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Biaxial versus uniaxial nematic stability in asymmetric rod-plate mixtures
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The isotropic-nematic phase behavior of a binary mixture of rodlike and platelike particles is studied within
Onsager’s second virial theory. The phase behavior is obtained from the numerically exact equilibrium orien-
tational distribution functions for both uniaxial and biaxial nematic phases. Inspired by recent experimental
work on these systems we concentratedasgmmetriomixtures in which the excluded volume between the
platesvt? is larger than that between the rod§,. Starting from the symmetric case¥/vg,=1) and
increasing the rod-plate excluded volume ratio we scrutinized the phase behavior, in particular focusing on the
stability of the biaxial nematic phase. We observe that, at a certain asymmetry, the characteristic bicritical point
is replaced by a two-phase region marking first order isotropic-biaxial transitions. Increasing the asymmetry
even further leads to several demixing scenarios. First, there is a uniaxial-bibixieB) demixing scenario
with an associated isotropic-uniaxial-biaxial -\i*-B) triple equilibrium. Second, a uniaxial-uniaxial
(N*-N7) demixing occurs in case of strongly asymmetric mixtures indicating that the biaxial nematic phase
may become fully metastable. Since all predicted demixing scenarios lie in the experimentally accessible
regime, there is a possibility of finding biaxial nematic structures in lyotropic colloidal rod-plate mixtures.
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I. INTRODUCTION equal portions of rods and plajesit least within a second
virial approach. Henceforth, we will refer to these systems as
Since the pioneering work of Zocher and Langnidif2], symmetricmixtures. In general, asymmetric phase diagrams
it has been known that dispersions of highly anisometricalvill be obtained when the excluded volume ratio is chosen to
rodlike or platelike colloidal particles exceeding a certainbe larger or smaller than unitf@asymmetric mixturesor
concentration undergo an orientational order-disorder transwhen higher virial terms are incorporated explicits.g., in
tion from an isotropic statel], in which the particles are a computer simulation
randomly oriented to an orientationally ordered nematic state Previous theoretical studies on rod-plate mixtures, which
(N). Onsagef 3] first showed that the phase transition canhave mainly focused on symmetric mixturé®r which
be explained on the basis of purely repulsive interactions /vy =1), can be subdivided into two groups. On the one
between the particles. In his seminal work, he explained théand, Onsager-type theorigg—10] were adopted allowing
phase transition as the result of a competition between orifor a continuous treatment of both the positional and orien-
entational entropy which favors the isotropic state and theational degrees of freedom. On the other hand, mean-field
entropy effect associated with the orientation-dependent eXattice models[11,12 were used in which the positional
cluded volume of the anisometrical particles which favorsand/or orientational coordinates are discretized, such as the
the ordered nematic state. Onsager’s theoretical approachAwanzig model[13] where the particle orientations are re-
which was originally inspired by experimental observationsstricted to lie on one of the Cartesian axes. All theories pre-
of phase separating systems of pure colloidal ri@dbacco  dict the same qualitative behavior for the symmetric case; a
mosaic viru$ [4] and platelet$2], can be extended to allow stable biaxial nematic phase exists in between the rod- and
phase diagram calculations for binary mixtures of anisometplate-dominated uniaxial phases, and meets the isotropic
ric particles, e.g., rods with different lengtfs] or mixtures  phase in a bicritical point. However, van Roij and Mulder
of rodlike and platelike particlelg]. The phase behavior of [12] showed that the biaxial nematic phase in a mixture of
the latter systems is particularly interesting due to the possirectangular rodlike and platelike blocks, treated within a
bility of having nematic phases with different symmetries, Zwanzig second virial theory, may become unstable with re-
i.e., two uniaxial onega rod-richN* phase and a plate- spect to demixing into the uniaxial nematic phases at some
dominatedN™ phas¢ and a biaxialB phase, in which rods critical rod-plate excluded volume ratio. Computer simula-
and platelets are oriented along mutually perpendicular ditions by Campet al. [14] on symmetric mixtures of hard
rectors. An important parameter that governs the overall toprolate and oblate ellipsoids confirmed that demixing can
pology of the isotropic-nematic phase diagram is the ratio obccur. Their phase diagrams, which were not symmetric due
the excluded volumes between two platelets and that bee the effect of higher-order particle interactions, essentially
tween two rodsyP¥vy,, defining theasymmetryof the mix-  revealed a two-step demixing scenario where the biaxial
ture. Setting this ratio equal to unity will produce phase dia-nematic phase demixes into the uniaxial phases upon com-
grams that are symmetric about mole fraction 1/2 (i.e.,  pression via a transitional plate-uniaxial-biaxial demixing
region.
Experiments [15] on strongly asymmetric mixtures
*FAX: +31-302533870. Email address: G.J.Vroege@chem.uu.n(vi/vg,>1) using rod- and plate-shaped colloit®th with
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an aspect ratio of about 1%®lso showed a demixing into The details of the exact shape of the particles are found to be

fractionated rod- and plate-dominated nematic phases, boilrelevant for the general argument, provided that the par-

probably having a uniaxial symmetry. In a previous papetticles are sufficiently anisometrical, i.el,,/D,>1 and

[16], we were able to reproduce most features of the lowD,/L,>1. The Helmholtz free energy of the mixture in the

concentration part of the experimental phase diagram in th®nsagef 3] treatment is given by

context of the Onsager theory incorporating higher-order par-

ticle correlations with the Parsons (escallng gpproach. How- C  —const-lnc—1+ E x[Inxj+a]+cBy, (1)

ever, as we focused on the uniaxial nematic phases, using N j=12

Gaussian trial functions to describe the equilibrium particle

orientations in these phases, we did not explore the possibilﬁ\/here,fo’z(kBT)‘1 with kg Boltzmann’s constant and the

ity of biaxial solutions in that study. temperature. The irrelevant constant includes terms indepen-
In this paper, we use the same model in the context oflent of the particle densities. Henceforth, we defipe x as

Onsager’s second virial theory but we now explicitly includethe mole fraction of the platelets. Furthermoeas the total

the possibility of biaxial symmetry by performing the exact dimensionless concentratioe=bN/V, with b= ’7T|_r2Dr/4

free energy minimization with respect to the orientationalthe average excluded volume between two randomly ori-

degrees of freedom and solving the resulting integral equaented thin rods. The free energy) consists of several en-

tions exactly, using numerical schemes. In this way we obtropic contributions. Apart from an ideal and mixing contri-

tain the numerically exact orientational distribution functionsbution there is an orientational entropy involving the

(ODFs for the aligned phases without having to rely on quantity o, defined as

approximations such as using trial ODFs with a predescribed

form [16], discretized orientation modef41,12], or the so-

called L2 model[6,9,10. In the latter case, the excluded

volumes are represented as a series expansion in terms of

spherical harmonics truncated after the first term, which idHere, f;(2) represents the ODF describing the distribution

only reliable for very weakly aligned nematic phases. Sinceof the solid angleQ) of the jth-particle’s orientation vector.

the phase behavior of anisometric particles, in general, défhe ODF must be normalized according jt;(2)dQ=1.

pends crucially on the approximations used in the descriptioin the isotropic state, all orientations are equally probable,

of the excluded volume interactiofsee, e.g., Ref$10,17),  which impliesfi,,=1/47 and oii,=0. In the nematic state,

the most credible results will be obtained when the excludethowever, o will be larger than zero becausig((2) is a

volume integrals are solved exactly, i.e., without approximapeaked function.

tions. The last term in Eq(1) is the excluded volume entropy
In this paper we examine the effect of the asymmetrydue to the repulsive interactions treated at the level of On-

induced by increasing the rod-plate excluded volume ratiGager’s second virial approximation. The second virial coef-

from unity, on the phase behavior of rod-plate mixtures. Oufficient B, for a binary mixture of anisometric particles is

main interest is to establish possible phase diagram scenaridefined as

for such mixtures. In particular, we focus on the stability of

the biaxial nematic phase. By=(1-X)%p11+2X(1=X)U12p10+ X002, (3)
This paper is structured as follows. In Sec. Il A we give a

short description of the Onsager theory in the specific case ofhere the parameteps, represent the angular average of the

binary mixtures of rods and plates. The numerical techniquegxcluded volume between particles of tyjpendk relative to

used to solve the minimization equations and to calculate théheir excluded volume in the isotropic phase,

entropy integrals are outlined in Sec. IIB. In Sec. IIC we ,

introduce order parameters to distinguish between the liquid - Ugfm( Y)

crystals phases. A bifurcation analysis is presented in Sec. Pisz f vik

IID, which we use to locate the onset of a new nematic excliso

symmetry out of a given reference phase. In Sec. IlE we

discuss the criteria used to discriminate between stable an'[% r\gh;:cr 2% I;;Q%;?rﬂlt?ogevtyﬁﬁ]nn:ggigg rlt)llcrlseegrg;;;itf?nvec-

metastable phases. The phase diagrams will be presented,[hne isotropic phase, whereas:; <1 in the nematic state.

Sec. Ill and several scenarios are discussed in detail. Fi”a”)éor sufficiently anisometric particles the leading terms of the
some conclusions are made in Sec. IV. y fic p 9
excluded volumes are given §g]

gjzf f;(Q)In[4=f;(Q)]dQ, j=1.2. 2

() (Q2")dQ2dQ’, (4

Il. THEORY op T 5
Vexel ¥)~ EDp|Sm7|1
A. Onsager theory

We consider a binary mixture of hard cylindric rods and -
platelets in a macroscopic volumé The particles involved v (V) ~ ZLnglcosﬂ,
are characterized by four parameters: the lerngtland the
diameterD, of the rods(with L,>D,) and the diameteD,, v ) )
and length(thicknes$ L, of the platelets(with D,>L,). Vexel( ¥)~2L7D[sinyl. (5
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Using the isotropic averages((|siny)is,=7/4 and ODF of the nematic phase at a giveandc. This issue will
({|cos)iso=1/2 we obtain the following expressions for be discussed in detail in the following paragraph.
Pik: Once the minimization problem has been solved, the com-
positions and concentrations of the coexisting phases can be
:if f Isiny(2,07)[f.()f(2)d0dQ’, =12 found by imposing the standard conditions of equal osmotic
Pii— % Y5 ! ! I R pressurdl and chemical potentialg;,
JBFIN
p12=2J f [cosy(Q,Q)|f1(Q)f,(Q")dQAdQ’. (6) bpIl=-b o,

) =c+c?B,,
Ny N, T

The parameterg;, andq,, in Eq. (3) quantify the excluded
volume between twoandomly orientedparticles(a rod and :((9/3F/N)
N,,V,T

a platelet and two platelets, respectivyelglative to that be-

tween two rods
7(Dp\® /[L)\?
and qzzzz D— D— .
r r

1(Dp\% /(L
Q=7 o o
41D, D,

=Inc+In(1—x)+o1+2c[(1—X)p11+X012012],

_ [9BFIN
(7) ,3,U«2=( N, )N T
These parameters are very important since they determine
the asymmetnyof the rod-plate mixture. Setting,, equal to =Inc+Inx+o,+2¢[(1=X)q1ap12+ XU22p25]-
unity will render the free energy symmetric about 0.5 (10)

(within the second virial approaglas we see from Eq3).
Consequently, all phase diagrams must possess the sarRecall thatoj=0 andp;=1 for the isotropic phase. The
symmetric topology{6,8,13. In our caseq,, will generally  coexistence equations were solved using standard Newton-
be larger than unityi.e., the isotropic excluded volume of Raphson iteration. The accuracy in the mole fractions and
the plates is larger than that of the rpdahich implies that  concentrations were chosen to be at least five significant dig-
the symmetry is lost and all phase diagrams are asymmetrigts.

In order to calculate the parametgrg and o we must

determine the shape of the thermodynamic equilibrium ODF. B. Minimization of the free energy

This can be done by minimizing the free energy with respect _ _ _

to f; by performing a functional differentiation under the 1. Series expansion solution

constraint of the normalization condition, A systematic way to tackle the integral equati¢@sis to

F expand the kernelisiny| and|cosy] in terms of Legendre
ﬂ Ll { _f f.(Q)dQHZO' j=1,2, (8  polynomialsP,. Following Kayser and RavecHd 8] and
J Stroobants and Lekkerkerkgs] we write

P
5t,(Q)

where\; are the Lagrange undetermined multipliers which .
follow from the normalization conditions. This results in the siny|= —+ Z s Pon(COSY),
following coupled set of Euler-Lagrange equations: 4 i=1

A =In[47f(Q)] 1=
8 [cosy| =5+ 2, CanPan(cosY), (11)
+?(1—x)f Isiny(Q,Q)]f,(Q)dQ’
with coefficients[19]

+4qu14 [cosp(@. 7] To(7)da, 7(4n+1)(2n—3)!1 (2n—1)!!

don=— ,
o= In[47f Q)] 22" 2n1(n+1)!
, , , _ayn+1l _ 311
+4C(1_X)qlzf lcosy(Q,0)|f,(Q")dQ Czn:( D" (4n+1)(2n—3) . (12
2" 1 (n+1)!
+ —XQz‘zf |siny(Q,Q")]f2(Q")dQ". (9 For symmetry reasons only even Legendre polynomials need

be retained8]. To include the possibility of biaxial symme-
These two nonlinear integral equations constitute the startintfy we use the addition theorem of spherical harmof&
formulas for the phase equilibria calculations in our work.to rewrite P,,(cosy) in terms of a bilinear expansion in
Since there is no exact solution to the equations above wB,,(cosé) and its associated Legendre polynomials
must adopt numerical techniques to obtain the equilibriumP; (cos6),
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2n

2n—m)!
P, (COSY) = Popy(COSO) Py (COSH ) +2 D, (zn-m)! o @)= —2¢| 2(1—X)01.20( PonCOS me)y,
m=1 (2n+m)!
X PJ(cos#) P35, (cosé’)cosm(p— ). +xiq22d2n<P§nmcos me); |. (16)
2
(13 i

Here, 6 is the polar angle between the particle orientationThe values of these coefficients are found by numerically
vector and the nematic director agdis the azimuthal angle solving the following coupled consistency equations:
describing the orientation in the plane perpendicular to that

director. Substituting Eqgs(11) and (13) into the integral
equations9) and some rearranging leads to <P2n>fj:J f;(Q)Pyy(cosh)dQ, n=12,...N,
f,(Q) =zj‘1exp[ > [ a)P,,(cosh)
n=1
| (Pgnmcos?m@fj:f f;(Q) P3N (cosd)cos 2mpdQ,
+ 2 komBampam j=1.2
m§=:1 nmBzn Pan(CosO)cosmé (|, =12, nm=12,...N (m<n). (18

14
19 Note thatd() =d(cos6f)d¢. Assuming the expansion in Eq.
wherek,,=2(2n—2m)!/(2n+2m)! and Z; is the normal-  (14) to converge after a finite number of terms, we truncate
ization factor. For symmetry reasons, only evan associ- the series after thalth term. In case of uniaxial symmetry,
ated Legendre functions need be included and alimgn  the biaxial coefficientgs™) are zero, which means that we
arising from the addition theorem vanigB]. The coeffi-  only have to solve the set of\2consistency equationd.7)
cientsay) and g57" are given by using Egs(14) and(15). In case of biaxial symmetry, how-
ever, both sets, Eq$17) and (18), must be solved simulta-
neously, which implies solvindN(N+1) equations itera-
tively. Obviously, the number dil depends on the degree of
A alignment of the nematic phase via the mole fraction and
concentration. Following Ref6] we choseN=7 as a mini-
2(1_X)q12C2“<P2”>f1+X;q22d2”<P2“>f2 ' mum for weakly ordered nematic phases and we increased its
(15  value up to a maximunN=12 for higher concentrations.
The numerical integrations were performed using Gaussian
and quadrature. The initial trial ODFs were those in the perfectly
4 aligned uniaxial(or biaxia) nematic phase. The solutions
(1—x)—d2n(P§nmcos M), were iterated until the normalization facto#s had con-
™ ' verged to within 10°.
Once the consistency equations have been solved, the en-
+ 2X 0 Con( PamCOS 2’n¢>f2}, tropic contributionso; and pj can be calculated from

4
ab)=—2c|(1—x) ;d2n< P2n)t, +2X012C2n{ P2n>f2} ;

a(22n)= —2C

2m (1
ZrT( ):_ZC

N n
oj=—In4mz;+ 3, [ i (Pany,+ 2 ka3 (PErc0S 2m¢>fjJ =12,
4 N n
pi=1t o 2 dZn[ (Pan)f + 2, knnf P3rCOS 2n¢>?j] o i=12,

N n
p12=1+ 221 Czn[ (Pan)t,(Pan)t,+ mE:1 Knm( P3nCOS Moy ( PZncos 2m¢>f2] - (19

2. Direct numerical solution

The main drawback of the series solution is that the convergence becomes very sluggish when the nematic phase is strongly
aligned. To obtain reasonable quantitative resitshould be taken very largeNe&10) in that regime which makes the
numerical procedure computationally awkward.
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To make headway, we may consider an alternative method, proposed by Hexz&tlf21], in which the coupled set of
integral equation$9) is solved directly by assuming a grid of anglesand()’. Taking the exponentiated form of E®) and
eliminating the Lagrange multipliers using the normalization conditions of the ODFs we may rewri¢8) fg.an iterative
form,

8c
exp[—7(1—x)f |siny(Q,Q’)|f(l“)(Q’)dQ’—4qu12J |0057(Q,Q’)|f(2”)(ﬂ’)d0’}
f Q)=

8c
JdQexp{—?(l—x)j|siny(Q,Q’)|f(1”)(Q’)dQ’—4qu12J |c037(Q,Q’)|f(2”)(Q’)dQ’}

8c
exp[—4c<1—x>q12f |cosy(Q,Q)[f{(Q)dQ’ - —xqzzf |siny<n,n'>|f‘2”)<n'>dﬂ'}
f(2n+1)(Q): &

(20)
8c
fdQ exp{—4c(1—x)q12f |cosy(Q,Q')|f(1”>(Q')dQ'—?xqzzf|siny(n,9')|f<2”>(9')d9'}

The integrations over the solid angl@s were carried out by ((aﬁ):<a§>=0). In case of biaxial symmetry all order pa-
Simpson’s quadrature. We considered intervald @fr/2]  rameters will generally be nonzero.
for the polar angleg and[0,27] for the azimuthal angleb. When 0<S;=<1, the particle orientation vectors of com-
The intervals were discretized indg andJ 4 equal parts. For ponentj are preferentially oriented along tteaxis (polar
the uniaxial nematic phases, the integrations over the azalignmenj whereas a negative value-0.5<S;<0) indi-
muthal angle vanish so that we need only perform numericatates that the particles lie preferentially in the plane(pla-
integrations over the polar angle. Accurate results for highlynar alignment In the actual calculations we used two types
ordered uniaxial nematic phases were obtained udipg of reference frames; a rodN(") reference frame in which the
=1000 andJ,=400. Refining the grid size even further did rods point along the axis and the platelets’ normal vectors
not lead to significant changes in the, and o; reported lie in the x-y plane and, second, a plat&{) reference
here. Initial guesses fdr () andf,({) were used to solve frame in which thez axis is oriented along the preferred
the coupled se(20) iteratively. The solutions were iterated direction of the plates’ normal vector in a discotic phase,
until the convergence criterion mER (Q)—f"(Q)|  while the rods are oriented in they plane. Since théN*
<1078 (j=1,2) was satisfied. Once the equilibrium ODFs phase is characterized by polar alignment of the rods and
were obtained, the entropic contributiomsandp;, could be  planar alignment of the platelets we haSg>0 andSp<0
calculated straightforwardly from Eq&) and(6) using Sim-  (within the rod reference frameln theN™ phase, the situa-
pson’s quadrature. tion is reversed so the8>>0 and Sz<0 (within the plate
reference frame

C. Order parameters ) ) .
D. Bifurcation analysis

In order to identify the isotropic and nematic phases, we

introduce uniaxial §;) and biaxial ;) order parameters for 1. Isotropic-uniaxial nematic bifurcation
each componerjt Following Ref.[6] we define The isotropic ODFf;=1/4a is a trivial solution to Egs.
(9) for any concentration and mole fraction. At higher con-
S =(P,(cosh)); = 1<3a2_ 1), centrations, however, the forms of the equilibrium ODFs will
i 2 z i

contain orientation dependent contributions indicating aniso-
tropic phase solutions. These solutions will continuously
1 split off from the isotropic branch at the-N bifurcation
A == (P2(cos)cos 2); =(a2); —(a);, (21)  point. To find this point, we may assume that close tol the
i3 i i y/ 1 ) ) X i N .
bifurcation the nematic order is vanishingly small. Retaining
only the first Legendre polynomial in Eqdll) and(14) and
whereay is the projection of the particle orientation vector linearizing with respect to the coefficieﬂg) gives
onto thes axis of the reference frame. Th&s describes the
ordering of the axes of the rods and plates with respect to the
zaxis wheread\; describes the ordering of the species in the
x-y plane. For random orientatiorisotropic phase (aZ) o o _ _ .
=1/3 (with s=x,y,2), so that all order parameters are zero.Substituting this into the consistency equatida3) yields
In case of uniaxial order, the biaxial order parameterare  (P2)r,=S= a¥)/5. Consequently, the coefficien(d5) for
zero because there is no preferred direction inxfyeplane  the uniaxial nematic phases read

1 _
f(0)= 7 -[1+ aPP,y(cosh)], j=12. (22
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c
ay)= 2[(1=%) i —2x gy,

C
af)= 21— 2(1= )18+ X0lpp05”)]. (23

These equations yiel@for a given mole fractiorx) the bi-

furcation concentration as the root of the characteristic equa-

tion detM =0, where

c c
1—2(1—X) 5X%2
. c (24
5(1=X)012 1~ 7 X0z

The characteristic equation thus reads

2
[X(1—X)(dap—493,)]=0.
(25)

4

1- %[(1—x)+xq2ﬂ+

The concentration at which a bifurcation from the isotropic

to a uniaxial nematic phase can be expected is given by t
lowest positive solution of Eq25).

2. Uniaxial-biaxial nematic bifurcation

PHYSICAL REVIEW E56, 041704 (2002

Inserting Eq.(27) into the biaxial coefficient§16) we obtain
the following linear set:

N
2(1)_
=03, |

8
—;(1—x>d2nvvalk>} 2
(xR 83

N
=c2, ([— 4(1=X)d1Lon W15

(29

8
;Xq22d2nw§12k)}ﬁ§k(2)] .

When we truncate the series after théh term, the charac-
teristic determinanM for this set is a RIX2N matrix. It is
convenient to rewrite the matriM in the forml — cA, where

| is the unit matrix andA is a numerical matrix. The char-
acteristic equation is then given by

detM =defl—cA]=defA—c 11]=0. (30)

h"Iahe bifurcation concentration is found by numerically deter-

mining the eigenvalues of the mati¥x The concentration at
which a bifurcation from a uniaxial to a biaxial symmetry
can be expected is given by the inverse of the highest real,

The same analysi_s d_escribed above can _be_adopted to IBbsitive eigenvalue oA. Since the parametewfﬂlz in A are
cate the onset of biaxial order from a uniaxial referencedependent on the concentration through the ODFs of the

phase. Assuming the lowest order of biaxialitg€ 1) in Eq.
(14) and linearizing with respect 162", we may write the
biaxial solution close to thBl-B bifurcation point as follows:

[

zl

n=

4)

az3Pon(cosh)

fj(Q)zzjlexp{

X

1+ >, kB2 P2 (cosh)cos 2p
n=1

— N -
=N(o) ,j=12,

1+ 2, knB5P3,(coso)cos 2
n=1

(26)

where ij(a) is the ODF of the uniaxial reference phase.
Inserting Eq.(26) into Eq. (18) yields

(Phrcos2e), =S, B,

27
with
(2k—2)!
WEIIQZEZKT)ﬁ P3,(cos0) P%k(0039)>f]“(a)
(2k-2)!

1
J P2.(cos0)P3,(cose) f}(9)d(cose).
0

T (2k+2)!
(28

uniaxial nematic reference phase, the bifurcation points must
be calculated self-consistently. The technique is to compute
W) [Eq. (27)] for a given initial concentratiofusing either

the series expansion method or a numerical grid, see Sec.
IIB) and then put it into the bifurcation equati¢®0) and

find the desired root. For that concentration, new parameters
W) were calculated and inserted into EO) to find the
new root. This procedure was repeated until the concentra-
tion had converged to within 16.

E. Biaxiality and demixing

As already mentioned in the Introduction, the central is-
sue in our paper is to assess the stability of the biaxial nem-
atic phase in relation to the mixture’s asymmetry. It is im-
portant to realize that the biaxial nematic phase may be
metastable with respect to some demixing transition, e.g., a
phase separation into two uniaxial nematic pha$¢s and
N7). In this respect, it is instructive to consider the Gibbs
free energy, defined as

BF

N

S +c YbgI).

(31)

By calculating the Gibbs free energy as a function of the
mole fraction at a constant osmotic pressure, all stable and
metastable phase equilibria can be inferred graphically from
the Gibbs free energy by performing common tangent con-
structions. In our approach, however, we merely focus on the
location of the binodal and bifurcation points rather than
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T when both uniaxial binodal points are locaiacdbetweerthe
uniaxial-biaxial bifurcation pointgFig. 1(a)]. In the opposite
casegFig. 1(c)], the biaxial nematic phase is metastable with
respect to demixing into the uniaxial nematic phases. In Fig.
1(b), we have depicted a possible transitional scenario in
which one bifurcation poinffrom the N~ phaseg is located
“outside” the uniaxial binodal point$as in Fig. 1a)] while
the other one lies in between. Clearly, this scenario must give
rise to a stable first order uniaxial-biaxial transitids*(-B).
Note that theN™-N~ equilibria and thésecond ordemN™*-B
transition are both metastable in this case. We will meet this
scenario in our actual calculations, but it should be men-
. tioned that other transitional scenarios are also conceivable,
depending on the exact curvature of the biaxial branch. In
particular, one can think of a biaxial-biaxial demixing sce-
_ nario which may occur when thB branch in Fig. 1a) dis-
plays a local maximum. However, since we choose not to
calculate the Gibbs free energy of the biaxial nematic phase
explicitly, the exact shape of the biaxial branch remains
largely unknown. This means that we cannot completely ex-
clude other scenarios than the ones depicted in Fig. 1 to
occur in our systems.

BG/N

BG/N

lll. PHASE DIAGRAMS

As mentioned in Sec. Il A, the input for our phase dia-
gram calculations are the rod-plate isotropic excluded vol-
ume ratiosgi, andq,,, given by Eq.(7). To facilitate com-
parisons with the systems studied in our previous paper, we
(b) X late assume that the rods and plates have equal thickness, so that
L,=D,. Itis now convenient to rewrite Eq7) in terms of
the particles’ aspect ratios for rodd./O)g and plates

(D/L)p,
¢ w2l /15,
and  gx=—| v 5/ -
R 4\L/p D/g

AT/ 1
w=z\t)./ |5
(32

Henceforth, we fix the aspect ratio of the rods bBf[})g
=15, which matches the average aspect ratio of the colloidal
rods used in experimerntl5]. This means that we use the
aspect ratio of the plates to tune the asymmetry of the mix-
ture. Consequently, from E@32) we see that the mixture is
symmetric ¢,=1) if (D/L)p=(900/r)3~6.59. Increas-

©) X, X X Jato X X ing the platelets’ aspect ratio from this value will make the

mixture more and more asymmetric. Whdd/()p=15 we

FIG. 1. Schematic illustration of the common tangent constructeach the case of the strongly asymmetric mixture studied
tion to determine phase coexistence in a binary rod-plate mixtureexperimentally in Ref[15] and theoretically in Ref.16].
(a) Stable biaxial nematic phase, the'-N~ equilibrium is meta-
stable (dotted line$. (b) Uniaxial-biaxial (N*-B) demixing. (c)
Uniaxial-uniaxial (N*-N~) demixing. The biaxial nematic phase is ) )
metastable. The uniaxial-biaxial bifurcation points are indicated by N Fig. 2 we show the phase diagram for the case
X, , all others denote binodal points. Stable phase points are indtD/L)p=7 which is slightly above the symmetric value. We
cated by solid lines, metastable ones by dotted lines. have also constructed a volume fraction representdfan

2(b)] which may be more convenient from an experimental

explicitly calculating the free energy. In Fig. 1, we show thatpoint of view. The tie lines, which connect coexisting phases,
all information concerning thémetgstability of the nematic are given by horizontal lines in the osmotic pressure repre-
phases can be obtained from the relative location of thessentatior{Fig. 2(a)] and by tilted straight lines in the volume
points. In Fig. 1, we have sketched three scenarios. A closfaction representatioffig. 2(b)]. In the latter case, we may
inspection reveals that the biaxial phase can only be stablalso draw dilution lines along which the mole fraction is kept

BG/N

A. Scenario |: Stable biaxial nematic phase; bicritical point
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FIG. 3. Evolution of the uniaxial order paramete$sat |-N
coexistence as a function &f,,. in the nematic phase for the case
RS Nt B (D/L)p=7. A critical point is located akpj,e=0.41.
0.2 . - now located at lower mole fractions$ 0.41) compared to
L. the symmetric casexE0.5) whereas the minimum in the
¢ AN 2 osmotic pressure has shifted to higher mole fractioxns (
d | N\ ST =0.66). This minimum now constitutes an azeotropic point
0.1 - marking equal mole fractions of the coexisting phases.
I ST > N L B. Scenario II: Stable biaxial nematic phase; isotropic-biaxial
L equilibria
00+ —

— T Increasing the asymmetry of the mixture will eventually
0.0 0.1 0.2 0.3 0-4 0.5 0.6 lead to a qualitatively different topology, as we see in Fig. 4.
(b) Polate In this scenario, the bicritical point has disappeared which
means that all transitions from the isotropic to the nematic
phases have become first order. In particular, we can identify
=T7]. Thick solid lines indicate stable phase transitions. The dotted" IntermeQIate 'Fwo-phas_e regon in Whlch the '.SOtTOP.'C
lines represent metastal&'-N~ binodals. An azeotropic point is phase.coex[s_ts ,W'th the biaxial phase. The '$Otr0p'c'b'a,x'al
present ak,,=0.66. (b) Same diagram in the volume fraction rep- nematic equilibria were caICl_JIated using the direct numerlt_:al
resentation. Coexisting phases are connected by tilted tie lines. THPIUtion approach, outlined in Sec. I1B 2. In order to obtain
dashed line represents theN bifurcation line. The dilution line ~Féasonable quantitative results for the biaxial nematic phase,
drawn corresponds to the azeotropic mole fraction. while minimizing the computational burden we used a lim-
ited grid-sizeJ,=J,=40. To illustrate the evolution of the
fixed, given by straight lines running from the origin. Obvi- nematic structures along the isotropic-nematic equilibria, we
ously, in the pressure representation, these dilution lines ruhave plotted the order parameters in Fig. 5. The biaxial order
vertically. parameters rise from zero without a jump indicating that the
The topology of this diagram is very similar to the sym- structure of the coexisting nematic phase changes continu-
metric casd10]: upon compressing the system from the iso-ously from(rod-rich) uniaxial to biaxial back tdplate-rich
tropic phase, a first order transition takes place into ainiaxial as the mole fraction of plates is increased. The dis-
uniaxial phase with the symmetry of the majority componentcontinuous jump around'matez 0.075 is artificial due to the
(the rod-richN* phase or the plate-ridd~ phasé. At higher  fact that we used different reference frames in the actual
pressures, continuouecond order transitions from the calculations. The phase lines were calculated starting from
uniaxial to the biaxial phase occur. Note that the uniaxialeither a pure system of rodg<0) using the rod reference
demixing binodals, also indicated in Fig. 2, are metastabldrame or a pure system of platelets adopting the plate refer-
because they lie “inside” the area marked out by the bifur-ence frame. Note that the artificial switching from one refer-
cation lines. There is a special point, called a bicritigal  ence frame to the other only affects the order parameters. Of
Landay point where a second order transition occurs fromcourse, it does not influence the thermodynamic properties of
the isotropic to the biaxial phase. In addition, the uniaxialthe nematic phases, as we see from the biaxial binodal in Fig.
phase boundaries come together in a sharp cusp at this poidt, which does not show a discontinuity.
implying that all uniaxial order parameters must go to zero In Fig. 6, we present a detailed impression of all phase
there (Fig. 3. Due to the asymmetry, the bicritical point is lines involved for the case)/L)p=9.5. From this graph we

FIG. 2. (@ Scenario I: Phase diagram in the pressure-
composition plane for a slightly asymmetric mixtuf¢D/L)p
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I

X
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1 FIG. 5. Evolution of the uniaxia{S) and biaxial A) order pa-
0.25 - rameters at isotropic-nematic coexistence as a functiox,gf in
1 the isotropic phase for the casB/L),=9.5.
0.20
1 observe that the concentrations corresponding to the azeotro-
brod 0-13+ pic end point collapse onto the curve describing the biaxial
0 10_’ critical point at some critical value/L) p~8 which means
) that the biaxial critical point and the azeotropic end point
005_‘ have merged into a bicritical point. Hence we may expect a
: change of scenario from | to Il when the aspect ratio of the
0.00 ] . . . . . . : platelets exceeds 8.
0.00 0.02 004 006 008 010 012 0.14
C. Scenario lll: Uniaxial-biaxial demixing
(b) Ptate

When the asymmetry is enhanced even further, the phase
FIG. 4. (@ Scenario Il: Phase diagram in the pressure-behavior of the rod-plate mixture changes dramatically. In
composition plane for the cas®(L)p=9.5. The dotted lines mark Fig. 8, we have depicted the scenario fbr/[) p= 14, which

the osmotic pressures where the isotropic-nematic equilibria chande close to the experimentally accessible c@$B/L)p
continuously from uniaxial to biaxialb) Same diagram in the vol-
ume fraction representation. Coexisting phases are connected bv

tilted tie lines. 15
clearly see that the uniaxial demixing is still metastable with 144
respect to the biaxial nematic phaghe N*-N~ binodals 134

run in between the bifurcation lingsThe absence of a bi-

critical point can also be inferred from this graph; the 124
uniaxial binodals no longer meet the bifurcation lines in a

single (bicritical) point, located on thé-N bifurcation line, bpIT 4, |
but merge into an azeotropic end point instead. Note that the

mole fractions of the uniaxial nematic phases are the same ¢ 104
the azeotropic point but the concentrations are not. Further

more, the uniaxial order parameters are also nonzero at thi 91
point. Clearly, there must be a critical value fdd/L)p at 8
which the bicritical point disappears by splitting into a criti- 0.0

cal point(where theN-B bifurcation lines megtand a cor- x
responding azeotropic end poimthere the uniaxial binodals

mee}. In Fig. 7, we have plotted the location of these points  FiG. 6. Detailed picture of the phase lines for the caBéL(p

as a function of the mixture’s asymmetry. The location of the=9.5. Dotted lines represent metastag -N~ binodals, the
biaxial critical point can easily be determined algebraicallydashed curve is thieN bifurcation line. Note that th&l-B bifurca-
by combining the -N bifurcation equation with th&l-B bi-  tion lines coincide in a critical pointon thel-N bifurcation ling
furcation equation assuming the lowest degree of nematiwhereas thé\*-N~ binodals meet in an azeotropic end point indi-
order of the uniaxial reference phasee the AppendixWe  cated by the black dot.
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FIG. 7. Location of the biaxial critical poir{tiotted ling and the
concentrations of the coexisting uniaxial phases of the azeotropic
end point (solid lineg, connected by vertical tie lines, versus BGresc/N.
(D/L)p. At (D/L)p=8 all lines collapse onto a single curve, de- N*
scribing the location of the bicritical point. 0.05

=(L/D)g=15] considered in Ref[16]. An essential differ- ] N

ence with the previous scenario is that a demixing occurs B

aroundb BIT= 14 at which a rod-dominated uniaxial nematic

N* phase coexists with a biaxial phase roughly containing 0.00

equal portions of each species. Furthermore, there is an as

sociated triple point at which boti* andB coexist with an ]

isotropic phasd. Upon compressing the system at higher 00 01 02 03 04 05 06 07

mole fractions ¥>0.5) a continuous transition occurs from X

the plate-dominatedN™ phase to the biaxial phase which () plate

subsequently demixes by splitting off a fraction Of_ the FIG. 8. (a8 Scenario lll: Phase diagram in the pressure-

phase. Furthermore, a reentrant phenomenon is presefimnosition plane forl/L)p=14. Thick solid lines indicate stable

aroundx=0.4 where the mixture displays a rich sequence ofyhase boundaries. THé -B bifurcation line is indicated by the

phases upon compression. To reduce computational costs, Wfck dotted line. The thin dotted lines are sketched phase (imats

have not explicitly calculated the isotropic-biaxial equilibria calculated outlining the qualitative phase behavior at high densi-

for this case but merely sketched the qualitative topology ofies. (b) Rescaled Gibbs free energy versygy for the same mix-

the phase diagram at higher pressures. The justification fature at constant pressurdesII=14.5. Binodal and bifurcation

the demixing scenario lies in the location of the uniaxialpoints are indicated by black and white points, respectively. The

binodals relative to th&l-B bifurcation lines. In Fig. @) we  curvature of the biaxial branch is given qualitatively by the

have displayed the Gibbs free energy at a particular osmotisketched lingthin solid ling. A uniaxial-biaxial (N*-B) demixing

pressure, in which the binodal and bifurcation points are deis evident.

picted explicitly. For the sake of clarity, we have rescaled the L . .

Gibbs free energy by substracting the linear common tanger?t0<(D“‘)F’< 14, which is an experimentally accessible

to the uniaxial branches. We see that té-B bifurcation ~ '2N9€:

point now has shifted to the right of thé* binodal point _ o o o

whereas thé\ ™ -B bifurcation is still located “outside” the D. Scenario IV: Uniaxial-uniaxial demixing

N~ binodal point. As already alluded to in Sec. Il E, the only  Scenario Ill is not consistent with our previous calcula-

plausible scenario for this case is a demixing iNto andB,  tions based upon the Gaussian trial function approach. In

as indicated by the sketched biaxial branch in Figp)8Note  particular, the surmised demixing transition into uniaxial

that the shape of this branch also suggests that the dBablenematic phases, as observed experimentally and reproduced

binodal point is located at slightly lower mole fractions thantheoretically in Ref[16] for strongly asymmetric rod-plate

the metastabl&™ binodal point. mixtures is not found in our numerical analysis of the Euler-
To limit computational effort, we have not attempted to Lagrange equations. Instead, we observe a demixing into a

find the specific aspect ratio at which the"-B demixing  rod-rich uniaxial nematic phase and a biaxial nematic phase

first occurs and a change of scenario from type Il to lll will (containing approximately 50% platelgtfor a mixture of

take place. Obviously, from the results presented thus far, weods and plates with aspect ratios around 15. The question

know that the transition must be somewhere in the rang@ow arises whether or not a demixing into the uniaxial nem-

041704-10



BIAXIAL VERSUS UNIAXIAL NEMATIC STABILITY . .. PHYSICAL REVIEW E 66, 041704 (2002

18+ (D/L)p=18 in Fig. 9b), in which calculations were based
upon the Gaussian trial function approach, as discussed in
detail in Ref.[16]. Note that this diagram is qualitatively the
same as the one presented in R&6] although theN* and
174 I-N" coexistence regions are hardly visible in Figh)odue
to the extremely low mole fractions of the coexistihgnd
(D/L)P N* phases. Comparison with the numerical exabt™ bin-
odals shows that the Gaussian approximation provides in-
16+ creasingly better quantitative results at high compressions
where the alignment of the particlés both polar and planar
direction is particularly strong. Deviations occur at lower
osmotic pressure, in particular arouln@Il =2, showing that
15 T : 1 the reentrant phenomenon is underestimated somewhat by
0.52 054 0.56 0.58 0.60 the Gaussian approximation.
(a) plate
18 IV. SUMMARY AND CONCLUSIONS
164 N*+ N / [ We have investigated the role of the rod-plate excluded
""""""""""""""" i volume ratio ¢5vg,) in the phase behavior of asymmetric
14+ L mixtures of cylindric rods and plateletéfor which v
121 [ >vg,) using a simple Onsager type density functional theory.
10 ) N [ The phase diagrams were calculated from an exact numerical
bprr ] I+N 5 analysis of the Euler-Lagrange equations, obtained from for-
Sj [ mally minimizing the free energy, such that no simplifica-
6 1 tions were made priori with respect to the ODF. Our par-
1 [ ticular interest was focussed on the stability of the biaxial
i nematic phase in relation to the mixture’s asymmetry. Start-
R ing from the symmetric case we enhanced the asymmetry of
: the mixture by varying the platelet aspect ratio in the range

0.8 1.0 7<(D/L)p<18 while keeping the rod aspect ratio fixed at
15. Considering the role of the biaxial nematic phase in the
overall topology of the phase diagram, we were able to dis-

FIG. 9. (a) Position of theN~ binodal point(in terms ofx,,9  tinguish four scenarios.

relative to theN™-B bifurcation point at constant pressulgIl Upon increasing the plate aspect ratio from its symmetric

=14.12 for various D/L)p. Beyond the intersectiojaround value (6.59, we observe that the characteristic bicritical

(D/L)p,=17] the biaxial nematic phase becomes fully metastablepoint is retained initially(scenario ) but disappears around

(b) Scenario IV: Phase diagram in the pressure-composition plangD/L),=8 and is replaced by a two-phase region marking

for (D/L)p=18 calculated within the Gaussian approximation. Thefirst order transitions from the isotropic to the biaxial nem-

I-NF-N~ triple line is indicated by the horizontal dotted line. The gtic phase(scenario ). At higher asymmetrie{around

dotted curves represent the numerically eXabt™ binodals. (D/L)p=15] we found a uniaxial-biaxialN*-B) demixing

transition with an associatddN™-B triple equilibrium(sce-

atic phasegscenario 1V is recovered when the aspect ratio nario 1ll). Increasing the aspect ratio beyond 17 will give a

of the platelets is increased beyond 15. Considering Figuniaxial-uniaxial N"-N~) demixing with an associated

8(b), one can imagine that, upon increasind/()p, the 1-N*-N" triple point (scenario IV. This indicates that the

asymmetry may force thl~-B bifurcation point to shift in  biaxial nematic phase may become fully metastable in highly

between the uniaxial binodal points such that the biaxiasymmetric mixtures. To limit the computational burden, we
nematic phase becomes fully metastable with respect to laave not explicitly calculated the isotropic-biaxiatB) and

N*—N~ demixing, according to Fig. (b). To verify this  uniaxial-biaxial (N*-B) equilibria for scenario lll. There-

possibility we have calculated the location of these points afore, it should be noted that, due to the uncertainty in the

a fixed osmotic pressure, namely, th& coexistence pres- thermodynamic properties of the biaxial phase, other sce-

sure for the pure systembfIl=14.12) which is slightly narios than the ones presented in this paper cannot be com-

above the triple pressure. In Fig@ we have depicted the pletely ruled out. Nevertheless, we believe that our scenarios
evolution of theN™ binodal (corresponding to thé-N~ are sufficiently plausible.

equilibria) and theN™-B bifurcation point as a function of There is experimental evidence of the uniaxial-uniaxial

(D/L)p. The intersection point around(L)p=17 reveals demixing transition(scenario I\ to occur in mixtures of

that there must be a scenario IV such that the uniaxial deeolloidal rods and platelets, albeit at a slightly lower plate

mixing is indeed recovered, albeit at a higher plate aspeaspect ratioof roughly 15. However, no detailed structure
ratio than expected from RdfL6]. For the sake of complete- investigation on the nematic phases has been performed in
ness, we have depicted the phase diagram for the cas$tef.[15], so that there are no conclusive results available as

(b) X ptate
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to whether the demixed nematic phases are really uniaxial or c 10

possibly have some degree of biaxiality. Therefore, consid- ,35 (Z)ZZ[—Z(l—x)qlz( 1- 781)[3% @

ering our present theoretical predictions, it would be intrigu-

ing to verify the possibility of a uniaxial-biaxial demixing 10 2(2)

scenario to occur in these experimental systems. Of course, XU 1= =S| B2 7). (A2)
this would require a thorough reexamination of the experi-

mental systems focusing on the optical properties of the, . . - .
nematic texturegparticularly, the plate-dominated nematic SettlngSJ:O_ n Eq_. (A2) leads to the_charactenst_m equation
phase. Furthermore, our results also suggest that the form f_er thel-l\_l b|fur<_:at|ons Eq(25) |_mply|ng that the isotropic-
tion of a biaxial nematic phase can be promoted experime _|aX|aI_ b|fu.rca.t|on. concentrations arthe same as jche
tally by decreasing the diameter of the colloidal p|ate”ke|sotrop|c-un|aX|aI bifurcation densities, fany mole fraction
colloids, thereby reducing the mixture’s asymmetry. How-1"1"_. I . .

ever, it should be noted that the effect of polydispersity and Since the bicritical point must be a SO'““Q”.Of E‘qs)'.
the influence of higher-order particle correlatiofmth are W€ May subtract Eq(25) from the characteristic equation
not incorporated hejemay give rise to qualitatively different COTresPonding t¢A2) to get the following equation:
scenarios from the ones predicted by our calculations.

c
_ _ _ 2 _
APPENDIX (1-X)S1+ X025, + 4X(1 X) (4015~ 022)
Calculation of the biaxial critical point 10 }
. . . . X|$+S,— =S =0. A3
Figure 6 shows that thé&l-B bifurcation lines emanate 1+ S 7 152 (A3)

from the I-N bifurcation line at a critical point where the

order parameters are necessarily zero. To calculate this poif§noring theO(S?) term and eliminatings; using the rela-
for a given asymmetry, we may performNaB bifurcation  tjon

analysis starting from a weakly ordered uniaxial phase. As-

suming the lowest degree of nematic order in the uniaxial

reference phase, we may approximate the uniaxial ODFs by [E(l—x)—z}
Eq. (22). Substitution into Eq(28) yields for the coefficients S,=S 2 (Ad)
wii), LT oxay
L1 ) .
W(ljl):ﬂjo [Pg(t)]2[1+a(2”P2(t)]dt (t=cosh) from Eqg. (23), we obtain
1.2 QX+ Ex(l—x) [407,~2(012+ 020) ]
=575 (A1) 4
» c

in terms of the uniaxial order paramete8s= a3/5. Using — 21408 Azl 21+ (1-)] [ =0, (AB)

this together withd,= —5#/32 andc,=5/8 [from Eq.(12)]
we obtain, from Eq(29), the following linear set:
Solving this equation together with theN bifurcation equa-

2 (1)23[(1_)()( 1— 1_0S ) 2 (1) tion (25) will uniquely determine the biaxial critical poirin
2 4 1)P2 terms ofx andc) for any given set of parametedg, . The
solutions for the symmetric case, discussed in R&f. can
_ox q12< 1 Esz) 2 (2)} be recqvered by substituting=1/2 andqg,,=1 in Eq. (A5)

7 2. to obtainc=8/(2q,,+1) andS;=—S,.
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