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Effect of oscillatory shear on polymer solutions
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~Received 15 January 2002; revised manuscript received 22 July 2002; published 7 October 2002!

We consider the effects of oscillatory shear flow on small concentration fluctuations in polymer solutions,
which we model as highly asymmetric entangled polymer blends. A simple model that enables us to predict the
scattering patterns in the flow-vorticity plane is presented. It is shown that peaks in the patterns occur in the
flow direction at a finite wave vector, their position strongly depends on the angular frequency of oscillatory
shear flow, whereas the intensity of these peaks is rather controlled by the amplitude of the flow. The model
reproduces characteristic double-winged anisotropic scattering patterns called ‘‘butterfly,’’ which are stable
and thus represent concentration fluctuations rather than phase separation.
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I. INTRODUCTION

The effects of shear flows on polymeric systems ha
attracted considerable interest. This is partly due to its
evance to industrial polymer processing, and partly due
such systems providing an ideal test of modern ideas in n
equilibrium statistical mechanics. The study of the respo
of concentration fluctuations to an external field has sign
cantly advanced our understanding, principally because s
fluctuations are quantifiable experimentally, and access
analytically and numerically. Hence, comparison between
two enables a strong test of theoretical ideas.

Concentration fluctuations are measured using scatte
techniques, and a rich variety of behavior has been obser
such as shear induced mixing and demixing@1–3#, and en-
hanced scattering at finite wave vectors@4#. Anisotropic en-
hancement of concentration fluctuations in polymer soluti
is known to be induced by external fields, such as sim
shear flows@5–8#, electric fields@9#, plane extensional flows
@10#, oscillatory shear flows@11#.

From a rheological viewpoint, much of the focus has be
on the effects of steady-state flows. Nevertheless, Saitoet al.
@12# have recently studied a solution of ultrahigh molecu
weight polystyrene in dioctyl phthalate subjected to osci
tory shear flows using small-angle light scattering. Th
found that for large enough amplitudes of shear, the str
tures developed in the solution feature the characteristic s
tering pattern in the flow-vorticity plane called ‘‘butterfly.’’

Before, butterfly patterns were reported for block copo
mer films@13# stretched under uniaxial tensile stress. Late
they have also been observed for uniaxially deformed r
bers@14,15#, polymer melts@16# and swollen gels@17#, and
then more recently for semidilute polymer solutions und
simple shear flows@4,18–21#.

A number of theories have been proposed to explain b
terfly patterns in stretched cross-linked polymers and swo
gels. The principal mechanism is believed to be the coup
of strain to pre-existent frozen cross-link density variatio
@22#, the coupling of strain to polymer concentration fluctu
tions@23#, or a combination of the two@24#. Whilst the math-
ematical description is rather complex, the resultant sca
ing pattern can effectively be considered as a sum of
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Lorentzians, such that the major axis of the pattern is para
to the direction of the stretch.

Since entanglements appear to be an important ingred
of the coupling mechanisms governing the scattering patte
in both stretched and sheared polymer systems, there
clearly some similarities in their physical behavior. Howev
due to the transient nature of such entanglements in she
polymer solutions, it is the coupling between the flow fie
and the concentration fluctuations that will dictate the
sponse. A significant difference is that the lobes of the b
terfly patterns observed in Ref.@12# represent actual peaks i
the structure factor, and hence cannot be described as
sum of two Lorentzians.

Theoretical efforts to understand this complex behav
are primarily concerned with developing a framework th
couples the effects of external fields in polymer systems w
the presence of concentration fluctuations. Current prog
and new theoretical challenges in the dynamics of comp
fluids are broadly summarized in the proceedings volu
@25#.

Different ideas explaining the effect of shear flow o
polymer solutions and blends have been proposed@26#.
Some models@27# start by adding a shear rate depende
elastic energy term to the Flory-Huggins free energy to fo
thus the total free energy of a polymer solution. These c
siderations lead to a thermodynamical theory of she
induced phase separation, which, however, has not yet b
used to predict scattering patterns.

The latter can be obtained through the dynamical
proach, which incorporates the mechanism of coupling
tween stress and diffusion into the dynamics of concentra
fluctuations @28,29#. A time-dependent Ginzburg–Landa
scheme@30–33# introduces a conformation tensor, corr
sponding to chain deformations in viscoelastic fluids, a
new independent dynamical variable of the free energy.

We note that the mechanism of dipolar coupling betwe
concentration fluctuations and an electric field in polym
solutions has been proposed@34# as well. The shift in spin-
odal curve induced by an electric field, which suppres
phase separation in polymer solutions, has also been con
ered@35#.

Yet oscillatory shear flows have received relatively litt
attention theoretically. Malevanets and Yeomans@36# have
©2002 The American Physical Society02-1
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presented a lattice Boltzmann scheme to numerically mo
binary systems with a viscosity difference between com
nents, subjected to oscillatory shear flow. They observed
formation of persistent structures in the flow-shear grad
plane. Their observations of such structures are clearly
qualitative agreement with the experiments of Ref.@12#;
however, direct comparison is not possible since the exp
ments and numerical calculations were carried out in diff
ent planes with respect to the flow direction.

In this paper we develop an analytical theory to pred
the structure factor arising from small concentration fluct
tions in polymer solutions under oscillatory shear. Th
simple model may be easily used to calculate scattering f
both the flow-shear gradient and the flow-vorticity plan
and we show that it may explain some of the underly
features observed in Ref.@12#.

We utilize the approach of Doi and Onuki@29#, who con-
sidered the effects of spatial stress gradients on the relaxa
dynamics of concentration fluctuations. Such stress gradi
arise naturally when fluctuations in concentration occ
since the stress in a polymer solution or blend is stron
dependent on the concentration. It was shown, by using
principle of force balance, that the stress enters the equa
of motion at the same level as the chemical potential.

In Ref. @29# it was assumed that the response of individ
polymers to shear flow could be described by a single re
ation time. The model was recently modified to account
the rheological response of a binary blend in which ea
component has distinctly different relaxation times@37–39#.
This approach gives rise to an explicit concentration dep
dence of the components of the stress tensor, the advan
of which, even for a system in which the stress relaxation
be described by one dominant time scale, is illustrated be

II. CONCENTRATION FLUCTUATIONS

A. Linearised equation

The shear strain in oscillatory shear flow is described
g(t)5g0 sin(vt), so that the velocity profile isvx
5g0v cos(vt)y, wherex denotes the flow direction andy
denotes the shear gradient direction,g0 is the amplitude of
the flow, andv is its angular frequency. We consider th
effect that such a flow has on a polymer blend, in which o
component has a much greater molecular weight than
other, and is consequently much more entangled. We de
the volume fraction of the higher molecular weight polym
fL , and we assume incompressibility, such thatfL1fS
51, wherefS is the volume fraction of the lower molecula
weight polymer.

Since we shall only be interested in how flow affects t
small fluctuations, it is sufficient to study the linearised eq
tion of motion for a fluctuation inq space,dfL(q,t). If we
assume thatNL@NS, whereNi is the degree of polymeriza
tion of componenti, then we have@29#

]dfL~q,t !

]t
5u~q,t !1ġqx

]dfL~q,t !

]qy
2M F2q2~xS2x

1kq2!2
qiqj

kBT^fL&

ds i j
(n)

dfL
GdfL~q,t !, ~1!
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whereM is the mobility,k is the interfacial energy,x is the
Flory-Huggins interaction parameter andxS is its value on
the quiescent spinodal,s i j

(n) are the components of the stre
tensor due to the deformation of the polymer network.

The effects of thermal fluctuations are represented bu
5u(q,t), which we assume to be Gaussian white noise a
to satisfy the fluctuation-dissipation theorem,

^u~q,t !&50,

^u~q,t !u~q,t8!&52Mq2d~ t2t8!.

The second term on the right hand side in Eq.~1! repre-
sents the convective effect of shear. This has important c
sequences in steady-state shear flows: if a fluctuation wi
component in theqx direction becomes unstable due to t
flow, it will be convected to wave vectors with larger valu
of the qy component, and eventually become stable ag
@32#. However, in oscillatory shear flows theqy value of a
fluctuation, with nonzeroqx , varies sinusoidally. This imme
diately raises the possibility of unusual phenomena, si
unstable fluctuations are not convected away.

B. Stress tensor

In this paper we shall consider only the effects that
shear stress componentsxy

(n) of the stress tensor has on th
fluctuations and neglect the consequences that arise du
normal stress differences, which have been explored ana
cally by Helfand and Fredrickson@28# and then numerically
@33#. One consequence of this simplification is that spa
variations of the flow field are not important@32#.

In order to model the shear stress of an entangled poly
blend, we use a modified version of the reptation model
which the effect of surrounding polymers on the dynamics
any given polymer is replaced by an effective tube@40#. The
polymer is free to diffuse along the tube, but motion late
to it is restricted. In the original version of the model@41#,
stress is directly related to the amount of a polymer that
not escaped from the tube surrounding it at the time of
application of the strain.

Following our recent work@37,39# on the effects of
steady-state flow on phase separation in polymer blends
model the molecular response of the solution to shear fl
represented by the stress relaxation function,G(t2t8), using
the idea of double reptation due to des Cloiseaux@42# and
Tsenoglou@43#. Double reptation accounts, in the simple
possible way, for the fact that polymers do not reptate
fixed tubes, as assumed in the original reptation model.
surrounding polymers, which form the tube, also relax, a
so the constraints that form the tube decay with a charac
istic time scale. In other words, stress relaxation depends
only on the dynamics of each individual polymer, but also
the dynamics of the surrounding polymers.

A particular appeal of the double reptation model is t
simple relation between the stress relaxation function of
blend and the Doi-Edwards stress relaxation function
polymers in a fixed network,Fp(t). For a highly asymmetric
blend only the high molecular weight component contribu
significantly to the stress, hence we can approximate
2-2
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stress relaxation function according to the double repta
model as

G~ t !5fL
2GLFp~ t !, ~2!

where GL is the plateau modulus of the high molecul
weight polymer.Fp(t) physically corresponds to the prob
ability of tube survival in a matrix of identical relaxing ob
stacles. As was shown by Doi and Edwards@41#, the prob-
ability of tube survival in a matrix of fixed obstacles
almost single exponential; hence, the dynamics are do
nated by a single time scale, the terminal relaxation tim
Consequently, we have@44#

G~ t !5fL
2GLe2t/tL, ~3!

wheretL represents some relaxation time which, in terms
the tube model, is related to the idealised Doi-Edwards
laxation timetL

(DE) for the polymer in a matrix of fixed ob
stacles bytL5(1/2)tL

(DE) .
The principle advantage of this model is that the dep

dence of the stress relaxation modulus on the concentra
is explicit; we assume that there is no dependence of
relaxation time and the plateau modulus on concentrat
This enables us to decouple the equations of motion for
concentration fluctuations and for the stress; thus simplify
our efforts to solve the problem.

The simplest constitutive equation relating the stress
laxation modulus to the shear stress is given by the Maxw
model @45#

sxy
(n)~ t !5E

2`

t ]G~ t2t8!

]t8
@g~ t !2g~ t8!#dt8. ~4!

In oscillatory shear flows, Eqs.~3! and~4! lead to an expres
sion for the shear stress in adiabatic approximation

sxy
(n)~ t !5

fL
2GLg0

11v2tL
2 @v2tL

2 sin~vt !1vtL cos~vt !#, ~5!

which is a simple function of concentration.

FIG. 1. The scattering function calculated in the flow-vortic

plane at fixedv̄510.0 forg052.2.
04180
n

i-
.

f
-

-
on
e

n.
e
g

-
ll

C. Structure factor

Inserting Eq.~5! into Eq. ~1! we arrive at the desired
equation of motion for a concentration fluctuation. This c
be converted using the method of characteristics into
equation of motion for the structure factor,S(q̄, t̄ )
5^udfL(q̄, t̄ )u2&, in terms of reduced variables,q̄2

5q2MtL , t̄ 5t/tL , v̄5vtL , ḠL5GL /kBT, and k̄
5k/MtL ,

dS

d t̄
5D~ q̄, t̄ !S1C~ q̄, t̄ !52H 4q̄2(xS2x1k̄q̄2)

2
8q̄xq̄yḠLg0

11v̄2
@v̄2 sin~v̄ t̄ !1v̄ cos~v̄ t̄ !#J S12q̄2.

~6!

The consequence of the oscillatory convection term in
~1! is that the component of the wave vector in the sh
gradient direction is not constant, and is described byq̄y

5q̄y02g0q̄x sin(v̄ t̄). This expression is substituted into E
~6!, which may then be solved for given values ofq̄x , q̄z ,
and q̄y0; the solution yields the structure factor forq̄x , q̄z ,
and q̄y , where the value of the latter depends on the ph
v̄ t̄ .

The scattering function can be found from Eq.~6!, which
is a first-order nonhomogeneous linear differential equati
through the method of integrating factor,

S~ q̄, t̄ !5S0~ q̄0!•expS E
0

t̄
D~ q̄,t8!dt8D 1E

0

t̄
C~ q̄, t̄ !

3expS 2E D~ q̄,t8!dt8 Ddt8•expS E D~ q̄, t̄ !d t̄ D ,

~7!

where the structure factor at timet̄ 50 is defined as

S~ q̄, t̄ 50![S0~ q̄0!5
1

2@xS2x1k̄~ q̄x
21q̄y0

2 1q̄z
2!#

.

FIG. 2. The scattering function calculated in the flow-vortici

plane at fixedv̄510.0 forg053.2.
2-3
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III. SCATTERING PATTERNS

A. Parameters

The mobility for an asymmetric polymer blend has be
shown@46# to have the formM'kBT^fL&2^fS&

2/z0, where
z0 is the monomeric friction coefficient, which for simplicit
we assume it to be equal for both components. Accordin
the tube model the relaxation time of the high molecu
weight polymer in a fixed matrix is given bytL

'NL
3b2z0 /kBTp2Ne. Hence, we have MtL

'^fL&2^fS&
2NL

3b2/p2Ne. This gives the formula for the re

duced value ofk as k̄'p2Ne/36̂ fL&3^fS&
3NL

3 . The pla-
teau modulus per monomer volume is directly related to
degree of polymerization between entanglements,Ne, by

ḠL'1/Ne. The critical value ofx parameter on the quies
cent spinodal is given by 2xS51/NL^fL&11/(12^fL&).

Consequently, for a strongly asymmetric blend, the pr
lem is completely defined by the parameters,NL , Ne, ^fL&,
and x. Although the theory of Doi and Onuki is strictl
applicable to entangled polymer blends only, we have sol
Eq. ~6! using realistic parameters that conform as closely
possible to the polystyrene solution studied experiment

FIG. 3. The scattering function calculated in the flow-vortic

plane at fixedv̄510.0 forg054.2.

FIG. 4. The contour plot for concentration fluctuations calc

lated in the flow-vorticity plane at fixedg054.2 for v̄51.0.
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by Saito et al. @12#, i.e., NL552 692, Ne5174, ^fL&
50.06, and x50.4813. The window 3.9631024 nm21

<qx<3.4331023 nm21 observed in the experiments@12#

corresponds to the range of reduced units 4.4<q̄x<37.8
given by q̄x5qx(11.03103) nm. The length of the bond in
the lattice is taken to beb56.7 Å.

B. Results and discussion

Since the flow-vorticity planeq̄y50 is the most experi-
mentally accessible, we have calculated the scattering
terns in it ~Figs. 1–6! at the moment t̄ 5 t̄ 1 with q̄y0

5g0q̄x sin(v̄ t̄1). It should be noted that even in flow-vorticit
plane, the effects of the shear flow are important since fl
tuations with nonzero values ofq̄y are continuously con-
vected into and out of theq̄y50 plane.

The results presented in this paper have been calcul
for the phasev̄ t̄ 15p/212pn(nPNø$0%), when the scat-
tering intensity is the strongest. We show the structure fac
after one hundred cycles (n5100) of the strain, although al

-

FIG. 5. The contour plot for concentration fluctuations calc

lated in the flow-vorticity plane at fixedg054.2 for v̄510.0.

FIG. 6. The contour plot for concentration fluctuations calc

lated in the flow-vorticity plane at fixedg054.2 for v̄5100.0.
2-4
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become cyclically stable after just one cycle. It can be s
that the peaks in the patterns occur in the flow direction a
finite q̄x5q̄xmax.

Figures 1–3 with fixedv̄ show that asg0 is increased the
peaks in the flow direction become more pronounced,
though the positionq̄xmax of the peak is shifted just slightly
towards higher value ofq̄x . When the amplitudeg0 is fixed
~Figs. 4–6!, the value of the structure factor in the peak
almost unaltered by increasingv̄, although there is a ten
dency to slightly decrease, whereas the positionq̄xmax of the
peak shifts towards higherq̄x region significantly.
n

ly-

n

n,
,

le

-

.

.
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IV. CONCLUSIONS

Our results are in excellent qualitative agreement with
experimental work of Saitoet al. @12#. The model reproduces
double-winged anisotropic behavior with characteristic sc
tering patterns called ‘‘butterfly.’’ The position of the pea
strongly depends on the angular frequency of oscillat
shear, whereas the intensity of these peaks is rather
trolled by the amplitude of the flow.

The scattering patterns we predict are stable and t
represent concentration fluctuations rather than ph
separation.
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