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Effect of oscillatory shear on polymer solutions
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We consider the effects of oscillatory shear flow on small concentration fluctuations in polymer solutions,
which we model as highly asymmetric entangled polymer blends. A simple model that enables us to predict the
scattering patterns in the flow-vorticity plane is presented. It is shown that peaks in the patterns occur in the
flow direction at a finite wave vector, their position strongly depends on the angular frequency of oscillatory
shear flow, whereas the intensity of these peaks is rather controlled by the amplitude of the flow. The model
reproduces characteristic double-winged anisotropic scattering patterns called “butterfly,” which are stable
and thus represent concentration fluctuations rather than phase separation.

DOI: 10.1103/PhysRevE.66.041802 PACS nunier61.25.Hq, 64.75t-g, 83.80.Rs, 83.80.Tc

[. INTRODUCTION Lorentzians, such that the major axis of the pattern is parallel
to the direction of the stretch.

The effects of shear flows on polymeric systems have Since entanglements appear to be an important ingredient
attracted considerable interest. This is partly due to its relef the coupling mechanisms governing the scattering patterns
evance to industrial polymer processing, and partly due tin both stretched and sheared polymer systems, there are
such systems providing an ideal test of modern ideas in norelearly some similarities in their physical behavior. However,
equilibrium statistical mechanics. The study of the responsédue to the transient nature of such entanglements in sheared
of concentration fluctuations to an external field has signififpolymer solutions, it is the coupling between the flow field
cantly advanced our understanding, principally because suchknd the concentration fluctuations that will dictate the re-
fluctuations are quantifiable experimentally, and accessibléponse. A significant difference is that the lobes of the but-
analytically and numerically. Hence, comparison between théerfly patterns observed in R¢fl2] represent actual peaks in
two enables a strong test of theoretical ideas. the structure factor, and hence cannot be described as the

Concentration fluctuations are measured using scattering!Mm of two Lorentzians. _ _
techniques, and a rich variety of behavior has been observed, 1 neoretical efforts to understand this complex behavior
such as shear induced mixing and demixjag-3], and en- are primarily concerned with qevelqplng a framework thgt
hanced scattering at finite wave vect4d. Anisotropic en- couples the effects of extemal fields in .polymer systems with
hancement of concentration fluctuations in polymer solutionéhe presence of concentration fluctuations. Current progress

is known to be induced by external fields. such as sim Iand new theoretical challenges in the dynamics of complex
y ' P%uids are broadly summarized in the proceedings volume

shear flowg5-8|, electric field§ 9], plane extensional flows [25]
[10], oscillatory shear flowp11]. Different ideas explaining the effect of shear flow on

From a rheological viewpoint, much of the focus ha_s bee'bolymer solutions and blends have been propok2sl.
on the effects of steady_—state flowg. Neverthelgss, Bbitd.  gome modeld27] start by adding a shear rate dependent
[12] have recently studied a solution of ultrahigh molecularg|astic energy term to the Flory-Huggins free energy to form
weight polystyrene in dioctyl phthalate subjected to oscilla-thys the total free energy of a polymer solution. These con-
tory shear flows using small-angle light scattering. Theysiderations lead to a thermodynamical theory of shear-
found that for large enough amplitudes of shear, the strucinduced phase separation, which, however, has not yet been
tures developed in the solution feature the characteristic scatised to predict scattering patterns.
tering pattern in the flow-vorticity plane called “butterfly.” The latter can be obtained through the dynamical ap-

Before, butterfly patterns were reported for block copoly-proach, which incorporates the mechanism of coupling be-
mer films[13] stretched under uniaxial tensile stress. Lately,tween stress and diffusion into the dynamics of concentration
they have also been observed for uniaxially deformed rubfluctuations [28,29. A time-dependent Ginzburg—Landau
bers[14,15], polymer meltd16] and swollen gel$17], and  scheme[30-33 introduces a conformation tensor, corre-
then more recently for semidilute polymer solutions undersponding to chain deformations in viscoelastic fluids, as a
simple shear flow$4,18-21. new independent dynamical variable of the free energy.

A number of theories have been proposed to explain but- We note that the mechanism of dipolar coupling between
terfly patterns in stretched cross-linked polymers and swollegoncentration fluctuations and an electric field in polymer
gels. The principal mechanism is believed to be the couplingolutions has been proposgg#] as well. The shift in spin-
of strain to pre-existent frozen cross-link density variationsodal curve induced by an electric field, which suppresses
[22], the coupling of strain to polymer concentration fluctua-phase separation in polymer solutions, has also been consid-
tions[23], or a combination of the tw24]. Whilst the math-  ered[35].
ematical description is rather complex, the resultant scatter- Yet oscillatory shear flows have received relatively little
ing pattern can effectively be considered as a sum of twattention theoretically. Malevanets and Yeom#86] have
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presented a lattice Boltzmann scheme to numerically modeihereM is the mobility, « is the interfacial energyy is the
binary systems with a viscosity difference between compoFlory-Huggins interaction parameter and is its value on
nents, subjected to oscillatory shear flow. They observed thghe quiescent spinodalr,i(j”) are the components of the stress
formation of persistent structures in the flow-shear gradienfansor due to the deformation of the polymer network.
plane. Their observations of such structures are clearly in The effects of thermal fluctuations are representedd by
qualitative agreement with the experiments of REf2;  _ yq 1), which we assume to be Gaussian white noise and

however, direct comparison is not possible since the experig, satisfy the fluctuation-dissipation theorem
ments and numerical calculations were carried out in differ- '

ent planes with respect to the flow direction. (6(q,t))=0,
In this paper we develop an analytical theory to predict
the structure factor arising from small concentration fluctua- (6(q,t) 0(a,t"))=2Mg28(t—t").

tions in polymer solutions under oscillatory shear. This

simple model may be easily used to calculate scattering from The second term on the right hand side in EQ.repre-
both the flow-shear gradient and the flow-vorticity planes,sents the convective effect of shear. This has important con-
and we show that it may explain some of the underlyingsequences in steady-state shear flows: if a fluctuation with a
features observed in Refl2]. component in they, direction becomes unstable due to the
sid\é\ﬁ;iwé%f{fheitzpc?frgsgga?fsggls sg?agigﬁg]o,n\/\éﬂg fecig;(ati flow, it will be convected to wave vectors with larger values
dynamics of concentration fluctuations. Such stress gradien?%zt]hzg{,vgsgnr??nnigiii};,:gr; \gigt:? lfll)(l)vss (i%n?/;tlaeblgf ggaln

arise naturally when fluctuations in concentration occur’fluctuation,with nonzera,, varies sinusoidally. This imme-

since the stress in a polymer solution or blend is Stronglydiately raises the possibility of unusual phenomena, since

dependent on the concentration. It was shown, by using t.hSnstabIe fluctuations are not convected away.
principle of force balance, that the stress enters the equation

of motion at the same level as the chemical potential.

In Ref.[29] it was assumed that the response of individual
polymers to shear flow could be described by a single relax- In this paper we shall consider only the effects that the
ation time. The model was recently modified to account forshear stress componenf(r;,) of the stress tensor has on the
the rheological response of a binary blend in which eachluctuations and neglect the consequences that arise due to
component has distinctly different relaxation tini8§-39.  normal stress differences, which have been explored analyti-
This approach gives rise to an explicit concentration depencally by Helfand and Fredricksdr28] and then numerically
dence of the components of the stress tensor, the advantaggs]. One consequence of this simplification is that spatial
of which, even for a system in which the stress relaxation cavariations of the flow field are not importafg2].
be described by one dominant time scale, is illustrated below. |n order to model the shear stress of an entangled polymer

blend, we use a modified version of the reptation model, in

Il. CONCENTRATION FLUCTUATIONS which the effect of surrounding polymers on the dynamics of
A. Linearised equation any given polymer is replaced by an effective t(i#6]. The

o _ ) ) polymer is free to diffuse along the tube, but motion lateral

The shear strain in oscillatory shear flow is described by, jt is restricted. In the original version of the modét],
¥(t)=7o sin(t), so that the velocity profile isv.  gyress is directly related to the amount of a polymer that has
= Yo COSEL)y, wherex denotes the flow direction and ot escaped from the tube surrounding it at the time of the
denotes the shear gradient directign, is the amplitude of application of the strain.
the flow, andw is its angular frequency. We cpnsid_er the Following our recent work[37,39 on the effects of
effect that such a flow has on a polymer blend, in which oneieady-state flow on phase separation in polymer blends, we
component has a much greater molecular weight than thg,qe| the molecular response of the solution to shear flow,
other, and is consequently much more entangled. We de”OF%presented by the stress relaxation funct®t—t'), using
the volume fraction of the higher molecular weight polymerhe idea of double reptation due to des Cloisefd® and
¢, and we assume incompressibility, such thfat+ ¢s  Tsenoglou[43]. Double reptation accounts, in the simplest
=1_, whereggs is the volume fraction of the lower molecular possible way, for the fact that polymers do not reptate in
weight polymer. _ _ fixed tubes, as assumed in the original reptation model. The

Since we shall only be interested in how flow affects thegyrrounding polymers, which form the tube, also relax, and
small fluctuations, it is sufficient to study the linearised equaxg the constraints that form the tube decay with a character-
tion of motion for a fluctuation iy space,5¢.(q,t). If we jstic time scale. In other words, stress relaxation depends not
assume thall, >Ns, whereN; is the degree of polymeriza- only on the dynamics of each individual polymer, but also on

B. Stress tensor

tion of component, then we hav¢29] the dynamics of the surrounding polymers.
A particular appeal of the double reptation model is the
d6¢L(a,t) = 0(g.t)+ ~ d6¢L(a,t) — Ml 203y simple relation between the stress relaxation function of the
7 Q.0+ y9— a“(xs—x ; . .
Ay blend and the Doi-Edwards stress relaxation function for

n polymers in a fixed networks ,(t). For a highly asymmetric

+xg?)— — 1 77U s t (1) blend only the high molecular weight component contributes
Kq ) (ZSL(q, )i . g .

keT($L) dL significantly to the stress, hence we can approximate the
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FIG. 1. The scattering function calculated in the flow-vorticity =~ FIG. 2. The scattering function calculated in the flow-vorticity

plane at fixedw=10.0 for y,=2.2. plane at fixedw=10.0 for yo=3.2.
stress relaxation function according to the double reptation C. Structure factor
model as Inserting Eq.(5) into Eq. (1) we arrive at the desired

equation of motion for a concentration fluctuation. This can
be converted using the method of characteristics into an

equation of motion for the structure factorS(ﬁ

G(t)= ¢{G F (1), (2)

where G, is the plateau modulus of the high molecular o ) A
weight polymer.F (t) physically corresponds to the prob- RACE) )%, in terms of reduced variablesq®
ability of tube surV|vaI in a matrix of identical relaxing ob- =0°M 7, t=t/r, o=wrn, G_=G_/kgT, and «
stacles. As was shown by Doi and Edwafdg], the prob- =«/Mr,

ability of tube survival in a matrix of fixed obstacles is ds

almost single exponential; hence, the dynamics are domi- 0> — —

nated by a single time scale, the terminal relaxation time. g =D(q,1)S+C(q,1)= {4q (xs=x+«a7)
Consequently, we ha\e4]

80xdyGL o
G(t)= ¢EGLe*t/TL, (3) %[ Sln(a)t)+w Cos(wt)] S+ 2q
+w
wherer, represents some relaxation time which, in terms of (6)
the tube model, is related to the idealised Doi-Edwards re-

laxation t|mer(DE) for the polymer in a matrix of fixed ob- The consequence of the oscillatory convection term in Eq.

1) is that the component of the wave vector in the shear
stacles ber—(1/2)r(LDE). @) P

The principle advantage of this model is that the deper]grad|ent direction is not constant, and is descrlbedqpy
dence of the stress relaxation modulus on the concentratiof dyo— Yolx Sin(wt). This expression is substituted into Eq.
is explicit; we assume that there is no dependence of thé&), which may then be solved for given valuesq;f qz,

relaxation time and the plateau modulus on concentranor‘andq o; the solution yields the structure factor fq, q,,

This enables us to decouple the equations of motion for thg d
, Where the value of the latter depends on the phase
concentration fluctuations and for the stress; thus S|mpI|fy|n Ay P P

our efforts to solve the problem.
The simplest constitutive equation relating the stress re-
laxation modulus to the shear stress is given by the Maxwells

The scattering function can be found from E6), which
a first-order nonhomogeneous linear differential equation,

model[45] through the method of integrating factor,
_ _ r T
o [ 78 . s@t-sia)-exd [[D@tat |+ ['c@n
Oy (D)= T[)’(t)—)’(t )]dt’. 4) 0 0
_ xex;{—f D(Et')dt')dt'.exp(f D(q,—t)dT),
In oscillatory shear flows, Eq$3) and(4) lead to an expres-
sion for the shear stress in adiabatic approximation (7)
¢>L L'y where the structure factor at tinte=0 is defined as
(”)(t)— [ 272 sin(wt)+ wr_ cogwt)], (5)
- — 1
S(q,t=0)=Su(do) = = -
which is a simple function of concentration. 2[xs—x+ K(a>2<+a§O+a§)]
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FIG. 3. The scattering function calculated in the flow-vorticity 0 10 20 30 40
plane at fixedw=10.0 for y,=4.2. qx

FIG. 5. The contour plot for concentration fluctuations calcu-
lll. SCATTERING PATTERNS lated in the flow-vorticity plane at fixegly=4.2 for »=10.0.

A. Parameters
- . by Saito etal. [12], i.e., N.=52692, No=174, ()
The mobility for an asymmetric polymer blend has been_g g  and y=0.4813. The window 3.9610 % nm~!
shown[46] to have the formM ~kgT(¢,)*( ¢s)*/o, Where  <q <343<10°3 nm ! observed in the experimenfd?2]

{o is the monomeric friction coefficient, which for simplicity corresponds to the range of reduced units<A<37.8
we assume it to be equal for both components. According to ven bya—q (11.0<10°) nm. The length of the bon(;i in
X_ X . .

. . . gi
the_ tube model th_e relax_atlon tlme_of _the h|gh molecularthe lattice is taken to bb= 6.7 A.
weight polymer in a fixed matrix is given byr

~N3?b%(o/kgTm?Ns.  Hence, we have Mr . .
L B. Result dd
~( 1) p<)®N2b?/ m?N,. This gives the formula for the re- estlis and diseussion
duced value ofc as k~m?Ns/36(¢p )3(ps)®NE. The pla- Since the flow-vorticity plane,=0 is the most experi-

teau modulus per monomer volume is directly related to thénéntally accessible, we have calculated the scattering pat-

degree of polymerization between entanglemehts, by ~ terns in it (Figs. 1-6 at the momentt=t; with qy,

G_~1/N,. The critical value ofy parameter on the quies- = Yo% Sin(wty). It should be noted that even in flow-vorticity

cent spinodal is given by @s= 1IN, (¢, )+ 1/(1—(¢.)). plane, the effects of the shear flow are important since fluc-
Consequently, for a strongly asymmetric blend, the probuations with nonzero values af, are continuously con-

lem is completely defined by the parametés, N, (¢.), vected into and out of thg,=0 plane.

and y. Although the theory of Doi and Onuki is strictly The results presented in this paper have been calculated

applicable to entangled polymer blends only, we have solvegor the phasey_tl: m/2+2n(ne NU{0}), when the scat-

Eq. (6) using realistic parameters that conform as closely asering intensity is the strongest. We show the structure factor

possible to the polystyrene solution studied experimentallyafter one hundred cyclesi& 100) of the strain, although all

10 40
8
30
6
4, q, 20
4
10
2 A
0 0 : -
0 10 20 30 40
qX qx

FIG. 4. The contour plot for concentration fluctuations calcu- FIG. 6. The contour plot for concentration fluctuations calcu-
lated in the flow-vorticity plane at fixegy=4.2 for o=1.0. lated in the flow-vorticity plane at fixegy=4.2 for =100.0.
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become cyclically stable after just one cycle. It can be seen IV. CONCLUSIONS

that the peaks in the patterns occur in the flow direction at a

finite gy= Oymax- Our results are in excellent qualitative agreement with the
Figures 1-3 with fixed» show that asy, is increased the experimental work of Saitet al.[12]. The model reproduces

peaks in the flow direction become more pronounced, aldouble-winged anisotropic behavior with characteristic scat-

though the positio@maiof the peak is shifted just slightly
towards higher value aj,. When the amplitude, is fixed

(Figs. 4—6, the value of the structure factor in the peak is

almost unaltered by increasinﬁ, although thEre is a ten-
dency to slightly decrease, whereas the positig. of the
peak shifts towards higher, region significantly.

tering patterns called “butterfly.” The position of the peak
strongly depends on the angular frequency of oscillatory
shear, whereas the intensity of these peaks is rather con-
trolled by the amplitude of the flow.

The scattering patterns we predict are stable and thus
represent concentration fluctuations rather than phase
separation.
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