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Layer-by-layer epitaxy in limited mobility nonequilibrium models of surface growth
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We study, using noise-reduction techniques, layer-by-layer epitaxial growth in limited mobility solid-on-
solid nonequilibrium surface growth models, which have been introduced in the context of kinetic surface
roughening in ideal molecular beam epitaxy. Multiple hit noise reduction and long surface diffusion length lead
to qualitatively similar layer-by-layer epitaxy in (11)- and (2+1)-dimensional limited mobility growth
simulations. We discuss the dynamic scaling characteristics connecting the transient layer-by-layer growth
regime with the asymptotic kinetically rough growth regime.

DOI: 10.1103/PhysRevE.66.041601 PACS nun®er05.70.Ln, 68.55-a, 64.60.My, 81.15.Aa

I. INTRODUCTION many layers are partially filled at the growth front producing
increasing surface roughness wiib layer-by-layer oscilla-
Thin film growth, under solid-on-solid epitaxial condi- tions), consequently the surface morphology and associated
tions, from the vacuum vapor deposition of an atomic or aproperties oscillate as growth proceeds. In the ideal layer-by-
molecular beam(the so-called molecular beam epitaxy or layer growth mode, therefore, the interface widtl,(the
MBE) is an important technological process used extensivelyoot mean square fluctuation in the interface heigfitthe
to produce high quality thin films with smooth and flat sur- growing film oscillategnominally between 0 and 1, as mea-
faces and interfaces. It is also a growth process of considesured in lattice units, indicating an empty or a filled layer
able fundamental significandd—6] in the statistical me- whereas in the kinetically rough growth motl¢ increases
chanics of nonequilibrium phenomena because Ni@Heast monotonically as a power law in the average film thickness
in its ideal form[7], with no evaporation and vacancy or ((h)). Layer-by-layer epitaxy is, however, an initial transient
overhang formation at the growth frdnin principle repre- growth regime that eventually crosses over to the asymptotic
sents[7,8] a universality class of nonlinear surface growth kinetically rough growth regime as the shot noise intrinsic in
outside the generic Kardar-Parisi-Zhati{PZ) universality  the incident deposition beam fluctuations always wins out to
[9]. A great deal of attention has, therefore, focused over theamp the layer-by-layer oscillations, and at long enough time
last ten years on the statistical properties of kinetically rougtscalesand for large enough lateral system sjz&sitistically
(and, in principle, generically scale invariasurface growth  scale invariant kinetically rough growth would always
in low temperaturgroom temperature or belowBE, fol- emerge(In fact, the noise associated with the stochastic dif-
lowing the suggestiong7,8,10—12 of the possible impor- fusion process also contributes to kinetic roughening, but the
tance of ideal MBE in defining growth universality classes inshot noise associated with the incident beam fluctuations is
kinetic surface roughenifd.—6]. We note that the conserved the mostrelevantroughening mechanisinThis is also the
surface current natui€,8] of ideal MBE growth(i.e., solid-  experimental observation: layer-by-layer growth oscillations,
on-solid growth with no evaporation and vacancy or over-as studied for example through RHEED intensity oscillations
hang formation rules out a KPZ description of its growth monitoring the dynamical surface evolutiph3,14], eventu-
dynamics. ally always damp out as the stochastic deposition shot noise
It is interesting, perhaps even ironic, that MBE growth associated with incident particle beam fluctuations leads to
has played such a central r¢te-6] in kinetic surface rough- kinetically rough multilayer growth after some characteristic
ening phenomena because the primary materials science irtime t.. The damping time_, beyond which layer-by-layer
petus for MBE growth is obviously to avoid kinetic rough- growth dies out, depends on the growth temperatugch
ening, as completely as possible in order to produce smoottontrols the surface diffusion rateand is in general larger
and flat thin films of high surface quality with minimal for higher temperatures because longer diffusion lengths at
amount of surface roughness. From the materials sciendgigher temperatures enhance layer-by-layer gro(ithere is
perspective of producing high quality smoothe., mani-  actually a complication, arising from the unaviodable vici-
festly nonrough thin films, therefore, MBE is typically car- nality in the starting substrate that can never really be pre-
ried out at elevated temperatures §00—-1000 K), where cisely a high symmetry singular plane in real growth where
fast surface diffusion enables one to produce smooth thitayer-by-layer oscillations tend to disappear at both high and
films with very little surface roughness. Smooth MBE low growth temperatures—the low temperature behavior is
growth, as opposed to kinetically roudtow temperature  from the multilayer kinetically rough growth as discussed
growth, is characterized by layer-by-layer growth oscilla-above, but the high temperature disappearance arises from
tions[13,14), where each layer of the growing thin filflon  the so-called step flow growth mode that is caused by the
a singular high symmetry substragssentially fills up com- very fast surface diffusion of deposited atoms at high tem-
pletely before the next layer deposition begips the other peratures leading to their moving directly to step edges,
hand, kinetically rough growth is, by definition, multilayer as which must be present in any real substrate due to vicinality
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or miscut, without any layer-by-layer growth oscillations; we  Layer-by-layer MBE growth has been extensively studied
neglect considerations of such a step flow growth mode in16—20 in the literature using computer simulations of MBE
this paper assuming all growth to be occuring strictly ongrowth through the stochastior kinetico Monte Carlo simu-
singular high symmetry substrates. lations, with the atomistic diffusion at the growth front as-
The ideal MBE growth(on flat singular high symmetry sumed to be controlled by stochastic activated hopping pro-
substrates can be thought of as composed of twocess with the hopping rate determined by a local
regimes—an early time t{t;) transient (fast diffusion  coordination number dependent activated Arrhenius hopping.
driven) regime of layer-by-layer growth followed by the Such activated diffusion Arrhenius hopping simulations
asymptotic {>t.) kinetically rough(deposition beam fluc- (sometimes also referred to as “full diffusion” simulations to
tuation driven growth regime(with no layer-by-layer oscil- differentiate them from “limited mobility” growth models
lationg characterized by power law evolutigh—12] in sur-  which are our main interest in this pap@volve continuous
face roughness. At low enough temperatures, when surfag@ossible hopping of all surface atoms according to their
diffusion is extremely slowt. could be less than the time it local bonding configurationgvhich determine the activation
takes to grow one monolayer of deposit on the average, anehergy for the hopping processSuch full diffusion simula-
in that situation layer-by-layer transient growth regime is in-tions are obviously not well designed to study the kinetic
visible with the kinetically rough growth regime being domi- roughening universality class of MBE growth because they
nant essentially right from the beginning. Conversely, suffi-are extremely time consuming and cannot really be carried
ciently high temperature growth on a small substrate coulaut for large systemfparticularly in the physically relevant
continue in the layer-by-layer mode for a very long time (2+1) dimension$for long times, an essential requirement
although some damping of the growth oscillations is inevi-for ascertaining the asymptotic universality class of a growth
table with time as distant spatial regions on the substratenodel. Although there are some notable except{@is-23,
must lose coherence due to the inherent shot noise fluctughe full diffusion Arrhenius activated kinetic Monte Carlo
tions associated with the discrete deposition process in thsimulations of MBE growth have not been used with particu-
incident beam. Thus layer-by-layer growth us purely a “fi- lar success for understanding statistical scale invariance
nite size” (both spatially and temporally transient properties of kinetic surface roughening. Instead, important
phenomenon—if the substrate is made sufficiently largdnsights into the MBE universality class of kinetic surface
and/or if one waits for sufficiently long growth time, layer- roughening have come primarily from nonequilibrium lim-
by-layer epitaxy must necessarily cross over to kineticallyited mobility growth models—mainly the so-called Wolf-
rough growth. It is important to emphasize, however, that theévillain [11] (WV) and the Das Sarma-Tamboreri&a] (DT)
surface diffusion length is typically an exponentially acti- model—which were introduced specifically for the elucida-
vated function of growth temperature, and therefore, a smaliion of the MBE growth universality.
change in temperature could cause a sharp large change inIn this paper, we study the DT and the WV modele
the growth modelayer-by-layer to rough and vice versa de- emphasize that WV and DT models, in spite of their close
pending on whether the growth temperature is decreased gimilarity in growth rules, belong[24] to different
increasegifor a given substrate, leading to the empirical con-asymptotic universality classes in both41) and (2+1)
cept[15] of an epitaxial growth temperatufig, with growth  dimensions although their preasymptotic scaling behavior is
being layer-by-layefrough for T>T, (T<T.)—clearly T,  very similar which has led to considerable confusion in the
is a loosely defined concept because it must be a @atk  literature in the complementary layer-by-layer growth re-
logarithmig function of the effective substrat@r the ter- gime rather than the kinetically rough growth regime that
race size for a given materidll5]. In general, “good” MBE  motivated the introduction of these models. We mention in
growth aiming toward producing high quality smooth epitax-this context that some (#£1)-dimensional studies of WV
ial thin flims is carried out at the highest possible growthand DT models in the layer-by-layer growth regime have
temperature(within the constraint that evaporation or de- recently been reported in the literat25,26. Our results,
sorption from the growth front should be negligible so thatwhere applicable, agree with these earlier wd&, 26|, but
the growth temperature cannot be arbitrarily higlo as to  our focus in this paper is (21)-dimensional growth and the
make atomic mobility at the growth front to be very high effect of long surface diffusion length in ¢11)-dimensional
leading to large “surface diffusion lengtH” Herel is taken  growth, neither one of which has earlier been studied.
to be the linear size over which the surface is smooth due to In limited mobility growth models(the models and
atomic diffusion. Assuming the deposition process to be growth rules used in this paper are described in Sec. Il of the
random Poisson process it is then easy to see that the typicghper—see, for example, Fig),1lin sharp contrast to full
surface roughness over terraces of simeuld only grow as  diffusion MBE growth simulations, the goal is to suppress
V(h)/1, where(h) is the thickness of the grown filitand we ~ crossover and transient effects as much as posibles to
measure all lengths in lattice unitsThus for largel, one efficiently reach the asymptotic kinetic surface roughening
would have to grow a very thick film of thickne$$ before  regime and as such only the most recently deposited atom is
the surface roughness reaches even one monolayer fluctualfowed to diffuse or relax instantaneously to the appropriate
tion. One can, therefore, grow MBE thin films of very high incorporation site following the mobility rules of the specific
smoothness and quality, without worrying at all about themodel. This allows suppression of crossover effects invari-
kinetic surface roughening by properly adjusting the growthably present in the full diffusion simulations arising from
temperaturg¢15] to makel large. many different diffusion rates corresponding to many differ-
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[a] tions with some of the existing results in the literature and

pointing out possible future directions as well.

II. MODELS, THEORY, AND BACKGROUND

The DT[10] and WV[11] models used in our simulations
are shown in Fig. 1. We carry out growth simulations in both
(1+1) dimensions and (21) dimensions(on 100 high
symmetry substrate¢sParticles are dropped, obeying solid
on solid constraint, sequentiallpne by on¢ and randomly
with an average rate ol per second, wher&l=L for d

_ _12 _
FIG. 1. Schematic plots showing the diffusion rules for the DT (1+1) andN=L"for d=(2+1), on a substrate of lateral

and WV models when the diffusion lengthand noise-reduction IN€ar size ofL lattice units. We measure length in lattice
factorm are both 1. units and time in inverse deposition rafiee., in units of

monolayer filling since one average monolayer of deposition
occures every “second’ Each deposited atom is allowed to

ent possibilities for local bonding configurations—the only «gjffyse” instantaneously to its incorporation site following
time scale in the limited mobility growth models being the the mobility rules of the specific model. The diffusion rules
deposition rate, which defines the time unit for the problemin the DT model are that a deposited atom can move only if
From now on we take the time urigometimes referred to as it has no lateral nearest neighbor in the same I&férdoes,
a “second”) as the time to deposit one monolayer on thethen the atom is incorporated at the deposition)siié the
average. Thus the growth time in this paper also definegeposition site has no lateral nearest neighbor then the inci-
(h)—the average thickness of the deposited film measured ident atom may move instantaneously to a neighboring empty
units of monolayers or the lattice constant, which we take tasite (within a lateral diffusion length of, wherel=1 in the
be the unit of length throughoutWith no loss of generality original model and in most existing simulationgrovided
we choose the lattice constant to be the same along the suthe final incorporation site has a higher lateral coordination
strate and the growth directions. number(i.e., one or highgrthan the deposition site. If sev-

The limited mobility growth model$10,11] are by con-  eral neighboring sites satisfy the diffusion rule then the atom
struction strongly dominated by the deposition shot noisewill move randomly to any one of them with equal probabil-
because the goal is to study the scale invariant kinetic surfadgy. The rules for the WV model are superficially similar to
roughening behavior. This is particularly true in the originalthe DT rules: In the WV model all deposited atoasidnot
versions of the growth model where the surface diffusionjust the ones with no lateral bondsan, in principle, move
length is choosen to be unity=1, i.e., the deposited atoms provided they can increase their local lateral bonding and the
are allowed to move only to the nearest neighbor incorporadeposited atom always moves to the site with the maximum
tion sites around the deposition site. The original DT andocal bonding environment. In both models, the deposited
WV models, therefore, did not exhibit, by design, any layer-atom is incorporated at the deposition site if it cannot satisfy
by-layer growth oscillations since the smoothing or the healthe diffusion rules(i.e., no sites with higher coordination
ing distance () was just one lattice unit. In order to manifest available within the diffusion length.
layer-by-layer epitaxy in limited mobility growth models one  Both DT and WV models have been extensively studied
must, therefore, suppress the shot noise associated with tiethe literature(mostly within nearest neighbdr=1, diffu-
incident beam fluctuations. sion rules in the context of their kinetic surface roughening

In this paper, we accomplish the noise suppression by twaniversality classes. Recently, layer-by-layer epitaxy in the
alternative techniques: The “multiple hit” noise-reduction WV [25,26,3Q and the DT[25] model have been investi-
technique[27-31 and the “long surface diffusion length gated in(1+1) dimensions using the multiple hit noise-
(I>1)" noise-reduction techniqu¢2l]. These techniques, reduction technique. The very first simulational observation
described in Sec. Il of the paper, give rise to layer-by-layerof layer-by-layer growth in a limited mobility growth model
growth (as monitored by an oscillatory surface roughnesswas reported in the DT model in Ref21], where it was
i.e., W(t) showing oscillations as a function of growth time studied in B 1 dimensions using a lond % 1) surface dif-
t) in the limited mobility growth models as described in Sec.fusion length, but no details were investigated. We empha-
[l of the paper. size that the usudl=1 limited mobility growth model does

The rest of this paper is organized as follows. In Sec. lInot exhibit any layer-by-layer epitaxy by definition, and
we describe the limited mobility growth models and the manifests kinetic roughening right from the beginning since
noise reduction techniqu® employed by us. We also pro- for =1 the layer-by-layer epitaxy regime is restricted to less
vide some theoretical background for our analysis of thehan one monolayer coverage, i.e., in the standard limited
simulation results. In Sec. lll we present and describe oumobility growth modelg10-12 the layer-by-layer epitaxy
numerical simulation results for layer-by-layer epitaxial regime does not exist.
growth in DT and WV models. We also discuss in Sec. Il To obtain a layer-by-layer growth regime in the DT and
various (approximatg scaling properties of our simulated the WV model we use two distinct techniques to suppress
layer-by-layer epitaxial growth results. We conclude in Secnoise and enhance diffusion, which enable our growth simu-
IV with a general discussion of our results making conneciations to manifest strong layer-by-layer growth oscillations

WYV model
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before crossing over to the kinetic surface roughening reexponentss andu. Note thatt, depends om/L (rather than
gime with pure multilayer growth. One technique, referred tojust I) on dimensional grounds—in fact, the layer-by-layer
as the noise-reduction technique, has also been used by otlirpowth mode is purely a finite size transient phenomenon;
ers [25—-3Q to produce layer-by-layer growth in various dynamical growth is, by definition, kinetically roudgB2] in
models, e.g., Eden modg28], single step mode€29], and  either the infinite size l(—<) or the infinite time {— «)

the WV and the DT model in (£ 1) dimension$25,26,30Q.  limit.

We have earlier used this techniqi84] to suppress correc- It is in fact fairly straightforward to obtain a relationship
tions to scaling in the asymptotic kinetically rough surfacebetween the noise-reduction parameteand the surface dif-
growth regime in the DT and the WV model in order to fusion length parametdr/L using only dimensional argu-
accurately determine the dynamic scaling exponents and theents. In particular, we note that forcd-dimensional sub-
associated growth universality class. In the noise-reductiostrate [d’=2 for real surfaces andd’=1 for the
technique, characterized by an integer numbefthe usual  (1+1)-dimensional growthone obtains a simple relation-
growth model without any noise reduction is an=1  ship betweenu and § by noting that a surface diffusion
mode), a counter is put on each surface site and each diSgngih| corresponds tan~19" since there aré®" available
crete deposition event on a site advances the counter Ryies for a particular deposited particle to incorporate at. This
unity. A deposition event at a particular site is accepted onlymmediately leads to
when the counter reaches a predetermined numierl.

Thus, this technique is the multiple hit noise-reduction tech-

nique sincem(>1) deposition hits on a site are needed for a
true deposition. Aftem hits on a site(i.e., after the accep- " . ) )
tance of a deposition everthe counter at that particular site Vithin the limited accuracy of our growth simulatiofsee,

is set back to zero, and the whole multiple hit process beginS€¢: !l for the results we find the scaling relation defined
all over again. The multiple hit noise reduction technique is &Y Ed-(2) to be valid. We note that later in this paper, where
coarse-graining procedure which suppresses the depositi compare our simulation results Wlth.eX|s.t|ng theories
shot noise, and the noise reduction is enhanced for largaps:34: it is the dependence of the damping tieon the
values ofm. The second technique applied by us for obtain-diffusion lengthl that would be compared, the relationship

ing layer-by-layer growth oscillations in limited mobility Petween the noise-reduction parameterand t. (i.e., the
growth models is to use long surface diffusion lengths ( €POnentu) would then follow using Eqsil) and (2). _
>1) in the growth simulations. Obviously long diffusion One secondary thec_JretlcaI goal of our work is to investi-
lengths enhance the layer-by-layer growth regime, and iigate the extent to which Iayer-by-layer grov_vth oscillations
particular, forl >L i.e., the surface diffusion length exceed- ©P€Y scaling with respect to growth tinier equivalently, the

; ; ; film thickne$sUsing Eq.(1) as the theoretical an-
ing the system size, the layer-by-layer growth may persisfV€29€ ,
essentially indefinitely since each deposited atom may al$atZ One can ask whether the surface roughviésiefined as

ways be able to seek out a desired epitaxial site for incorpot’® €nsemble averagédver many growth simulationsoot

ration. In some sense the multiple hit noise-reduction param?1€an square fluctuation in the interface height, which is os-
eterm is equivalent to the dimensionless diffusion length cillatory (andW<1 implying little roughnessin the layer-

parametet /L because large values of both tend to enhanc®Y-layer growth regime is a general scaling function of the
the layer-by-layer growth regime. In Sec. Ill, where we @Yer-by-layer growth parameten or |/L through a depen-
present our simulation results, we will see the precise naturdence of the form

of this correspondence betwesmand!/L in our two meth-

ods of obtaining layer-by-layer epitaxy in the DT and the W(t)~fn(t/m*) or f(t/(1/L)°). 3
WV model.

The central quantity of interest in layer-by-layer epitaxial |f a scaling form such as E@3) holds in the layer-by-layer
growth is the characteristic timg at which layer-by-layer growth regime, then Eq1) for t, trivially follows from it—
growth dies out, i.e., for the deposited average film thickness, being the value of time where layer-by-layer oscillations
larger thar(t.), measured in lattice units or in monolayers, cease to exist. We could go further in our scaling analyses
there are no discernible layer-by-layer growth oscillations. ltand ask whether the scaling defined by E).continues to
has been found in earlier numerical simulations of layer-byold (perhaps approximatelyvell beyond ¢>t.) the layer-
layer growth in a variety of contexts th&t obeys an ap- by-layer growth regime establishing an approximate scaling
proximate scaling relation with the coarse-graining paramrelationship between the layer-by-layer growth reginte (
eterm (or I/L as the case may peand we are interested in <t.) and the kinetically rough growth regimeé>t.). Our
investigating whether the following scaling relations hold in results presented in Sec. Il indicate that such an approximate

o=pud’. 2

the limited mobility growth models scaling relation does indeed exist between the layer-by-layer
" _ . growth regime and the kinetically rough growth regime.
‘ m for the noise reduction method, 1 Finally, we note that there have been recent attempts
C

[33,34] at developing a theory for layer-by-layer growth os-
cillations starting from continuum growth equations underly-
If such scaling relations do hold in our simulations we areing the coarse-grained long wavelength behavior of MBE
interested in obtaining the relationship, if any, between thegrowth. A simple dimensional argumejg3], later followed

N (1/L)? for the long diffusion length method.
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up [34] by a renormalization group approach, leads to the
following results for MBE growth:

4/3 ford' =1,

=12 ford'=2. @

The exponents defined by E@) correspond to the so-called
[1-6] conserved fourth order nonlinear growth equation or
the nonlinear MBE growth equatiofwhich is sometimes
also referred to as the conserved KPZ equation with noncon-
served noise or the Lai-Das Sarma-Villif8] (LDV) equa-
tion] which is given by

dh
—o = vV oV (Vh)2+ g, ©)

where h(x,t) is the dynamical height fluctuation variable
relative to the average interfagd) at the substrate site
(with x is the lateral substrate coordingt®& =4g/dx is the
gradient operator along the surfaegjs the deposition shot
noise(which causes the kinetic surface roughenjragnd v,

N\, are coefficients which in general depend on surface dif-
fusion rate, deposition rate, etc. Since the continuum descrip-
tion of the DT and the WV model are actually quite complex
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(a)

100.0

1000.0

10.0F

[23,31,35-38 and are likely to be different in different di-

mensiong[38], it is by no means clear that the exponents

[given in Eq.(4)] corresponding to Ed5) apply without any
qualifications to the DT and the WV mod@s will be dis-

10%
(b) t/ /L)
FIG. 2. (8 W—t oscillations for (%+1)-DT (L=1000) with

cussed in Sec. lll, where we present our numerical simulam=1 andl=10, 20, 30, 40, 5Qtop to botton); (b) scaling plot of

tions). We, therefore, also provide below the exponerfor
the linear second order Edwards-Wilkins¢BW) growth
equation[39] which applies to the limited mobility Family
(FM) growth model[40] and may also have significant rel-
evance to the DT and the WV modd1,38,41:

2 for d'=1,

K=o for d'=2. ©

systems in(a) using §=1.5. The interface width is measured in
units of monolayers or lattice spacing and time is measured in units
of number of deposited monolayslis., average height of the sur-
face.

reduction parametan or the surface diffusion lengthwith
the layer-by-layer oscillations manifestly obvious for larger
values ofm andl. (The original DT and WV models corre-
spond to the simulation witm=1 andl=1, which has no

The EW equation, whose layer-by-layer growth exponent idayer-by-layer oscillations by constructiorin panel (b) of

(1+1) and (2+1) dimensions is given in Eq6), is the
following:

h_ V2h 7
2 + 7. (7)

each figure we demonstrate our best computed scaling col-
lapse of theW—t plots [shown in panel(a)] for various
values ofm or | with a suitable scaling of timeto t/m* or
t/(1/L)? as the case may be. For each scaling collapgb)in

we try various different values of the exponemtor § ro
obtain the best statistical scaling in the simulated data. The

We note here that both sets of exponent values given by Eqsystem size used in each simulation is indicated in the cor-
(4) and(6) will be relevant in our discussion of our simula- responding figures and the captions. Here we should empha-

tion results to be presented in the following section.

Ill. RESULTS AND DISCUSSIONS
We now present our (1) (i.e.,d’=1) and (2+1) (i.e.,

size that the results shown in this paper represent only a
typical fraction of our extensive DT and WV layer-by-layer
growth simulations. The representative results presented here
are of course in complete agreement with the full set of our
simulation data, and our conclusion is based on a very large

d’'=2) dimensional layer-by-layer growth simulation results set of simulation results and not just on the results presented

for the discrete limited mobility DT and WV models in Figs.

2-6. In Figs. 2—4 we present {11)-dimensional simulation
results whereas Figs. 5 and 6 givet{2)-dimensional simu-
lational results for the two growth models. In each figte
be described belopthe panel(a) gives the simulatedV(t)
as a function of growth timefor various values of the noise-

in this paper.

In Fig. 2 we show our (% 1)-dimensional DT layer-by-
layer growth simulation results for finite surface diffusion
lengthl (m=1,1>1) for =10, 20, 30, 40, 50. The layer-by-
layer oscillations are visually obvious in Fig.(@2—the
damping timet. increases front.~ 10 for [ =10 to roughly
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FIG. 3. (&) W—t oscillations for (1+1)-DT (L=1000) withl
=1 andm=1, 5, 8, 10, 15(top to bottom; (b) scaling plot of

FIG. 4. (8 W—t oscillations for (1)-WV (L=1000) with
I=1 andm=1, 5, 8, 10, 15(top to botton); (b) scaling plot of

systems in(a) using u=1.5. The units are as explained in the systems in(a) using u=1.5. The units are as explained in the
caption for Fig. 2. caption for Fig. 2.

t.~50 for I=50. In general, the magnitude of the oscilla- (1+ 1)-dimensional growth is consistent with the fact that
tions decays exponentially with increasing time, and forthe effective growth exponerg (obtained by plotting W
t>t. we can only discern the power law increase Wf against Irt in the simulated resultss almost identical in the
~tP, whereg is the growth exponent in the model. In Fig. two models: From the slope of the log-log plot in Fighp

2(b) we show our scaling collapse of thé(t) data from Fig.
2(a), leading to the exponent valué~1.5. Thus, t

we obtain~0.338 for thed’=1 DT model whereas from
the slope of the log-log plot in Fig.(B) we obtain 8

~(1/L)*®in d’=1 DT model. We note that the scaling col- ~0.339 for thed’ =1 WV model. Thus within the effective

lapse in the kinetically rough growth reginfee., fort>t.)
is not excellent, but it is remarkable that the expon&ttat

time and length scales of our simulations the two models
(DT and WV) have essentially the same effective dynamical

is meaningfully defined only in the layer-by-layer growth universality class, which is consistent with the fact that they
regime continues to provide an approximate reasonable déwave the same effective exponent1.5ind'=1. The fact

scription of the kinetically rough growth regime.

In Fig. 3 we show our (*1)-dimensional DT model
layer-by-layer growth oscillationg=ig. 3(a)] for the multiple
hit noise-reduction techniqué = 1,m>1) for different val-
ues of the noise-reduction factor. In Fig. 3b) we show the
scaling collapse of th&/—t data in Fig. 8a) for variousm
values. The scaling is excellent with an expongnt 1.5.
Thus,t.~m'®in d’=1 DT model.

that the asymptotic universality classes of the DT and WV
models are different even id’=1 dimension[31,38,41
does not seem to affect the effective valueg.ofie obtain in
our simulations.

Before presenting our (21)-dimensional simulation re-
sults in Figs. 5—7 we first discuss the exponent valbesd
wm, all of which have turned out to be approximately 1.5 in
the (1+1)-dimensional DT and WV layer-by-layer epitaxial

In Fig. 4 we depict our noise-reduced layer-by-layersimulations.(We do not show heré>1, m=1 simulation
growth oscillationgFig. 4@)] and the corresponding scaling results for thed’ =1 WV model because they are very simi-
collapse of the data for various valuesnofwith [=1) inthe lar to those shown in Figs. 2—4 with the same exponent
(1+1)-dimensional WV model simulations. Again, the scal- ~1.5.) First we note that the exponent value is very close to
ing exponentu is found to beu=1.5 for the best scaling (but somewhat aboyéhe theoretically “expected” exponent
collapse, indicatingt,~m*® in both DT and WV noise- u=4/3=1.33 predicted in Refq33,34 assuming that the
reduced models id’=1. The finding of the apparent same continuum growth equation for these discrete growth models
exponent valuew=1.5 in both DT and WV models in is that given in Eq(5). We also note that the expected rela-
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FIG. 5. (a) W—t oscillations for (2+1)-DT (L=10x10%) FIG. 6. (a) W—t oscillations for (2+1)-WV (L=100x 100)

with =1 andm=1, 5, 8, 10, 15top to botton); (b) scaling plotof ~ with =1 andm=1, 5, 8, 10, 15top to botton); (b) scaling plot of
systems in(a) using ©=2.5. The units are as explained in the systems in(a) using u=1.5. The units are as explained in the
caption for Fig. 2. caption for Fig. 2.

tionship betweeru and 8, namelyd=ud’ that becomess  Figs. 2 and Bindicate that the finite diffusion length and the
=u in d’=1, is obeyed by our simulation results. We alsomultiple hit noise-reduction techniques are essentially
add that the measured expongnt=1.5 is consistent with equivalent and the (2 1)-dimensional simulations with
other findings in the literaturg25,26,3Q. The cause for our |>1 are particularly cumbersome to carry out. Qlir=2
calculated u (=1.5) to be somewhatby roughly 10%) layer-by-layer epitaxy simulations seem to have produced a
higher than the theoretical valug € 4/3) is not very clear at few surprising results as discussed below.
this stage. We do not, however, believe this discrepancy to be In Fig. 5 we present oud’'=2 layer-by-layer growth
particularly significant because of a number of reasgins: Simulations in the DT model using the noise-reduction tech-
our scaling collapse are in fact not inconsistent with an exnique. The results are depicted in the same manner as in the
ponent of 1.33 although an exponent value of 1.5 is defid’=1 case shown in Fig. 3—in particular, Fig(ab shows
nitely a statistically better fit for our scaling collapsi) itis  the actual layer-by-layer growth oscillations for various val-
quite conceivable that there are some systematic finite sizées ofm whereas Fig. &) shows the scaling collapse. It is
and finite time corrections to scalirfg’hich are known to be  obvious from comparing Figs. 3 and 5 that the layer-by-layer
very important in DT and WV models(iii) finally, at least growth regime is substantially stronger di=2 case com-
in the WV model that is definitely know[B81,38,4] to as- pared with thed’ =1 case, which is consistent with a much
ymptotically belong to the EW universality class, it is pos- larger value of the damping exponept=2.5 (compared
sible that our simulated exponept=1.5 is showing some with 1.5 ind’=1) in Fig. 5b) in thed'=2 system. Our
effects of the asymptotic universality class since the theoretiealculated damping exponept=2.5 for thed’=2 dimen-
cally expected33,34 u for the linear EW equatiofour Eq.  sional DT model is substabtiallfby 25%) higher than the
(7)]is =2 ind'=1 dimensions. corresponding theoretical predictip83,34] of u=2 for the
Our d’=2 dimensional noise-reducednt1l=1) re- LDV equation[Eq. (5)], which is generally thought to be the
sults for the DT, the WV, and the F model are shown in Figs.continuum description for MBE growth. This large discrep-
5-7, respectively. These §21)-dimensional layer-by-layer ancy between our simulated damping exponent@.5) and
growth results(as well as the results shown in Fig) &y the theoretical damping exponent€2) corresponding to
limited mobility models are completely new and do not existEq. (5) in d’=2 dimensions may be a real effect, arising
anywhere in the literature. We carried out our{2) layer-  from the recently discovered fapt2] that the DT model in
by-layer growth simulations using only the noise-reduction(2+1) dimensions has actually a very sm@dut nonzerp
technique since our (t1)-dimensional result§compare EW V2h term in its continuum description in contrast to the
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(1+1)-dimensional DT model, where the EW?h term
strictly vanishedi.e., v,=0 in Eq. (7)] by virtue of a topo-
logical symmetny6] in the DT model. Thus the DT model in
(2+1) dimensions may actually asymptotically belaoftgt
with a very small value of,) to the EW universality class
which according to Eq6) has an infinite value of the damp-
ing exponentu. It is, therefore, possible that the valye
=2.5in Fig. 8b) may be indicative of a small correction in

the (2+ 1)-dimensional DT model arising from the EW term
in the continuum equation. More work is needed to conclu-

PHYSICAL REVIEW E6, 041601 (2002

model shown in Fig. @®) which is clearly not a good scaling
behavior—in fact, beyond the layer-by-layer regitne., for
t>t;) there is essentially no scaling behavior in tbé
=2 WV results. The scaling behavior of the WV modeig.
6) in the (2+1)-dimensional WV model is clearly very dif-
ferent from(and worse thanthe corresponding DT results.
The best damping exponent value fomwe obtain from Fig.
6(b) is u=~1.5, which is the same as the corresponding WV
value ind'=1 as depicted in Fig. 4. We should emphasize
that this estimate g~ 1.5) for the damping exponent in the
(2+1) dimensional WV model should be taken at best as a
crude estimate for an effective exponent since there is no
scaling behavior in the WV data shown in Fig. 6. Given the
very similard’=1 behavior in the DT and WV modelas
shown in Figs. 3 and)4it is very surprising that thel’ =2
behavior in the two model@ncluding the effective damping
exponent valueg.=2.5 and 1.5, respectively, for the DT and
the WV model is so completely different.

What is the explanation for this striking difference in the
d’ =2 layer-by-layer epitaxial growth behavior in the DT
(Fig. 5 and the WV(Fig. 6) model (particularly in view of
their essentially identical behavior o =1 as seen in Figs.
3 and 4? The explanation actually lies in the recently dis-
covered fac{42,43 that, while thed’=1 dimensional WV
model obeys[38,41,43 the continuum growth equations
given in Egs.(5) and (7) with v, and\,,#0 and v, very
small but having a nonvanishing positive value, the=2
dimensional WV growth model isctually unstablein the
sense that the WV morphology in the {2)-dimensional
growth forms a regular mounded structure with the mound
edges having approximately constant slopes. Such an epitax-
ial mounding instability43] in the (2+ 1)-dimensional WV
model becomes particularly manifest under the noise-
reduction technique as discussed in details in RE]. This
unstable mounded morphological growis] in the noise-
reducedd’ =2 WV model leads to the peculiar behavior seen
for late times in Fig. 6, where the epitaxial mounding insta-
bility prevents the usual layer-by-layer growth regime from
behaving in the “usual” manner depicted in Figs. 2—5.
The effective low value of the WV damping exponeant

sively settle this issue. This would also explain why the scal-<1.5 (rather than the “expected” larger valye~2.5 based

ing collapse for the damped oscillations in Figh} particu-
larly for the data in the kinetically rought$t;) growth
regime, is not as good as the

on thed’ =1 dimensional WV resultis interestingly consis-
tent with the earlier finding44] in the literature on the de-

correspondingPendence of the onset tintgg of the Ehrlich-Schwoebel

(1+1)-dimensional results shown in Fig. 3—the asymptotic(ES) instability (which produces a mounding instability simi-

corrections to the LDV equatiofEq. (5)] arising from a
small V2h term (which is present ird’=2 DT simulation
results of Fig. 5.

The noise-reduced’ =2 WV model simulations, shown

lar to that seen42,43 in the noise-reducedl’=2 WV
simulations$ on the diffusion length. In particular, it has been
found [44] that tES~IE§, where |5 is the characteristic
length controlling the strength of the ES instability. If we

in Fig. 6, are even more surprising. The layer-by-layernow interpret our exponent relationship defined by &fjto

growth oscillations in the initial transient tim@p tot~10
or so are apparent in Fig.(8) for finite values ofmalthough

be valid for the ES instabilitfand only the magnitudes of
the exponents enter EQ)], then we conclude that fad’

the oscillations are already weaker than the corresponding 2, uw=|4|/d’=1 fpr |5|=2, wherelgs now replaces the
DT results shown in Fig. 5. This is not expected based on thdiffusion length as the characteristic length. @uE=2 WV

d’' =1 results, where Fig. @T) and Fig. 4WV) are essen-

layer-by-layer growth simulations shown in Fig. 5 are actu-

tially identical within our simulation sizes and times. Even ally consistent with a value of the exponent=1. Further

more surprising is the scaling collapse in tHé=2 WV

work is needed to conclusively establish this speculative
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connection between ouwt’ =2 noise-reduced WV simula-
tions and the ES instability.

Finally, in Fig. 7 we show our (2 1)-dimensional Fam-
ily model (FM) simulations under noise-reduceth® 1, |
=1) conditions. The FM, which by construction is designed
to follow exactly the linear second order Edwards-Wilkinson
equation(Eq. (7)] with v,=X\2,=0 in Eq.(5) andv,#0, has We have presented numerical results for extensive com-
very simple growth rulegnot shown in Fig. I Each ran-  nyter simulations of various noise-reduced limited mobility

domly deposited atom seeks to find the site of local heighpT [10], WV [11], and FM[40] growth models in (3 1)
minina as the incorporation site. The FM is essentia”y th%nd (2-|- 1) dimensions in order to Study the damp|ng of the

has appeared in the literati46]. In general, the parameter
R=D/F in this full diffusion model[46], whereD is the
surface diffusivity and- is the deposition flux, corresponds
qualitatively to our parametetsL or m.

IV. CONCLUSION

discretized version of the EW equatiffag. (7)], and as such
has the EW dynamical exponent8=0 and u=~ in d’

layer-by-layer growth epitxy invariably induced by the shot
noise inherent in the deposition beam fluctuations. We have

=2. The growth exponeng [defines the presaturation ki- used both multiple hit noise-reduction technique and the long

netic roughening ofV as W~t# [1—6]] being zero(i.e.. W

surface diffusion length method to obtain the layer-by-layer

~Int) in the FM, growth is already very smooth because thegrowth in our simulations, and have shown that these two
roughening is only logarithmic in time. In the presence ofdifferent techniques for obtaining layer-by-layer growth are

noise reduction, therefore, the FIWig. 7(a)] shows persis-
tent layer-by-layer growth oscillations id’=2 with only

essentially equivalent. Our simulation results in general ex-
hibit (with two exceptions noted belgwery good scaling

logarithmic damping of the oscillation induced by kinetic connecting the layer-by-layer growth regime with the kineti-

surface roughening. Since the damping exponenh the
noise-reduced’ =2 FM is infinity [Eq. (6)], we cannot ob-

tain any scaling collapse of the layer-by-layer growth simu-

lation data of Fig. 7a) which is obvious in the “scaling plot”
shown in Fig. Th). A very large value of the exponenpi
(=100, for example will of course produce trivial(and

meaninglessdata collapse, but we have checked that no fi

nite reasonably smallup to x=10) value of the damping
exponentu produces scaling in Fig.(d). Thus, ourd’ =2

FM results are consistent with the theoretical prediction

[33,34] of u being infinity in thed’=2 EW equation. We
note that we have also carried alit=1 dimensional noise-
reduced layer-by-layer growth simulatiofrsot presented in

this paper in the FM, obtaining excellent scaling collapse

with the theoretically predicted value @f=2. Our results

for thed'=1 FM layer-by-layer growth are consistent with

those reported in Ref45].

We mention that very recently a numerical simulation of

cally rough growth regime. Our calculated damping expo-
nents agree well with theoretical predictions where appli-
cable. The two exceptions noted above are the
(2+1)-dimensional WV and the FM, where scaling fails for
different reasons. The (R1)-dimensional noise-reduced

WV model is known[43] to manifest unstable growth with

spectacular epitaxial mounding, which inhibits layer-by-layer

growth leading to the failure of scaling collapse. The (2
+1)-dimensional FM on the other hand exhibits very strong
and persistent layer-by-layer growth oscillatiomgth little
kinetic rougheningwhose damping is expected on theoreti-
cal grounds to be extremely weak leading to an infinite value
of the damping exponent, which is equivalent to saying that
there is essentially no scaling since in the presence of noise-
reduction layer-by-layer growth regime lasts forever.
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