by comparing Eqs.~32! and ~36!,

D352
1

b1
1

c

ln
~22c!1Gsyn2D1

W1
11~D11D2!1Gsyn2D1

. ~37!

Note that Eq.~33!, which implicitly involvesW2
(n) , rep-

resents the state of neuron 2 when neuron 1 stops fi
again. We arrive at the (n11)th iterate of the Poincare´ map.

We now obtain the explicit expression for the on
dimensional Poincare´ map in terms ofW2

(n),

K~W2
(n)!5W2

(n11)5W2
12~D11D21D3!. ~38!

It is convenient to define the phase difference atnth iterate
between two neurons as

xn[~22c!1Gsyn2W2
(n) ~xn>0!. ~39!

From Eq. ~38!, we straightforwardly obtain a one
dimensional return map for the phase difference at (n11)th
iterate

F (I)~x!5~22c!1Gsyn2K@~22c!1Gsyn2xn# ~xn>0!.
~40!

This return map can be used in a wide region of the para
eter space ofGsyn andb. To be more precise, as far as th
case withxn!1 is concerned, Eq.~40! is valid for (Gsyn,b)
in the region~I! of Gsyn-b plane@Fig. 2~a!#. This is because
the condition Eq.~30! assumed in obtaining Eq.~40! can be
shown to hold for the region~I! of Fig. 2~a! in the case with

x-

,

3-5
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xn!1 ~see Appendix A!. We have two other return maps for regions~II ! and~III ! of the Gsyn-b plane of Fig. 2~a!. They are
studied in Appendix B.

We now investigate the mapxn115F (I) (xn). Note thatx50 is a fixed point solution ofxn115F (I) (xn) and gives rise to the
in-phase synchronization of the two neurons. Stability of this solution is examined by the linear stability analysis,

dF(I)

dx U
x50

52
1

2b~B2Gsyn!2S b1
1

cD @~22c!1Gsyn2A12B#

3
~22c!1Gsyn2D1

@~22c!1~Gsyn2B!2A2#e2[b1(1/c)]T21Be2bT21A22D1

3F S b1
1

cD @~22c!1Gsyn2D2#e2[b1(1/c)]T22b@~Gsyn2B!e2[b1(1/c)]T21Be2bT2#G . ~41!
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This equation can also be obtained by a more intuitive m
ner as given in Appendix B. Stability condition is given b
0<dF(I) /dxux50,1. For any (Gsyn,b) in region~I! of Fig.
2~a!, we find that the above condition is satisfied and that
in-phase synchronized solution is stable. It is noted that
(Gsyn,b) in region ~I!, the approach to thex50 solution is
monotonic with time. The return map for region~II ! can be
obtained in a similar manner as the above for region~I!. The
only difference comes from the fact that neuron 1 arrives
the left knee earlier than neuron 2, to jump up the act
phase. However, the same inequalityW1

22(D11D2)
.W2

22(D11D2) that region~I! holds implies that neuron 1
jumps down to the inactive phase earlier than neuron
Thus, monotonic approach tox50 can also follow. We then
omit the analysis because the stability ofx50 can be
checked by numerical simulation. Finally, we study the
turn map for the region~III !. In the case of region~III !,
W1

22(D11D2),W2
22(D11D2) when both the two neuron

jump up from the inactive phase to the active one. We de
the phase difference at (n11)th iterate asyn115W2

(n11)

2W1
(n11) (.0) at the time that neuron 2 reaches the rig

knee point of the upward-shiftedV nullcline. Hence we have
the mapyn115F (III) (xn). Iterating this map once more, w
have the map fromxn to xn12,

xn125F (III) ~yn11!5F (III) +F (III) ~xn!. ~42!

Sincex50 is a fixed point of the map, its stability is dete
mined by

dF(III) sF (III) ~x!

dx U
x50

5
dF(III) @F (III) ~x!#

dF(III) ~x!
U

F(III) (x)50

3
dF(III) ~x!

dx U
x50

5FdF(III) ~0!

dx G2

,1,

~43!

where we easily find the following equation:
04190
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dF(III) ~0!

dx
52

dF(I)~0!

dx
. ~44!

We show the plot ofdF(III) (0)/dx as a function ofGsyn
for several fixed values ofb in Fig. 2~c!. We see that excep
for very smallb, the stability condition Eq.~42! is satisfied
with dF(III) /(0)dx,1 for everyGsyn.0. It is noted that the
two neurons are attracted to the in-phase synchronized s
tion with alternating the firing order. However, forb
*0.0004, dF(III)(0) /dx can increase beyond 1 and bre
down the stability condition of Eq.~43! for a certain interval
of Gsyn. Then in the black region of Fig. 2~b!, the in-phase
synchronized solution is unstable. In addition, the quasi
phase synchronized solution emerges, corresponding to
stable fixed point solution forx5F (III) +F (III) (x) given by x
Þ0.

B. Antiphase synchronization

There can be several temporal firing patterns leading
antiphase synchronization of the two coupled neurons.
simplest and most important case will be given by Table
supposing both the two neurons to be inactive, one neu
that expects to fire earlier can stop firing to become inac
before the other neuron starts to fire. We consider an in
condition (nth iterate! as the following:

W1
22~0!5W1

12~0![W1
(n)1Gsyns2

(n) ,

TABLE I. Time evolution of neurons 1 and 2 in the case
antiphase synchronization. The number of the case is in Sec
‘‘ 1 ’’ and ‘‘-’’ indicate that each neuron is in the active phase a
silent phase.

Duration Case Neuron 1 Neuron 2

@0,D1# 2 1 2

@D1 ,t2# 3 2 2

@ t2 ,t21D2# 2 2 1

@ t21D2 ,D11D18# 3 2 2
3-6
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W2
22~0!5W2

21~0![W2
(n) ,

s1
1~0![s1

(n) ,

s2
2~0![s2

(n) ,

where time (0) is set to be the one immediately after neu
1 fires and hence the initial state of neuron 1 isW1

(n)52(2
2c) ands1

(n)51. We calculate the time evolution of Table
in the same manner as in the above Sec. III A.

Suppose that during time interval@0,D1#, neuron 2 is si-
lent while neuron 1 keeps firing. Att5D1, neuron 1, arriving
at the right knee of theV1 nullcline that is vertically shifted
by Gsyns2(D1), stops firing to jump down to the inactiv
phase. HereD1 is the time duration of neuron 1’s actio
potential. Then it follows that

W1
12~D1!5W1

22~D1!5~22c!1Gsyns2
2~0!e2bD1.

Similarly, suppose that for@D1 ,t2#, both the two neurons
are in the silent phase. Att5t2, neuron 2 begins to fire whe
it is at the left knee ofV2 nullcline that is vertically shifted
by Gsyns1(t2). The equations representing the state of n
ron 2 are then given by

W2
22~ t2!5W2

1~ t2!

52~22c!1Gsyns1
2~ t11D1!e2b(t22D1),

s2
2~ t2!→s2

1~ t2!51.

We next assume that for@ t2 ,t21D2#, neuron 1 is in the
silent phase but neuron 2 is in the active phase. Att5t2
1D2, neuron 2 stops firing to jump down to the silent pha
and is at the right knee ofV2 nullcline that is vertically
shifted byGsyns1(t21D2). HereD2 is the time duration of
neuron 2’s action potential. Then it follows that

W2
12~ t21D2!5W2

22~ t21D2!

5~22c!1Gsyns1
2~ t2!e2bD2.

Suppose finally that for@ t21D2 ,D11D18#, two neurons
are in the silent phase. Att5D11D18 , neuron 1 begins to fire
again and is at the left knee ofV1 nullcline that is vertically
shifted byGsyns2(D11D18). We obtain the state of neuron
as follows:

W1
22~D11D18!5W1

12~D11D18!

52~22c!1Gsyns2
2~ t21D2!

3e2b(D11D182D22t2),

s1
2~D11D18!→s1

1~D11D18!51.

We now write down the Poincare´ map of the solution to
Eqs.~8!, ~9!, and~10! for studying the antiphase synchron
zation
04190
n

-

e

L~W2
(n) ,s2

(n)!5~W2
(n11) ,s2

(n11)!

5@W2
22~D11D18!,s2

2~D11D18!#. ~45!

More precisely, we define the antiphase synchronized s
tion as the fixed point of the above map.

IV. RESULTS AND CONCLUSIONS

The whole Poincare´ mapF(W2
(n) ,s2

(n)) is defined forW2
(n)

in the entire region@2(22c),(22c)1Gsyn# in the case of
excitatory coupling~or @2(22c)1Gsyn,(22c)# when in-
hibitory!. This map can be obtained by incorporating oth
temporal firing pattern diagrams as well as the temporal
ing pattern diagram of Sec. III A and Table I. An example
the mapF(W2

(n) ,s2
(n)) is shown in Figs. 3 and 6. Figures 3~a!

and 3~b!, respectively, displayW2
(n11)5F(W2

(n) ,s2,0
(n)) with

s2,0
(n)'0.009 ands2

(n11)5F(W2
(n) ,s2

(n)), respectively, for an
excitatory coupling. On the other hand, Fig. 6~a! and 6~b!
representW2

(n11)5F(W2
(n) ,s2

(n)) and s2
(n11)5F(W2

(n) ,s2
(n)),

FIG. 3. Whole Poincare´ map whenb is large~e.g.,b54.5 and
Gsyn50.2). ~a! W2

(n11)5F(W2
(n) ,s2,0) with s2,0'0.009. The dotted

line indicates the 45° line. This Poincare´ map consists of three
branches,T1 ~Sec. III A!, T2 ~Sec. III B, or Table I!, andT3 ~not
shown here!. ~b! s2

(n11)5F(W2
(n) ,s2

(n)). The grid plane shows the
45° plane.
3-7
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respectively, for an inhibitory coupling. On the basis of su
Poincare´ maps together with the results of the temporal firi
pattern diagram in Secs. III A and III B, we deal with in
phase as well as antiphase synchronized solutions toge
with the transient dynamics setting into them.

Now set a50.8,b50.01,c5 4
3 ,u50.0. We show the re-

sults of the synchronization behavior of our system obtai
theoretically and by numerical simulations.

A. Excitatory synaptic coupling

In the case of excitatory synaptic coupling, there oc
three types of behavior of synchronization for large tim
according to the values ofGsyn andb. Whenb is large~e.g.,
b54.5) andGsyn is small, we have the anti-phase@as shown
in Fig. 4~a!# and in-phase@as shown in Fig. 4~b!# synchro-
nized solutions depending on the initial condition. Figure
shows a typical whole Poincare´ map of the system with suc
a condition forGsyn and b. In Fig. 3, the solid lines with
arrows represent trajectories that are obtained from iterat
of the map. We see that there exist two fixed points that
given by intersections of the one-dimensional cross sec
of the whole Poincare´ map and the 45° line in Fig. 3~a! @or

FIG. 4. Synchronization phenomena whenb is large. The two
neurons become synchronized in~a! the antiphase and~b! the in
phase.
04190
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the two-dimensional map and the 45° plane in Fig. 3~b!#.
The fixed point (20.667,0.000) of theT1 branch represent
the in-phase synchronized solution, while the fixed poi
(20.205,0.009) of theT2 branch represents the antipha
synchronized solution. Figures 3~a! and 3~b! also show that
as time elapses the trajectory of neuron 2’s state~started from
an arbitrary initial condition! is eventually attracted into ei
ther of the two fixed points. Such behavior is shown in F
5: In Fig. 5~a!, the blank region represents the in-phase s
chronized solution, while the vertical striped region rep
sents the antiphase synchronized solution. Figure 5~b! shows
the plot of uW22W1u for large times as a function ofb for
fixed value of Gsyn. Figure 5~c! shows the plot ofuW2

2W1u for large times of neuron 2’s initial condition
(W2

(0) ,s2
(0)) for fixed values ofGsyn andb. We then find that

the antiphase as well as the in-phase synchronizations
determined by the differing initial state of neuron 2. Th
in-phase synchronized solution given by the fixed point
T1 branch corresponds to the one of region~III ! in Fig. 2~a!;
the occurrence of the alternating firing order of neurons
and 2 in approaching the fixed point can be seen by no
the trajectory following a square path in Fig. 3~b!. The fact
that s2

(n11) can take 1 implies that neuron 2 can fire earl
than neuron 1 and one has reversal of firing order. IfGsyn

becomes larger than a certain critical valueGsyn
crit(b), two

neurons are attracted to the fixed point without alternat
the firing order. This is shown in regions~I! and ~II ! in Fig.
2~a!.

For (Gsyn,b) other than the above-mentioned conditio
the antiphase synchronized solution disappears. In suc
Case, ifGsyn is larger than a certain critical valueGsyn

crit , only
the in-phase synchronized solution remains in existence.
solution demonstrates that although two neurons fire sim
taneously, they are attracted to the solution without altern
ing the firing order. However ifGsyn,Gsyn

crit , two neurons
are attracted to the in-phase synchronized solution with
ternating the firing order. HereGsyn

crit is determined by the
solid line in Figs. 2~a! and 2~b!.

Moreover, as shown in Fig. 2~b!, whenb is sufficiently
smaller ~e.g., b50.0001), there exists a certain (Gsyn,b)
region that has the following synchronization phenomen
Although two neurons fire simultaneously, they cannot
attracted to the in-phase solution withx50 but to the nearly
in-phase one with a small phase difference (xÞ0).

B. Inhibitory synaptic coupling

When b is small~e.g., b50.001), the whole Poincare´
map for the case with inhibitory synaptic coupling gives on
one stable fixed point in Table I. The trajectory started fro
an arbitrary initial state of neuron 2 is attracted to the fix
point. It represents the antiphase synchronized solut
which is shown in Fig. 6.

However, whenb becomes larger than the critical valu
the whole Poincare´ map yields a pair of stable fixed points i
Table I. The pair arises from the occurrence of bifurcation
the critical value ofb. This map is demonstrated in Fig
7~a! and 7~b!. Figures 7~a! and 7~b! show W2

(n11)
3-8
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FIG. 5. Phase diagrams concerning the in-phase and antip
synchronizations with excitatory coupling when the initial state
neuron 2 isW2

(n)520.25 ands2
(n)50.0. ~a! b2Gsyn diagram.~b!

b-uW12W2u diagram forGsyn50.2. ~c! Neuron 2’s initial state and
uW22W1u diagram whenGsyn50.2 andb54.5.
04190
5F(W2
(n) ,s2

(n)) and s2
(n11)5F(W2

(n) ,s2
(n)), respectively. The

pair of stable fixed points represent a kind of antiphase s
chronized solution. Such synchronized solutions, howe
may happen to be viewed as a kind of in-phase synchron

se
f

FIG. 6. Synchronization phenomena whenb is small. The two
neurons become synchronized in the antiphase.

FIG. 7. Two-dimensional Poincare´ map whenb is large ~e.g.,
b55.0 and Gsyn520.2). ~a! W2

(n11)5F(W2
(n) ,s2

(n)). ~b! s2
(n11)

5F(W2
(n) ,s2

(n)).
3-9



at
ig
e
e
er

r-

s

9

-

n

a
d

hase
pti-
atic
nd
ces

hese
een
ng,
get
ini-

e-
the
is

ase.

of
zed
rns

as
ng

ial

YASUOMI D. SATO AND MASATOSHI SHIINO PHYSICAL REVIEW E66, 041903 ~2002!
solution because two neurons become synchronized
short intervals. This phenomenon is demonstrated in F
8~a! and 8~b!. We call this type of synchronized solution th
quasiantiphase synchronized solution. We then find that n
ron 2’s initial configuration replaces neuron 1’s firing ord
with that of neuron 2.

As a result, the above conclusion is shown in Figs. 9~a!
and 9~b!. Figure 9~a! indicates the plot of the phase diffe
ence of neurons 1 and 2 ast→` as a function ofb for
several fixed values ofGsyn. As b becomes larger to pas
through a critical value ofb, the two neurons switch from
antiphase to quasiantiphase synchronization. Figure~b!
shows such a behavior: whenb is large ~e.g., b55.0 and
Gsyn520.2), uW22W1u depends on the initial state of neu
ron 2 and is separated by it. However, ifb is small ~e.g.,b
50.1 andGsyn520.3), the phase difference is constant, a
independent from the initial state.

V. SUMMARY AND DISCUSSION

Our analysis is based on the construction of the Poinc´
map for the dynamics of the coupled piecewise-linear mo

FIG. 8. Synchronization phenomena whenb is large. In both~a!
and ~b!, the two neurons become synchronized with a short ph
interval. Neuron 2’s initial configuration replaces neuron 1’s firi
order with that of neuron 2.
04190
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neurons. The analysis has enabled us to explain the in-p
or antiphase synchronizations exhibited by a pair of syna
cally interconnected neurons in a concrete and system
manner. In addition to the commonly known in-phase a
antiphase synchronizations, we have found the occurren
of quasi-in-phase and quasiantiphase synchronization. T
phenomena, to the best of our knowledge, have not b
reported or studied so far. In the case of excitatory coupli
when the decaying relaxation rate is large, two neurons
synchronized in the in phase or antiphase depending on
tial conditions for neurons. However, if it is small, they b
come synchronized in the in phase. On the other hand, in
case of inhibitory coupling, if the decaying relaxation rate
small, the neurons become synchronized in the antiph
However, as it becomes larger than the critical value ofb,
they become synchronized in the quasiantiphase.

Moreover, we have had a clear view of the behavior
transient dynamics setting into the in-phase synchroni
state. In this study, there occur two types of firing patte

e
FIG. 9. Phase diagram in inhibitory coupling when the init

state of neuron 2 isW2
(n)520.25 ands2

(n)50.0. ~a! b-uW22W1u
diagram due to the differing level ofGsyn: the solid, dotted, and
broken lines are shown whenGsyn520.06, 20.24, and20.46,
respectively.~b! Neuron 2’s initial state anduW22W1u diagram due
to the differing level ofb. The solid plane whenb55.0 andGsyn

520.2. The grid plane whenb50.1 andGsyn520.3.
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SPIKING NEURON MODELS WITH EXCITATORY OR . . . PHYSICAL REVIEW E66, 041903 ~2002!
with respect to firing order. We obtained the boundary l
between the two transient firing patterns in the phase
gram ofGsyn andb.

Our theoretical results indicate that excitation rather th
inhibition produces synchrony when synaptic response
to activation of neurons occurs instantaneously and dec
very slowly. This should be contrasted with the result
previous work based on theoretical and simulation ba
studies: Inhibition rather than excitation was reported to p
duce synchrony in the case when synaptic rising times
larger than the width of an action potential. In this study,
neglected to take into account the effect of the synaptic ris
time by assuming, for the sake of simplicity, that the synap
rising time is sufficiently small.

In spite of the analysis based on taking the limite→0,
our results agree with those of numerical simulations for
original Eqs.~1! and~2! with smalle. Furthermore, they are
also qualitatively in agreement with the result of numeri
simulations for the HH model with smalle (e50.05). This
implies the validity of our approach of takinge→0 limit and
of using piecewise-linear model for investigating the sy
chronization phenomena of two coupled neurons. On
other hand, whene becomes large, in the present piecewis
linear model, we have found by numerical simulations t
the in-phase synchronization occurs in the two inhibito
synaptic coupled neurons. The occurrence of such phen
ena ~inhibitory synchrony! was also reported by Wang an
Buzsáki @12# for the HH model which had extremely rapi
rising and slowly decaying synaptic response times. Exc
tory and inhibitory synaptic couplings lead to asynchroni
nd
i

ef
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tion, and synchronization in the in phase or antiphase,
spectively.

Therefore, the key feature that determines which of
phase and antiphase synchronized firings occurs in cou
neurons with synaptic interaction depends crucially on
rising time of the synaptic response ande. Accordingly, we
will have to investigate the synchronization phenomena,
cluding in the largee.

APPENDIX A: LINEAR ANALYSIS OF THE FIRING TIME
DIFFERENCE OF NEURONS NEAR THE LEFT

KNEE POINT

We investigate the condition for the occurrence of t
case where neuron 2 arrives at the knee point earlier t
neuron 1.

We analyze the state of neuron 1~or neuron 2! at the left
knee point in phase plane, supposingD1 to be infinitesimally
small D15ds1, we set D25T21ds2 ~or D25T21ds28).
where it takesT2 for two neurons to jump down simulta
neously to the inactive phase and enter simultaneously
the active phase. Considering the moment when neuro
arrives at the left knee point ofV nullcline, we have

2~22c!1Gsyne
2b(T21ds2)

5$@~22c!2Gsyn2D2#e2[b1(1/c)]ds12D22A22B%

3e2[b1(1/c)](T21ds2)1Be2b(T21ds2)1A2 . ~A1!

Up to the first order inds1 andds2, we obtainds2:
ds25

S b1
1

cD @~22c!2Gsyn2D2#e2[b1(1/c)]T2

2S b1
1

cD @~22c!1~Gsyn2B!2A2!e2[b1(1/c)]T22b~B2Gsyn!e
2bT2

ds1 . ~A2!

Similarly, suppose that neuron 2 arrives at the left knee point. Using the aforementioned analysis, we obtainds28 :

ds285
b~B2Gsyn!~e2bT22e2[b1(1/c)]T2!

2@b1~1/c!#@~22c!1~Gsyn2B!2A2#e2[b1(1/c)]T22b~B2Gsyn!e
2bT2

ds1 . ~A3!
eft

d on
.

By ds22ds28 , we can determine which of neurons 1 a
2 arrives earlier at the left knee point. Then the broken line
Fig. 2~a! which corresponds tods22ds2850, gives us the
resulting equation:

S b1
1

cD @~22c!1Gsyn2D2#e2[b1(1/c)]T22b~Gsyn2B!

3~e2bT22e2[b1(1/c)]T2!50. ~A4!

In Fig. 2~a!, region~I! indicates that neuron 2 reaches the l
knee earlier than neuron 1 (ds22ds28.0), whereas regions
n

t

~II ! and ~III ! demonstrate that neuron 1 arrives at the l
knee earlier than neuron 2 (ds22ds28,0).

APPENDIX B: POINCARÉ MAPS FOR IN-PHASE
SYNCHRONIZATION

According to inequality ds22ds28.(or,) 0 and
W1

22(D11D2).(or,) W2
22(D11D2) @see Eq.~30!#, we

have three cases of temporal firing pattern diagrams base
which the corresponding Poincare´ map can be constructed
The three cases are displayed as~I!, ~II !, and ~III ! in the
phase diagram of Fig. 2~a!.
3-11
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Region ~I!. ds22ds28.0 andW1
22(D11D2).W2

22(D1

1D2). Using Eqs.~24!, ~25!, ~26!, ~31!, and ~37!, we have
the return map from Eq.~40!

F (I)~x!5@~22c!1Gsyn2D1#S 12
h1~D1 ,D2!

h2~D1 ,D2! D ,

h1~D1 ,D2!5$@~22c!1Gsyn2D2#e2[b1(1/c)]D1

1D12A22B%e2[b1(1/c)]D21Be2bD21A2 ,

h2~D1 ,D2!52~22c!1Gsyne
2b(D21D1), ~B1!

whereD1(x) andD2(D1) satisfy the following equations:

@~22c!2A1#1~Gsyn2B!e2bD1

2@~22c!1Gsyn2x2A12B#e2[b1(1/c)]D150, ~B2!

@2~22c!2A2#1~Gsyn2B!e2b(D11D2)

2@~22c!2A21~Gsyn2B!e2bD1#e2[b1(1/c)]D250.

~B3!

Region ~II !. ds22ds28,0 and W1
22(D11D2)

.W2
22(D11D2). We have

F (II) ~x!5@~22c!1Gsyn2D1#S 12
g2~D1 ,D2!

g1~D1 ,D2! D .

~B4!

Region ~III !. ds22ds28,0 and W1
22(D11D2),W2

22(D1

1D2). We obtain

F (III) ~x!5@~22c!1Gsyn2D1#S 12
g1~D1 ,D2!

g2~D1 ,D2! D ,

~B5!

g1~D1 ,D2!52~22c!1Gsyne
2bD2,
i.

ky

.I.

04190
g2~D1 ,D2!5@~22c!1~Gsyn2B!e2bD12A2#e2[b1(1/c)]D2

1Be2b(D11D2)1A2 ,

whereD1(x) andD2(D1), respectively, satisfy Eq.~B2! and
the following equation:

@2~22c!2A2#1~Gsyn2B!e2bD2

2@~22c!1Gsyn2D2#e2[b1(1/c)]D1

1~D22A22B!e2[b1(1/c)]D250. ~B6!

To conduct linear stability analysis ofxn115F (I) (xn), we
calculate the derivation ofF (I) (xn) at x50,

dF(I)

dx U
x50

5S ]F (I)

]D1
1

]F (I)

]D2

dD2

dD1
DdD1

dx U
D150,D25T2

.

~B7!

Using Eq.~B3!, T2 satisfies

@2~22c!2A2#1~Gsyn2B!e2bT2

2@~22c!2A21Gsyn2B#e2[b1(1/c)]T250.

~B8!

It then follows that Eq.~41! holds. Similarly, from Eq.~B8!,
we obtain Eq.~44!. Furthermore, the phase boundary b
tween the phases of~II ! and ~III !, which is defined by
W1

22(D11D2)5W2
22(D11D2) with infinitesimally small

D1, turns out to be given bydF(I) /dxux5050

S b1
1

cD @~22c!1Gsyn2D2#e2[b1(1/c)]T2

2b@~Gsyn2B!e2[b1(1/c)]T21Be2bT2#50.

~B9!
ys.
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