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Effect of interaction between chains on their size distribution: Strong magnetic field
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We consider ferrofluid consisting of identical spherical particles with permanent magnetic moment. Under
the assumption that linear chains can appear in the ferrofluid, we estimate the distribution function of a number
of the particles inside the chains. The main new moment of our consideration is that we estimate the influence
of interaction between the chains on the size distribution as well as on the mean number of the particles in the
chain. The analysis is done and simple expressions for an the size distribution function are obtained for
infinitely strong magnetic field in asymptotics of strong magnetic interaction between the particles inside one
chain.
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I. INTRODUCTION One needs to note that mean diameter of ferroparticles in

typical ferrofluids is about 10 nm. Estimates show that mag-

Ferrofluids (magnetic fluids, ferrocolloigsare colloidal  netic interaction between these small particles is too weak to

suspensions of single-domain ferroparticles with permanerirovide any agglomeration phenomena. But real ferrofluids

magnetic moment in a carrier liquid. To prevent agglomeraare always polydisperse and the biggest particles with diam-
tion of the particles under van der Waals forces, they aré&ter a about 15-20 nm take place in these systems. These big

coated by stabilizing surfactant layers. As a result, only magParticles can unite into linear and bulk aggregates. In many

netodipole and steric interactions between the particles afyPical ferrofluids concentration of the big particles is high

significant. Many experiments show that under the dip0|e_enough for formation of various micro- and mesoclusters.
dipole interaction, the particles can agglomerate into lineafReceN X . . .
chainlike aggregatetsee, for example[1] and references with high concentration of the big partlcles_ are carried out
therein. These chains can influence macroscopical, espeS-.UCCESSfu"){Zl]' For these systems probability of the asso-

cially rheoloaical broperties of the svstems verv stronal ciate phenomena are especially high and, therefore, the study
[ 2]y gical, prop y y 9Yof formation of various clusters is especially actual.

M dels of the chainlik in ferrofiuid The aim of this work is theoretical analysis of the influ-
any models of the chainlike structures in ferroflulds oo of the effect of chain-chain interaction on equilibrium
[2—5] ignore effects of interaction between the chains as welkizq gistribution of linear chains in ferrofiuids, placed into an

as between them and free particles. However it is known thahinitely strong magnetic field. We assume that the chains
these interactions can lead to the appearance of bulk droplikge not very long, therefore thermal fluctuations of their
aggregates in magnetic fluifl§—9]. Theories of these bulk shape are small and the interaction between(dong the
transformationg10-13 treat them a as “gas-liquid” phase chain counterparticles is not significant. For maximal sim-
transition in the ensemble of single particles. At the samglification of calculations, we consider monodisperse system,
time numerical experimentsl4—18 demonstrate that for- consisting of big enough particles, capable of forming het-
mation of long chains can take place before and even insteagtogeneous structures. With respect to real polydisperse sys-
of the bulk condensation phenomena. The appearance téms this means that we ignore the influence of small par-
long linear chains before bulk aggregates was observed algiles on the chain structure. Analysis of this influence can be
in magnetorheological fluids—suspensions of paramagnetig next step the in study of internal structures in ferrofluids.
particles with magnetic moment induced by the external field

[19]. Therefore, the chains and interactions between them

play an important, often decisive, role in the formation of ll. FREE ENERGY DENSITY OF THE FERROFLUID

inner structure and phase state in magnetic fluids. Consider a system of identical spherical particles with hy-
Theoretical anaIyS|S of the influence of chain-chain |nter-drodynamica|(with surface |aye$radiusa and permanent
action on their size distribution and the “gaS'quuid” phase magnetic momenm Suspended in a carrier ||qu|d Lgt\ be
transition in ferrofluids without magnetiC field has been don% number of thm_partic'e chains in a unit volume of the
in Refs.[20]. However, these models are based on a mathmagnetic liquid. Free energy of the particles in the unit vol-

ematical technique of theory of long polymer chains withyme can be presented in the following form:
very high number of monomers. In real ferrofluids the chains

with a number of particles comparable with those of

monomers in typical polymer macromolecules are hardl Onv
1
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Heref,, is dimensionless “own” free energy of the chain due deviates from the axis. Therefore in the asymptotics
to interaction of the particles inside it and their interactionthe statistical integral3) can be rewritten as
with magnetic fieldH, v is volume of the particle, which is

. (2&)3
considered here and below as an elementary phase volume. (n—l)f ex az . H do-
The magnitudes,, is the average dimensionless free energy v N :

of the interaction of thex-particle chain with the others, in-

cluding free particles. From a mathematical point of viéy 1 ) nt
is a functional of the distribution functiog, . X ZWJ ex Vr_3(3 co$6—1) |r’drd cosé
The true functiorg,, provides a minimum of under the @
obvious condition (2a)3 sinha\
= (n=21)| 4w
1) v
2 ngy=c=, 2) o

X

8al )
27 | exp y—5(3cod6—1)|r’drdcosd
wherec is a total number of the particles in the unit volume, r
and ¢ is their volume concentration. Our aim is to find the

functiong,,. To do this we need, first of all, to determine the Wherer,=r cosé. Taking into account that the parameter
dimensionless free energiés andG,,. is assumed to be more than unity, we can use the following

asymptotic estimate for the integral over

lIl. THE “OWN” FREE ENERGY OF THE CHAIN
PO oy L PO -
The dimensionless free enerfy can be presented in the r>1ex r3 rar=s3 r>1ex y y

following form:
1 yP(0)
f.=—InZ,, —— RN
n n 3L>Oex;< 1Ts ds
1

n

Zn=(2a)3(“‘1)J exr{(az v

~ —Jmexp(yP(a)(l—s))ds

=1 3 0
n—-1 n @ 1
o [T (v d -
+72 gl 5| i) 3I H ded—J, 3,P(0) exp(yP(9)).
=1 r; r; j=1 v
Substituting this estimate into E@), taking into account
mH o M R that for largey the exponent in Eq5) has a sharp maximum
= Mo T T 47 8% =53 at /=0 and varies .Wlth the an'glé much_ faster than the
preexponent multiplier, we obtain approximately
Herev; is a unit vector aligned along a magnetic moment of sinha\"
ith particle in the chain, anB; is a vector, connecting cen- Zn:(477 Iy, (6)

ters of theith and (+ 1)th particles. The first term in the

square brackets of E@4) is dimensionless energy of inter- 5 1
action between Fhe .the pgmcles and magnetic ﬂé](_jar]d I(y)= _J exp(y(3 co2d—1))d cosd, y>1.

the second one is dimensionless energy of magnetic interac- vJo

tion between the particles inside the chain. The interaction

between only nearest neighbors is taken into account here. It For analytical calculations the following asymptotic esti-
should be noted that this approximation is more precise thgate might be useful:

longer the chain is. The problem now is to calculate the
many-particle integral3). We cannot do it a in general case
and consider a situation when the magnetic field is infinitely
strong. At the same time the appearance of the chains is

expected only when the dimensionless parametef mag-  The same asymptotic estimate has been obtained in[ &ef.

netic interaction of the particles is significantly more than  The accuracy of the estimat@) is illustrated in Fig. 1.

unity. The situation that we consider és> y>1. Even for y close to unity the difference between numerical
_Itiis convenient to mtroduce' the local coordinate systenga|culation of the integral in Eq6) and estimaté?) is rela-

with axis Oz aligned along the field. The exponent under thetjvely small.

integral in Eq.(3) has sharp maximum when all vectors Thus, when a>y>1 we come to the following

andr; have onlyz components. Since the following strong asymptotic relation:

inequality a>y>1 is assumed, the first term in the expo-

nent in Eq.(3) changes faster than the second one when f,=—[an+(n—1)In(J)]. (8)

J~3iy2exp(2y). (7)
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FIG. 1. Numerical calculation of the paramet&rin Eg. (6)
(curve ) and analytical estimat€) (curve 2.

In conclusion of this part we would like to note that ex-
plicit magnitude of the elementary phase volume in Eds.

and (3) does not influence the final physical result. Our X
choice of the this volume as volumeof particle makes all FIG. 2. Cartesian coordinate system, used for calculation of
calculations shorter. energy(12).
IV. THE AVERAGE ENERGY OF INTERCHAIN positions of, say, thé-particle chain(the n-particle one is
INTERACTION assumed to be fixgdaking into account that the chains can-
i o not overlap.
To estimateG,, we present it in the form Let the origin of the Cartesian coordinate system, shown
in Fig. 2, be in the center of the first particle in the first
Gn=Gp'+ Gy, (9 (n-particle chain, andx,y,z be coordinates of the first par-

ticle in the secondk-particle chain. Using the approxima-
where the upper indexe® and st stand for magnetic and tion of the chains as straight rods, we have
steric parts of the energy. For maximal simplification of the

mathematical side of the problem, we now treat the interact- n ok £ 1

ing chains as straight rodlike aggregates. In the other words, y_, = _mZE E f 3 d — dv,
we suppose that the characteristic size of the chain along the =1i=1 (p?+&5)52 (p?+&5)%

field is much more than those in the transversal direction. (12
This idealization is strong, especially for long enough chains,

however, it allows us to reach physically reasonable esti- &i=z+2a(j—i), p2=x2+y2.

mates and qualitatively important results without very cum-

bersome mathematics. De Gennes and Pincus have shown in R8f.that the

First, let us estimate the magnetic p@{' of the inter- ,i0ra1 of type(12) from the potential of the dipole-dipole
chain interaction. Using the widely spread model of pair in-interaction depends on the shape of the volume of integra-
teract!on(wrth respect to magnetic fluids it was successfully 54 The correct choice of this shape, as an infinitely long
used in theory13]), we may write down cylinder with axis aligned along the magnetic field, has been

used in[13]. This form of the volume of integration provides
m _ correct results since the magnetic field inside this “cavern of
9nKTGnl i g”; Wakie (19 integration” coincides with the field outside this “cavern,”
i.e., with the macroscopical magnetic field in the place where
whereW,, is the average magnetic energy of interaction betwo interacting particles are situated.
tween the paralleh- andk-particle chains. This energy is We have to take into account in integrél?) that the
chains cannot interpenetrate. Because of a too complex sur-
face of the chains, the exact form of the excluded volume for
dv. (11)  these chains is too cumbersome. To get reasonable estimates
we present this excluded volume in the same form as for two
spherocylinders with identical radiasand the lengths of the

Herer;; is the distance between théh particle in the cylindrical part equaling @(n—1) and Z(k—1), respec-
n-particle chain and the¢th particle in thek-particle chain, tively. For these two particles the excluded volume is a
& is the difference between thecoordinates of these par- spherocylinder of radius@and the length of the cylindrical
ticles in a coordinate system with the axdz aligned along part is 2a(n+k—2). This approximation for the excluded
the magnetic fieldFig. 2). Integration in Eq(11) is over all  volume can be used when the mean distance between axes of

n k 2
& 1
53 (-2

W= _mzf
r2
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the chains is significantly more thara2that is typical for ~second virial coefficient. The steric pd#' of the free en-

the “gas” and “liquid” states. ergy F in this approximation can be written as
Using this approximation we can rewrite the integral in
ma. (1228 FioskTS 0,Gi=,kTS GioVE, (19
[s 6§ 1 1dv .
v(p2+ gizj)5/2 (2t gigj)g/z whereVyy is excluded volume for the andk particle chains.

As is well known the approximation of second virial coeffi-
) cient for energy of a steric interaction is not sufficient to
& 1 describe the condensation phase transition. The problem is
¢ how to generalize the equati¢h6) for the concentrated sys-
tems. This is one of the unsolved problems in the theory of
dense systems of nonspherical particles, which is especially
+S(n—1+j—i)+S(k—1+i—j)1, (13)  actual for statistical theory of liquid crystals. Simple, but
successful approximations fé¢ts' have been suggested by
Parsons in Ref22] and used in theorig®3,24 of nemati-
clike systems. According the to idea [@2], we may present
the steric free energy in the following form:

=2

Lol |
2a —

u(p2+§2)5/2—(p2+§2)3/2 d

where

) 2a q o §2
S(X :f pYp f’Tﬁ 3 2 2\5/2
, 1 1
0 V(2a)“—p“+2ax (P +§ ) FSIZEkTZ gnGﬁtZEkTE gngkvﬁ)lzl(()p)’ (17)
n nk

1
_(p2+ 52)3/2> dg) : wherel () is a function of the concentratiap only. Thus in
this model all information on the shape of these interacting
The integral over¢ is inner and this is to be calculated particles is contained only in the excluded voluMg. To
first. The integral ovep is outer and to be calculated second. estimate the/;x we model again the chains as spherocylin-
The order of integration is of principle importance here.  ders of radlus a and lengths of the cylindrical partsagn
One can show that the first integral in square brackets of-1) and Za(k—1), respectively. Using classical results of
Eg. (13 is equal to zero. The functioB(x) can be presented the Onsager theorj25], we have

as 5
ex__ _ =
Sx) 1fl V1-y+x g k=6 Ntk 3) (18
X)=5 y
2 3/2
2Jo (1+x%+2xy1-y) Sincel (¢) in the Parsons model does not depend on the
=K(x,5,) —K(%,5,), (14) shape of the spherocylindef(se., neither omn nor k), we
can determine this function using known results FSf in a
where dense system of separate hard spheres. For instance, the clas-
sical Carnagan-Starling approximation gives
1|1
K(x,5)= —| = 5%?— 252+ (x*—1)s 12|, 3
FSt:—kTglglU8—. (19)
S;=1+x% ;= (1+x%)2. 2 (1-¢)?
After transformationg12)—(14) we have At the same time for these spherg$=8v. Comparing
Egs.(17), (18) and(19), one can get
G'=2 Wk, 3
K 1->¢
4
- l(e)=—"—""3
3 . (1-¢)
W= —kTy(22)%272, 3, [S(n—1+]-1)
=1j=1 and therefore
+S(k—1+i—j)]. (15 3
1-—2¢
. . . t _ 4 2
Now we turn to estimation of the steric p@f' of the func GS'=6kT o> [ ntk— _)gk_ (20)
tional G. (1-¢)? X 3

If volume concentratione of the particles(therefore,
chaing is small, we can use the well-known method of virial ~ Finally, combining Eqgs(1), (9), (10), (15), (17), and(20),
expansion and restrict ourselves by the approximation of theve obtain
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On 1 gy, vng,
F= kT; gnlng +onfnt EgnEK 9Pk 0.04 !
(21)
3 0.05
tTg¢ 2 ‘ .
® =6 S| ntk=3 —y> (S(h—1+j—1)
- ) 3 =11
n
8

+S(k—1+i—j)) |v. FIG. 3. Volume concentrationng, of the n-particle chains for

y=3.5 ande=0.05(a) and 0.1(b). Solid lines:g, is calculated in
approximation(25); dashed lines: in approximatiorig3) and (25)

of the noninteracting chains.
V. THE SIZE DISTRIBUTION FUNCTION

Let us find now the distribution functiog,. Minimizing v _ 1+2¢expe,) — V1+4gexpe,)
F in Eq. (21), taking into account conditiof2) and Eq.(8), o 2pexpe, )
we get
:1+2<pJ(y)— V1+40Jd(y)

1 263(7) 4
gn:;ex% —f,— Ek: gkq)nk_)\n)
The combination of Eq923) and (24) gives us the size
1 . distribution function in the approximation of the noninteract-
=X exp( — &y —% gkq)nk>v (22 ing chains placed into an infinitely strong field.
Using now the functiorgg, in the right side of Eq(22),
we come to the following approximate expression for the

X=explate,—\), e,=InJ(y), distribution function with account of effects of interchain
interaction
whereJ is the same as in Eq) and (7). Parametei here
is a Lagrange multiplier. Its physical meaning is chemical 1
potential of particles. gln=;XQex —8*—; kP | - (25

To determine\ (or, that is the same, paramer, we are
to substitute Eq(22) into Eq.(2). As a result we come to a

nonlinear equation of integral type fgy,. This equation can with Eq. (2), we come to the transcendent equation Xar

be. solved only by using an iteration procedur_e. To Orgar_]iz%olving this numerically, we find distribution functiagy,

th!s procedure we take into account that, as simple COns'degorresponding to the first step of the iteration procedure. This
ations show, the mean energy of interaction between parﬁrocedure can be continued
Ficles in' different chains is yveaker than the.enekg')Zy O.f Some results of calculations of the functiogg, andgq,,
Interaction beMeen the Ue'ghbor partlcles_ In one phaln. Ir_‘ére shown in Figs. 3 and 4. The physical meaning of the term
deed, the nelghbor_ _partlcles In onée chain are situated 'rz}gnn is volume concentration of the-particle chains in the
p!aces close to positions O.f the maximurm of "?‘bso'“te .magéystem When parametegs and y are not very small, this
nitude of energy of their dipole-dipole interaction. Particles oncen:[ration as a function of demonstrates maxi,mum
from different chains cannot be situated in these occupie hese maxim'a appear also in n’]oc{@@] of the polymerlike '
positions(otherwise they must be considered as belonging tc():hains without field and in a simple modid] where the

one chaif Then, the different chains are in a certain MeaN hains are treated as straight rodlike aggregates. As follows

distance from each other. Thus, interaction between particleﬁ,om comparison of the plots. correspondima. and to
belonging to different chains, really is weaker then the inter- P piots, pondgE, Y1n.

action between contacting particles in the chain. Therefore,
in the first approximation, we may neglect influence of the g,
interaction between chains on the distribution functmn
and rewrite Eq(22) as

Using here Eqs(23) and (24) and substituting Eq(25)

0.02

Jon=XpeXH — £, )=Xgd(») "%, (23)

0.01
where the index 0 means that we neglect any interactions
between the chaingero iteration for determinatiog,,). 0

Substituting Eq.(23) into Eq. (2) after calculations, de-
scribed in detail in Refd.2], we get FIG. 4. The same as in Fig. 3 for=4.5.
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FIG. 5. The mean numbeén) of the particles in the chains vs FIG. 6. The same as in Fig. 5 for=4.5.

volume concentratiorp for y=3.5. Solid line corresponds to ap-

proximation(25) and dashed line to Eqe23) and (24). The fact that the qualitatively similar results were obtained in

. . ) different models for different limit situation&ero and infi-
the interaction between the chains leads to a more Sharrlﬁtely strong magnetic fieldsshows general conformity to

maximum of the volume concentration and decreases thgaral laws with respect to influence of the interaction be-

number of the long chains. o ) _ tween the chains on their characteristic size.
The mean number of the particles in the chdinsluding

single particlegis
VI. CONCLUSION

(ny= ¢ (26) Influence of chain-chain interaction on the size distribu-
” ' tion of these chains in ferrofluids placed into an infinitely
Unz’l On strong magnetic field is studied. We show that for high

enough total volume concentration of the particles and en-
) ) ) o ergy of their magnetic interaction, the function of distribu-
In the model of noninteracting chairjgpproximations  tjon for the chains over the number of the particles inside

(23) and(24) for g,] calculations give them is a nonmonotonic function with maximum correspond-
1-X ing to certainn. The chain-chain interaction increases this

()= () o (27) ~ Maximum and makes the pick more narrow as compared

Xo with the results in the model of the noninteracting chains.

Therefore, the number of free particles as well as the par-
Sticles united into long chains decreases due to the interaction
between the chains. As a result the mean number of the par-
ticles in the chains decreases due to this interaction.

(ny~ 12312 It should be noted that since the functiofrabf free en-

ergy is nonlinear with respect to distribution functigR,

This estimate in logarithmic approximation coincides with 9enerally speaking, this can have several extremifus.
scaling approximation, discussed in REZ0]. In the model  (2) and (22) can have several solutiohsHowever, known
of interacting chaingapproximation(25)] the mean number Mathematical methods do not allow us to investigate analyti-
(n) can be calculated only numerically. cally the nonlinear functlona!F in the genergl case. At the

Calculations of(n) carried out in approximation§27) ~ Same time, when concentratignof particles is low enough,
(noninteracting chainsand Egs.(25) and (26) (interacting and the chgm-cham mtera_cUon is wgaker than |_nteract|on
chaing are shown in Figs. 5 and 6 for two different magni- between neighbor particles in one chiparametee, in Eq.
tudes ofy. The results demonstrate that the interaction be{25) is significantly more thai®go, Py, the iteration pro-
tween the chains decreages as compared with those in the cedure used is justified. For ferrofluids with a high density of
model of the noninteracting chains. It appears because d¥articles, the systeit?) and(22) can be studied only numeri-
decreasing of the total number of the particles united into th&ally. This analysis is worth a separate work.
long chains.

The fact that the interaction between the chains decreases
their mean length was noted also[R0] for the case of zero
magnetic field. Qualitatively this corresponds to observations This work has been supported by grants of the Russian
in numerical experimentsl6] where chains take place only Basic Research Foundation, projects NN 00-02-17731, 01-
in dilute enough systems, whereas in a highly concentrated2-16072, 01-01-00058, grant CRDF, REC-005, and a grant
ensemble of ferroparticles separate linear clusters are abseof. BMBF N RUS 00/196.

When the dipole-dipole interaction between particles i
strong (J>1) Eq.(27) can be transformed to the following
form:
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