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Geometry of lipid vesicle adhesion
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The adhesion of a lipid membrane vesicle to a fixed substrate is examined from a geometrical point of view.
This vesicle is described by the Helfrich Hamiltonian quadratic in the mean curvature; it interacts by contact
with the substrate, with an interaction energy proportional to the area of contact. We identify the constraints on
the geometry at the boundary of the shared surface. The result is interpreted in terms of the balance of the force
normal to this boundary. No assumptions are made either on the symmetry of the vesicle or on that of the
substrate. The strong bonding limit as well as the effect of curvature asymmetry on the boundary are discussed.
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[. INTRODUCTION this restriction. We willnot, however, assume that this sur-
face is flat. More significantly, we relax the assumption that
Geometrical models provide a surprisingly robust phe-the vesicle geometry is axially symmetric. In previous axi-
nomenological description of the equilibria of physical mem-ally symmetric work the geometric origins of the boundary
braneq1-5|. The Hamiltonian that describes the membraneconditions are not clear, because the technique is tailored so
is constructed as a sum of geometrical scalars; in particulafinely to the symmetry; nor is it clear to what extent they will
lipid membrane vesicles are well approximated by one that isurvive the relaxation of symmetry. This is a less than desir-
quadratic in the mean curvatui@—8|. Such models can also able situation in a model that is intrinsically geometric to
be extended to model adhesion between vesicles or betwedegin with. Of course, one is also interested in geometries
a vesicle and a rigid substraf®—11], processes that are that are not axially symmetric: to mention just one context
increasingly relevant to biophysicélwo reviews are Refs. where this would be the case, we note that all configurations
[12,13.) In this paper, we examine one important aspect ofwith a negative area difference appear to be inconsistent with
this problem, the geometry of the contact boundary, whichaxial symmetry[21]. Indeed, it may also be energetically
surprisingly, does not appear to have been examined in arfavorable for an initially axially symmetric vesicle to adhere
generality. to a substrate in a manner that breaks its original symmetry.
To model the interaction one can exploit, as for an iso- Our first approach will be to search for minima of the
lated membrane, the geometrical scalars characterizing trenergy. To do this, we will exploit the geometrical frame-
surface of contact as well, perhaps, as its boundary. As suckork introduced recently to describe lipid membrah2g],
this is not a model of the adhesion of individual molecules toand extended to accomodate edge effects in R&. The
specific sites on the membrane, a task that lies beyond thextension to adhering geometries introduces its own subtle-
scope of this continuum description. ties due to potential discontinuities at the boundary of con-
In its simplest form, which is the one we consider, thetact: the energy is stationary only when appropriate con-
interaction Hamiltonian is proportional tminug the area of  straints on the vesicle geometry are satisfied on this
contact. The energy associated with the boundary of the corboundary. Our treatment of the problem is divided into three
tact region is ignored. Axially symmetric configurations haveparts. To establish our bearings, we begin in Sec. Il with a
been studied thoroughly in this “ideal” contexi1,14. In rederivation of the Young equation for a liquid droplet where
Ref. [15], the adhesion of “linear” vesicles in two dimen- the bonding to the wall competes with the surface tension of
sions was considered. More recently, in Rdfs6,17 and  the drop. In Sec. lll, we consider lipid vesicles described by
[18] perturbation theory has been developed in the stronghe Helfrich Hamiltonian. Discontinuities at the boundary of
bonding limit, in which the bending energy itself is small the contact region are discussed in Sec. Ill A. In Sec. Il B,
compared to that of adhesion. Nonaxially symmetric con-establishing contact with the recent work in this direction,
figurations of an adhering vesicle under the effect of gravitywe study the strong bonding limit in which the bending en-
were studied in Ref[19] using numerical techniques. We ergy is ignored but any asymmetry between the layers is
note that a more realistic treatment of adhesion consideringccounted for. In this limit, discontinuities at the boundary of
chemically structured or rough surfaces has been provided ithe contact region are not smoothed; a nonvanishing contact
Ref.[20]. angle does not imply a divergent energy. Finally, in Sec. IV
For definiteness, we will assume that one of the interactwe consider the general case. The finiteness of the curvature
ing surfaces is a fixed substrate, although it is simple to relagnergy necessarily eliminates an angle of contact between
the vesicle and the substrate; stationary energy completely
fixes the curvature at the boundary. This generalizes the situ-
*Electronic address: capo@fis.cinvestav.mx ation for axially symmetric shapes, where as is well known,
"Electronic address: jemal@nuclecu.unam.mx the curvature is completely fixed at the boundgt{]: the
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vesicle radius of curvature normal to the line of contact is
inversely proportional to the square root of the bond
strength, the tangential radius as well as the potentially non-
vanishing off-diagonal curvature are both completely fixed
by the substrate geometry. We demonstrate that the boundat
condition is not modified by a curvature asymmetry. In Sec.
V, we use the expressions for the internal stress tensor in i
lipid membrane developed in R¢R2], to provide a surpris-
ingly simple interpretation of the boundary condition in
terms of the balance of forces at the boundary for a flat
substrate. We end with some brief conclusions.

Il. SURFACE TENSION DOMINATED MODEL

~ ool 22
x=X( & ’ g )
It is worthwhile to first review the adhesion of a drop of o . , -
liquid of fixed volume onto a surface. Here the focus is on FIG. 1. Definition of the quantities used in the description of the
the competition between the surface tension of the liquid ang€emetry of adhesion.

the attraction between the liquid surface and the substrate.

The former tends to reduce the surface area of the drop: ﬂ.%eometrical guantities, indicated with a tilde, associated with
latter to increase the area of contact. The energy is given asid€ Substrate. Note that the boundé@rynay possess discon-

sum of three terms nected components.
To derive the equations describing the equilibrium shape
F=uA—WAgnac— P(V—Vo). (1)  of adroplet, let us consider a variation of the embedding of

the free surfaceX— X+ 6X. We letn to denote the unit

The energy associated with the constant surface tepsioh  normal to the free surface. We decompose the displacement
the drop is proportional to its total surface akeahat asso- with respect to the spatial basis adapted to this surface,
ciated with adhesion is proportional tainug the area of {e,,n}: sX=>%,+P n. We have for the corresponding
contactA. niactD€IWeen the drop and the substrate. The pavariation of the induced metricdyy,p=2K 5P +V Dy
rameterw is the attractive contact potential. The third term +V,®,. The normal deformation is proportional to the ex-
involving the Lagrange multipliep implements the volume trinsic curvature tensolK,,=e,-d,n. The mean extrinsic
constraint fixing the enclosed drop volurat the value/,.  curvature isK =K,,y?°. The tangential deformation is the

The equilibrium drop configurations are those at whichLie derivative of y,,, along the vector fieldb?; V, is the
the energy(1) is stationary. The problem posed here differscovariant derivative compatible with,, .
from the standard isoperimetric problem in that the area at On the boundanC, the fixed substrate constrai@X to
different positions on the surface gets weighted according tie along the contact region. We will ignore this for the mo-
whether or not it lies in the contact region, which itself is ment, treatingsX as though it were unconstrained @
determined by the outcome of the variational problem. In-Then variation ofA;. gives
deed the contact surface might be weighted negatively. For
physically realistic parameters, however, an equilibrium is -
realized. The energy is always bounded from below. OxAree= ffreedAKq)’L fcd3| D,. ©)

In equilibrium, the curvature of the drop’s surface will

suffer a discontinuity along the bounda@ of the contact Here 12 is the outward pointing normal t€ on the free

region. We parametrize the embedding of the free surface Qf;5ce-s is arclength alondC. We also have that the varia-
the droplet in three-dimensional space as follows: o of the enclosed volume is

=X(&%), and the substrate= X(£%), a=1,2. The energy is
a functional both ofX for the free surface an& for the

region of contact. They coincide @@ X =X. See Fig. 1. We oxV freedA . @
now recast the first two terms appearingdras (A is the

area of the free surfage Remote fromC only the normal projection of the variatich

plays a role in determining the equilibria of the droplet. This
MA=WAntac UAfree (1 —W)Acontact is generally true regardless of the model.
For this model, the free surface satisfigk=p, as fol-
=,u,f d2e\y+ (n—w) 475, lows from the first term in Eq(3), together with Eq.(4).
free contact Note that there is no boundary term associated with the nor-

2) mal deformation®. This contrasts with the tangential defor-
mation whose only net physical effect is to induce a displace-
Here y is the determinant of the metrig,, induced on the ment of the boundary.
free surface given by,,=e€,-&,, wheree,=9,X are vec- The boundary deformation we have described is not free:
tors tangent to the surface. Similar definitions hold for thethe variationsX on C is constrained to lie tangent to the
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substrate. Without loss of generality, we can also assume thatere n is now the Lagrange multiplier associated with the
it is normal to the boundarg, so that area constraint; likewis@ is that associated with the area

_ difference constraint.

X=Dyz, (5)

~ . . A. Discontinuities resolved

wherez is the outward unit normal t€ on the substratésee

Fig. 1). We then have for the integrand appearing in the Inthe simple model discussed in Sec. Il there is no energy

boundary term in Eq(3), 12®,=I-6X=1.Z ®,, wherel penalty associated with discontinuities along the contact

=12 g, is the surface vectol® treated as a spatial vector. boundaryC. However, both the intrinsic and extrinsic curva-

The boundary contribution to the variation of the free surfacgure will suffer a discontinuity along. When the curvature

SxAsree is then of the vesicle contributes to its energy, such a discontinuity
will generally result in a singularity in the energy. Because

- this singular contribution has support @ it is no longer
OxAfree Cds -2®y. ®  valid to decompose the energy into two parEss=Fyee
+Fcontact

We now consider the variation of the area of contact 1hiS point is well illustrated by considering an axially
Aconace The deformationsX of the free surface will induce Symmetric surface. Cylindrical polar coordinafgsz, ¢} are

H 3.
a variation inAnac through the boundary that they share, ntroduced onR*; constante curves on the surface are pa-
rametrized by arclengtr’. The surface is then described

completely oncep=R(/) is specified. The extrinsic curva-
OxAcontact™ f CdSCDo, (7)  ture tensor consistent with axial symmetry is
Kab=7"a"bK + (Yap— 72’ b)Kr, (13

which is a two-dimensional analog of E@). Note that the
substrate need not be planar. We can now read off the totgjnere the scalar, and Ky are the two principal curva-
boundary contribution to the variatiofyF, with F given by tures, and/? is the outward pointing unit normal to the

Egs.(1) and(2). In equilibrium, we require that circle of fixed/, /2=(1,0). We identify the scalar curvature
R=2det K=2K Kg, andK=K_ +Kg. Now let 8 be the
J ds [p 17+ (u—w)]Py=0 (8)  angle that the tangent to a curve of fixgdnakes with the
c positivex axis. The principal curvatures are then given by
for an arbitrary®,. We therefore conclude that siné
K/= 9,, KRZ?- (14)
w=pu(1+1-2). 9

The prime denotes a derivative with respecttoWe have

Defining the contact angl® by cos®=—I-z, this expres- for the integrated mean curvature

sion reproduces the well known Young equation.

IIl. LIPID VESICLE ADHESION M :Zﬂf d/R R

siné
o'+ —) (15

A lipid membrane is modeled by the Helfrich bending
energy Suppose that suffers a discontinuity® on the circle at”
=/, so thaté(/)~0 H(/—/,), whereH is the step

function. There is a finite contribution from this circle given
szaf dA K2, 10 by 9
For definiteness, we will focus on either of two variants of Zote , .
the model: in both versions the enclosed volume and the total dAK=2m fome d/0'R=2mR(/)0. (16)

surface area are fixed; in the spontaneous curvature nmédel,

{iéesplgz?:nggﬁg sgr\llgtﬁge.'(ilr?)tr\:\é hEirIZ tgf CC:unSlLa”nfgd'Zl thThe mean curvature is thus integrable across the discontinu-
P ’ y P ' Ey In general we have the decomposition

area difference, proportional to the integrated mean curvatur

M :f dAK, (11) M= Jdrop/CdAK_ chsarcco$I~z) (17)
is also fixed[21]. Thus we construct the constrained energy,with cos®=—1-7Z, and where the notation for the normals is
that introduced in Sec. Il.
F=F,—WAcontacit w(A—Ap) + B(M—Mgy)—p(V—Vy). We note that the Gauss-Bonnet invariant for a vesicle of

(12 spherical topology can likewise be decomposed
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Note that this expression reduces to E@). when u=1,8
J dA R+2f dsA k=8, (18 =0.
drop/c ¢ We now examine a normal deformation of the free sur-
whereA k=% — kyeeis the discontinuity in the geodesic cur- facg. The IE_qur-Lagrange _equatign that determings the local
vature ofC. For f;ﬁ‘ axially symmetric vesicle, the value of vesicle eqwhbnum shape is obtained by demanding that the
X ' energy be stationary with respect to normal deformations of

:Eg Ilfllfltt?éri?lrir;:\é?e?;]C;)cst%n(g?iszr‘]sailr?%ﬁgss?uedc)?g}ﬁ%?altlc?ynngk-the free surface. Its derivation within the present framework
ics of thin shells in general relativit}24].) As long as the has been discussed in detail elsewr@d). Let us focus on

. : L . . the normal deformation of the new ingredient with respect to
adhering vesicle remains intact, the Gauss-Bonnet invariant - el discussed in Sec. II appearing in @), which is
will not play a role in adhesion. Though each of the tWOM. We consider the contrit;utions from the fre,e surfaCe

components appearing in E(L8) will behave nontrivially . :
under deformation of the surface, their sum will not changegggirt]hvii;]ol\r;ltaa @g'?}g\?es given by E@7) separately. We
free-

The geometric invariari? does possess a singularity at a
curvature discontinuity. We note that this singularity is iden-
tical to that arising from the alternative quadratic invariant, O Mpee= f dARD — J dsv, o. (22
K,,K3. This is because the Gauss-Codazzi equati@n, free ¢
=K2—K,,K?®, identifies their difference as the scalar cur-
vature R that according to Eq(18) picks up a finite contri-
bution at a discontinuity. In an axially symmetric geometry
the troublesome term in the bending energyig

We have useds K=—V2d—-K3K, d, as well as the

Gauss-Codazzi equation, aWd =12V, denotes the deriva-
tive alongl. It is now straightforward to read off the bulk
Euler-Lagrange equation,

f dAK2~2wJ d/R 02+ ... (19 uK+BR=p. (23

s o . ] . Note that this equation is second order in derivatives.
The 0’ “ term appearing in the integrand gives rise tda  To proceed with the determination of the boundary con-
function squared singularity across the boundary. To elimigjitions, we need to identify the independent unconstrained

nate the corresponding divergence in the energydwee-  yariation at the interface. We identify these @g=%- 6X
quire® =0. The surface must be differentiable acr@sdt is and its derivative along v ®,. We will, however, con-
] iR . 3y ]

straightforward to bootstrap this axially symmetric analysis . —~
to the general case by introducing Gaussian normal coordfinue 1 useV, &, to denotel-zV, &,. We note that the
nates adapted to the boundary. In general, we require thaPrmal deformation at the boundary, using E5).is

=0 orz=—1. d=n-5X=n-7P,, (24)

B. Strong bonding limit and on the boundarg, its normal derivative is

Before addressing the full problem, let us consider the

strong bonding limit,a<wA. At lowest order the bending V, &=V, (n-70)

energyF,, is ignored in Eq(12), and the variational problem =(N-2)V, D+ Dz -V, n+Dyn-V 7
reduces to the minimization of the contact energy subject to * + 5 *
the three constraintgln this section, we will use the lan- =(N-2)V Do+ (1-2)[K +(1-7)K, Py, (25

guage appropriate to the bilayer couple modélhereas® o
necessarily vanishes on the contact boundary for the Helfrictyhere we have define#, =Ka013® and K, =K 4,7%2°.

Hamiltonian, it need not vanish in this limit. We have used the fact that- VLE=(|-E)2RL as well as
Let us first consider the variational problem on the freevin:|aK be, . Therefore the boundary contribution of Eg.
surface of the vesicle. Under a tangential deformation of thi§22) takesathe form

surface any scalar functiodf, and in particular, 7= u

+ BK, transforms as a divergence that is transferred to the 5 - o~
boundary, 5LMfree:_fcds{(n'z)VLq)O_F(l'z)[KL+(|'Z)KL](I)O}'
(26)
5H dA f:J dS|a(Da F. (20
free Cc

For the boundary contributioM -, we have

This is because) F=®%),F. The details ofF are irrel- ~
evant. Sinced, is constrained to lie tangent to the contact oxMc= Lds[@;«b(ﬁ ox0 1. (27
region, from Eq.(5), with 7= u+ 8 K, we have then

We emphasize that this term contributasly to the strong

5”] dA(M—’_ﬁK):f ds(u+BK)I-Z @y, (21) bonding limit. Th~e first term comes _from the variation of
free c arclength:8yds=«®,. We now exploit the fact that c&3
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=—1.Z to expressdy® in terms of 8x(I-Z); to evaluate the
latter we note thaty® = (sin®)~18(1-%), and that OLFb free=2a | dS(PV K=KV ®). (36)
ox(1-2)=(xl)-z=n-z(n- &x). 28 \we note thatb =n-z®,=0, so that the first term vanishes.
In general, we have for the tangent vectors to the free suff0r the second term, o, Eq. (25 gives V, ®=(K,
face, —K,)®, , so that the novel contribution is
_ _ b ~

N- Ox8= V@ — Kp®°, (29) 8. Fp freeZZQLdS KK, —K,)®,. (37)

so that

It is now straightforward to read off the boundary condi-

(8x) 2= (V. @~ (19K Do)n-Z. (30 tion (there is no term proportional t8 , @)

Note thatéxMc need not vanish even whaéW. itself does.
Finally, the induced change i on the contact region
due to the displacement & is just

— aKZ—IBKH-FaRZ-I- BK”‘FZQ’(KL_RL)K:W' (39

If we now use the fact tha{H—RHZO when® =0, Eq.
(38) reduces to the remarkably simple expression

SxM contacE f ds Kd,. (31) ~
XWcontact™ ¢ 0 Kl . KL _ /_W/a. (39)
It is now straightforward to read off the boundary condition This expression is independent 6f
by equating the coefficient ab, for the corresponding ex- The curvatureK, is completely fixed at the boundary by
pression forF to zero: Eq. (39). We note that the off-diagonal term with respect to

- ~ - the basid? andt?, K, =13t’K,,=n-1 will not generally be
(1) (u+ B+ (n=wW)+ BK+BOK=0. (32  zero. Just likeK,, however, it will be completely determined
by its substrate counterpak,, =K, . Thus, all three com-
ponents of the curvature are fixed at the boundary.

If the substrate is flat at the boundary, we haKe
=W/ a. For an axially symmetric shapk, =K,= ¢’ and
Eq. (39) therefore reproduces the well known boundary con-

We have used the fact th#t can be expressed a6=K|
+K, , whereK,=K,,t?t is the projection oK ,, onto the
unit tangent toC, t2. In general, some simplification is pos-
sible by using the identity

K,=n-t=cosOK,+sinO%. (33  dition [11],

In particular, for axially symmetric geometries, we note 0’ =W/ a. (40)
that K,=Kg is consistent with K,=sinW/R, and «  \ye note that if the substrate is axially symmetric and not flat,
=cosV/R, with the identificationd=V¥ + . Eq. (40) is modified to

Note that Eq.(32) is consistent with Refl16] where an
axially symmetric(indeed, sphericalvesicle adhering to a 0'—V'=\wla, (41)

flat substrate K=0) is described.
whereW¥’ is the curvature along a meridian of the substrate.

IV. NO APPROXIMATIONS This agrees with the expression given in footnote 1f1df.

We now examine the general case, as given by the energy V. STRESSES AT THE BOUNDARY
(12), including the bending enerdy, . As discussed in Sec. o _
Il A, in order to avoid discontinuities at the boundary we  In equilibrium, the forces directed along the normal from

impose®=0 orl-Z=—1 as a constraint. the boundary into the membrane must balance. In &1,
For the tangential deformation &, from Eq.(20), and it is shown that the stress tensor for the moded) can be
usingz-1=—1, we have immediately expressed as
fa:[aK(Kab_ K’yab) + B(Kab_ K,yab) _ M,yab]eo
5||Fb=—af ds K2<DO. (39
¢ —2aVaKn. (42)

The novel nontrivial boundary term associated with theThis is the stress tensor on the free surface. It satisfies

normal deformation of the free surface originates in the term
V., f@=pn (43

2a f dAK 728, Kap (39 at each point.
e Let us for simplicity suppose that the substrate is flat, so

contributing from the variation oF,, f.e. Modulo the free  thatK,,=0. The corresponding stress tensor in that part of
bulk shape equatiofdescribed in Refl22]), there remains  the vesicle which is bound to the substréfeis then
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?a:(w_ﬂ);ab“éo, (44) ggometrical quiltonian. This provides a useful platfqrm for
either a numerical or perturbative approach to adhesion, par-
which is isotropic. Note thafl,,acdoes not satisfy the con- ticularly when one is interested in nonaxially symmetric
servation law Eq(43). Thus the construction of a Gaussian shapes. Axially symmetric shapes are very special ones.
pillbox of infinitesimal thickness on the boundary does not These techniques also generalize to so-called floppy or
lead to a useful identity. We note, however, thdfl, is the  egg-carton membranes where a term penalizing curvature
pressure acting on the boundary due to unbalanced stressg@dients also appears in the Hamilton[d2,25. Now, not

in the free bulk at its boundary. We have only is the contact angle fixed, but its first derivative van-
ishes. It is the second derivative that will be proportional to
|- 4= aK(2K = K) = BK|— u. (45  the bond strength. The interesting shapes are also certainly
. not axially symmetric.
Similarly, Note added in proofRecently, Ref[26] was brought to

370 _w_ (46) our attention, where the adhesion of “linear” vesicles in two
a~ K- dimensions is considered.

The stresses must balance in equilibrium. When they do, Eq.

(39 is reproduced. This derivation is not only more efficient ACKNOWLEDGMENTS
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