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Liquid-liquid and liquid-solid phase separation and flocculation for a charged colloidal dispersion

S. K. Lai and K. L. Wu
Complex Liquids Laboratory, Department of Physics, National Central University, Chung-li 320, Taiwan, Republic of China

~Received 15 April 2002; published 21 October 2002!

We model the intercolloidal interaction by a hard-sphere Yukawa repulsion to which is added the long-range
van der Waals attraction. In comparison with the Derjaguin-Landau-Verwey-Overbeek repulsion, the Yukawa
repulsion explicitly incorporates the spatial correlations between colloids and small ions. As a result, the
repulsive part can be expressed analytically and has a coupling strength depending on the colloidal volume
fraction. By use of this two-body potential of mean force and in conjunction with a second-order thermody-
namic perturbation theory, we construct the colloidal Helmholtz free energy and use it to calculate the ther-
modynamic quantities, pressure and chemical potential, needed in the determination of the liquid-liquid and
liquid-solid phase diagrams. We examine, in an aqueous charged colloidal dispersion, the effects of the Ha-
maker constant and particle size on the conformation of a stable liquid-liquid phase transition calculated with
respect to the liquid-solid coexistence phases. We find that there exists a threshold Hamaker constant or particle
size whose value demarcates the stable liquid-liquid coexistence phases from their metastable counterparts.
Applying the same technique and using the energetic criterion, we extend our calculations to study the floc-
culation phenomenon in aqueous charged colloids. Here, we pay due attention to determining the loci of a
stability curve stipulated for a given temperatureT0 , and obtain the parametric phase diagram of the Hamaker
constant vs the coupling strength or, at given surface potential, the particle size. By imposingT0 to be the
critical temperatureTc , i.e., settingkBT0 (5kBTc) equal to a reasonable potential barrier, we arrive at the
stability curve that marks the irreversible� reversible phase transition. The interesting result is that there
occurs a minimum size for the colloidal particles below~above! which the colloidal dispersion is driven to an
irreversible~reversible! phase transition.

DOI: 10.1103/PhysRevE.66.041403 PACS number~s!: 61.43.Hv, 67.40.Kh, 64.70.Ja, 82.70.Dd
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I. INTRODUCTION

Destabilization of charged colloidal dispersions is
ubiquitous phenomenon. Depending on the physical par
eters of colloids~charge, size, surface potential, etc.! or the
external conditions~temperature, pressure, electrolyte co
centration etc.! a charged colloidal dispersion can be driv
to flocculation either reversibly or irreversibly. To understa
this scenario and the possible mechanisms behind, is a g
challenge to theoreticians as well as experimentalists. Le
recall how a homogeneous charge-stabilized colloidal fl
can be induced to undergo a phase separation. At a mole
level, a charge-stabilized colloidal dispersion consists
macroions which, in a dispersive medium such as water,
capable of releasing counterions that carry opposite char
For such a de-ionized system, the basic interactions betw
colloids and counterions are purely Coulombic and ma
body in nature. Since the charge of any macroion is gener
large ~typically of the order of several thousands of ele
tronic charges!, the counterions feel a strong electrosta
attraction superimposed by the self-repulsion among p
ticles of each of these Coulombic species. The respons
counterions to the charged colloids is in the form of ion
screening and is rather complicated statistical mechanic
This electrostatic complexity is further enhanced if elect
lytes are present. The latter contributes to the screenin
small ions that now comprise the counterions and co-io
Thus, a first-principles theoretical study of the colloidal s
lutions is to develop a means of describing the interaction
this inherently multicomponent system. Such a problem
in fact posed a great challenge to researchers working
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statistical mechanics and in colloidal science. In recent ye
the rapid development of the liquid-state theories in und
standing the structure and thermodynamics of the simple
complex liquids has greatly facilitated an elegant use of
same techniques to charged colloidal liquids. In this conn
tion we would like to draw attention to the works indepe
dently proposed by Beresford-Smith, Chan, and Mitchell@1#,
Belloni @2#, and Khan, Morton, and Ronis@3#. Beginning
with the multicomponent Ornstein-Zernike~OZ! equations,
these authors applied elegant strategies such as the con
tion of the coupled OZ equations@4# or the multistep reduc-
tion of components in the coupled OZ equations@3# to derive
an effective repulsive potential functionf(r ) ~@5#, referred
to as Belloni model below! for macroions subject to the ap
proximation of modeling small ions as pointlike. A salie
feature of these models is that the derivedf(r ) is an analytic
function of the salt concentration as well as the colloid
volume fraction. In the limit of low colloid density,f(r )
reduces to the well-known Derjaguin-Landau-Verwe
Overbeek~DLVO! @6# repulsion that can be calculated on th
basis of the Poisson-Boltzmann equation.

The f(r ) above has been critically assessed in seve
recent applications which include the calculation of t
liquid-glass transition phase boundary for cases in gen
@7–9# and for the realistic case of the polystyrene particles
a water-methanol medium in the presence of electroly
@10#, and the interpretation of the static structure factor fo
micellar solution@11,12#. Also, the same repulsivef(r ) has
been combined with the long-range van der Waals attrac
and applied to study the liquid-liquid phase transition in
aqueous charged colloidal dispersion@5#. In the latter work,
©2002 The American Physical Society03-1
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an attempt was made to locate the stability curve that dif
entiates the liquid-liquid phase separation~assumed to be
driven by the appearance of a second potential minimum
the intercolloidal particle interaction! from the irreversible
coagulation. Comparison of the predicted minimum parti
size deduced from the stability curve with the measured d
for a mixture of polystyrene latices and water@13# shows that
our calculated results are reasonable. Since our prece
work is confined to a first-order perturbation theory, we sh
in this work, extend the calculation to include the secon
order correction. Technically, the present calculation follo
closely the one previously used by Gast, Hall, and Rus
@14# in their studies of the polymer-induced separation. Sim
lar first- and second-order calculations have been repor
respectively, by Victor and Hansen@15#, and Kaldasch,
Laven, and Stein@16# employing the DLVO potential func-
tion.

The format of this work is as follows. In Sec. II we giv
the total two-body colloid-colloid potential to be used in t
numerical work. Expressions for the thermodynamic qua
ties are given up to the second order and they are organ
in a form suitable for numerical computation. To reduce n
merical errors, we have tried to derive exact analytical res
for some integrals. Then, in Sec. III A, we check the ac
racy and reliability of our numerical work against those
others, such as the work of Gast, Hall, and Russel@14# de-
voted to the problem of polymer-induced separation. In
dition, we have compared the present second-order th
with our previous first-order results@5# and with the work of
Kaldasch, Laven, and Stein@16#. Possible reasons for th
disparity in the results obtained are analyzed. In Sec. II
we compare the phase diagrams calculated by the Be
and DLVO models and in Sec. III C we present our care
analysis of the effects of the Hamaker constant and par
size on the conformation of stable liquid-liquid coexisten
phases calculated with respect to their metastable pha
The problem of flocculation phenomenon is the main the
of Sec. III D. Here the investigation is based on examin
the T-h phase diagram, drawing attention to the connect
between the energykBTc (Tc is the critical temperature! and
the potential barrier, and imposing on them the energ
criterion. Finally, in Sec. III E, we give a summary and co
clusion of our work.

II. PERTURBATION THEORY

In this section, we give essential equations needed in
present numerical study of the phase diagrams. Since
mathematics follows closely several recent works@14,15,5#,
the readers are referred to them for technical details.

A. Colloid-colloid potential function

Consider a charged colloidal system comprising mac
ions and small ions~counterions and other co-ions such
electrolytes!. The potential energy for the charged colloi
and small ions in a dispersive medium is electrostatic
origin. As a whole, it is a multicomponent system. Howev
within the mean spherical approximation and treating
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small ions as pointlike, one can ‘‘eliminate’’ the latter an
construct a two-body repulsive colloid-colloid potential
mean force@7# that reads

f~r !5S ~Z0X!2LB exp~2kDr !

r D , r .s0 . ~1!

HereZ0 ands0 are the nominal charge and hard-sphere
ameter of the colloid,kD

2151/(( i 51a i
2)1/2 is the Debye

Hückel screening length in whicha i
254pLBr iZi

2, LB andZi

are the Bjerrum length and the charge of a colloid or a sm
ion ~we denote by subscripti 50 for macroion andi
51,2,... otherwise!, respectively, and the coupling strengthX
is

X5coshS k

2D1UFk2 coshS k

2D2sinhS k

2D G . ~2!

Note that Eq.~2! accounts for the spatial correlations b
tween the macroions and the small ions and it depends
only on k5kDs0 , but also onh5pr0s0

3/6 through U
5(8z/k322n/k) in which z53h/(12h), n5(Gs

12z)/@2(11z)1Gs# and

~Gs
22k2!@2~11z!1Gs#2596h~Z0

2/s0!LB . ~3!

It is readily seen that givenZ0
2/s0 , k andh, Eqs.~2! and~3!

can be solved forX, and in the limit of r0→0, X
→exp(k/2)/(11k/2) which is the linearized DLVO result
This implies that thef(r ) given above is appropriate for th
description of a suspension of charged colloids at any fin
concentration.

The total potential energy of interaction between tw
charged colloidal particles is then

V~r !5f~r !1vvdw~r !, ~4!

where, expressed in reduced distancex5r /s0 ,

vvdw~x!52
AH~x!

12
~5!

is the van der Waals attraction@6# with

H~x!5
1

x221
1

1

x2 12 lnS 12
1

x2D , ~6!

andA is the Hamaker constant. Note that the use off(r ) as
our repulsive potential for the charged colloidal dispersion
physically more realistic than the DLVO counterpart sin
the coupling constantX is h dependent and is appropriate fo
studying phase equilibrium properties such as the liqu
liquid coexistence phases whereh is generally finite.

B. Week-Chandler-Andersen perturbation theory

Following Ref.@5#, we rewrite Eq.~4! in the form

V~x!5LS exp@2k~x21!#

x
2

AH~x!

12L D , ~7!
3-2
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LIQUID-LIQUID AND LIQUID-SOLID PHASE SEPARATION AND . . . PHYSICAL REVIEW E66, 041403 ~2002!
whereL5Z0
2LBX2e2k in the present model. Next, we spl

V(x) into two parts, a repulsivev r and an attractiveva ; the
former constitutes a reference system while the latte
treated as a perturbation. For the charged colloidal dis
sion, the separation is done as follows. In the first place,
note that the structure ofV(x) for an excess salt constantk
@1 changes asymptotically~largex! from a negativeV(x) to
a ~second! minimum V(xm), continues further to a positive
maximum barrierV(xM), and then crosses over to an in
nitely deep~first! minimum. The extremaV(xm) andV(xM)
can be determined by the conditionV8(x)50, which leads to

TL

11xk

x2 e2~x21!k1TAF 2

~x221!x
2

1

x2 2
x

~x221!2GY650,

~8!

whereTL5L/kB and TA5A/kB . The existence of the ex
trema has been an experimental issue and has an imme
consequence. It was observed by Kotera, Furusawa,
Kubo @13# and others@17–19# that a charged colloidal solu
tion would undergo a weak reversible flocculation if, at t
second minimum positionxm , the characteristic depth of th
potential well ranges from a fewkBT to approximately 15
kBT and, in addition, the potential barrierV(xM) at xM must
be high. The second condition is set to prevent the energ
colloids thermally collided and fall into the primary min
mum at which place an irreversible coagulation occurs.
perimental works on polystyrene charged latices in wa
@17,13# indicate an order ofV(xM)'15kBT to be sufficient
for observing less ambiguously the weak reversible floccu
tion. In view of this global structure ofV(x), it is natural to
write

V~x!5v r~x!1va~x!, ~9!

and choose the repulsion

v r~x!5`, x,xM

5V~x!2V~xm!, xM,x,xm

50, x.xm ~10!

as the reference system and treat the attraction

va~x!5V~xm!, x,xm

5V~x!, x.xm ~11!

as a perturbation. Since the charged colloidal particles
characterized by strong Coulomb repulsion, it is reasona
to approximatev r in the rangexM,x,xm in Eq. ~10! by

vs~x!5`, x,S

50, x.S ~12!

and account for the softness ofv r by a fluid of equivalent
hard spheres having a sizes5Ss0 , whereS.1 is a dimen-
sionless constant. This approximation onv r , in turn, will
lead us to rewrite Eq.~11! as
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va~x!50, x,S

5V~xm!, S,x,xm

5V~x!, x.xm . ~13!

Thus, at a given densityr, the volume fractionsh
5ps3r/6 andh05ps0

3r/6 are related byh5S3h0 . Now, it
was shown in Ref.@20# that the reference free energy can
calculated by carrying out a functional Taylor-series exp
sion inD5exp@2bvr(x)#2exp@2bvS(x)#. Keeping to first or-
der in D, S can be determined by

S5xM1E
xM

xm

$12exp@2bv r~x!#%dx. ~14!

We shall use this density-independent Barker-Henderson
ameter in our calculation of the liquid-liquid and liquid-sol
phase diagrams. OnceS is determined, the problem of mod
eling v r by equivalent hard spheres has, so to speak, b
solved since reasonably accurate empirical formulas for
hard-sphere Helmholtz free energyFhs of both the liquid and
the solid are available. The full second-order perturbat
equation for the Helmholtz free energyF is @21,22#

bF/N5bFhs~h!/N112h0E
S

`

dx x2@bva~x!#ghs~x/S;h!

2~6h0 /b!S ]r

]phs~h! D ES

`

dx x2@bva~x!#2

3ghs~x/S;h!. ~15!

Here x5r /s0 is the reduced distance defined abov
ghs(x/S;h) is the hard-sphere pair correlation function ca
culated at the effective h, (1/b)(]r/]phs)5@1/(Zhs
1h]Zhs/]h)# is the macroscopic compressibility in whic
Zhs is the hard-sphere equation of state that reads differe
for a liquid and a solid. It should be mentioned that t
repulsive condition given by Eq.~12! is reflected in the ef-
fective h for Fhs, ghs(x/S;h), and (]r/]phs). From Eq.
~15!, we can calculate the chemical potentialm, and then the
pressurep as

bm5
]

]r S brF

N D , ~16!

bp5brm2S brF

N D . ~17!

These equations are numerically convenient for computa
once the Helmholtz free energiesFhs andghs are known.

C. Hard-sphere reference system

It is clear from Eq.~15! that we require the compressibi
ity factor Zhs ~and hence theFhs) and the pair-correlation
functionghs for an evaluation of the colloidal Helmholtz fre
3-3
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energy. These quantities are available in literature. For
liquid, we employ the Carnahan-Starling@23# empirical
equation of stateZhs

Zhs ~ liquid!5
bphs

r
5

11h1h22h3

~12h!3 , ~18!

which can be integrated giving

S bFhs

N D ~ liquid!5
h~423h!

2~12h!2 1 ln h21. ~19!

The last two terms in Eq.~19! constitute the ideal gas par
For the pair-correlation function, we use the Verlet-Weis@24#
versionghs since its quality has been examined to be qu
accurate for most purposes. Turning to the solid phaseghs,
we minimize numerical errors by using the analytical form
las of Kincaid and Weis@25# and Choi, Ree, and Ree@26#.
The explicit equations forghs have been well documented i
these works and others@27,14,28#. We refer the interested
readers to them for more details. As for the solidZhs, we
need an accurate equation appropriate for the high-den
limit. Such Zhs has been proposed by Hall@29# on the basis
of his fitting to Monte Carlo simulation data. In terms of th
high-density small parameterg54(12h/hcp) where rcp

5(6hcp/ps0
3) is the close-packing density, the solidZhs

reads@29#

Zhs ~solid!5(
i 50

6

aig
i1@~1223g!#/g, ~20!

wherea052.557 696,a150.125 307 7,a250.176 239 3,a3
521.053 308, a452.818 621, a5522.921 934, anda6
51.118 413. In a later paper, Weis@30# in consultation with
the work of Hall @29# proposed an expression for the har
sphere Helmholtz free energy within the Lennard-Jon
Devonshire cell theory. We cast it below in an analytic fo
convenient for numerical work:

S bFhs

N D ~solid!52s01 ln hcp23 lnS 2g

3~42g! D
1F ~a023!1(

i 51

6

ai4
i G ~ ln~42g!/4!

1F(
i 51

6

ai4
i 21Gg1F(

i 52

6

ai4
i 22G g2

2

1F(
i 53

6

ai4
i 23G g3

3
1F(

i 54

6

ai4
i 24G g4

4

1F(
i 55

6

ai4
i 25G g5

5
1a6

g6

6
, ~21!

where s0520.2460.04 is a numerical constant deduc
from simulation data@31#. We are now ready to apply th
above equations to the study of liquid-liquid and liquid-so
phase diagrams.
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III. NUMERICAL PROCEDURE

A. Input data

To apply the perturbation theory, we need first to set
physical range of density separately for the liquid and for
solid. For the liquid, the density falls in the range 0,rs3

&0.9492, the upper limit being the maximum density f
which a liquid is stable, whereas for the solid the dens
spans 1.0504&rs3&rcps

35&, with the maximum density
describing a stable face-centered-cubic solid phase. Now
use of the Belloni model requires an input of the nomin
chargeZ0 @see Eq.~1!# in addition to prescribing values fo
the parameterss0 , k, andA. Considering the fact that it is
mostly the surface potentialc of a charged particle that is
experimentally available, we have therefore employed
approximate formulaZ05pc«0es0(21k) @6~a!# for the
evaluation ofZ0 . Given c, Z0 is hence a function ofk and
s0 . The c is thus an input in our calculation of phase di
grams. In all of our numerical studies below, in order
ensure the consistency of the constructedV(r ), and to permit
a direct comparison with experiments, we have maintain
charged colloids at temperatureT*293 K in water (e
578.5), stipulatedc&25 mV, and confined the Hamake
constantA to fall in the range 10221&A&10219 J ~or 70
&TA&7500 K). TheseA values lie in the experimentally
accessible regime@32#.

Having specified the input parameters, we turn next t
critical assessment on our numerical works. In this rega
we test our programs by applying Eqs.~15!–~17! to calculate
the liquid-solid coexistence curves for the case of a nonaq
ous colloidal suspension that Gast, Hall, and Russel@14#
have previously shown to undergo a polymer-induced se
ration. Their results can be reproduced reasonably well w
our programs. Also, we have checked the convergence o
second-order Week-Chandler-Andersen~WCA! perturbation
theory by comparing the contribution of the third term in E
~15! with the first two terms. In all of the cases studied he
the former is less than 5% of the latter. Such relative co
parison of the various contributions to ensure the conv
gence of the low-order perturbation theory has been e
ployed also by Gast, Hall, and Russel@14#, and by Rao and
Ruckenstein@28#. We should perhaps point out further th
there are a number of technical details in the present hig
order calculation differing from those of our previous firs
order studies. One major difference is that we made no
tempt as in Refs.@15,5# in obtaining a full analytic free
energy since the present work intends to include calculati
of the liquid-solid phase diagrams. The significantly largek
assumption used to obtain analytic formulas for a numbe
integrals in Refs.@15,5# has been basically abandoned.
most of our numerical calculations, we have carried out f
numerical computation. Thus, for those integrals~for ex-
ample, in the appendix of Victor and Hansen@15#! in which
the pair-correlation function appears, we have not appro
mated them by functions with approximate forms@such as
g(x/S)→g(x)] or its contact value,gh(1). Extreme care has
been taken in their evaluation. We have avoided the ma
ematical simplification arising fromk, as indicated in Sec
II C, and have applied in this work the more accurate Verl
3-4
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LIQUID-LIQUID AND LIQUID-SOLID PHASE SEPARATION AND . . . PHYSICAL REVIEW E66, 041403 ~2002!
Weisg(r ) in place of the Percus-Yevick version. This shou
result in significant improvement in the spatial correlati
and hence in differences of the results. Considering all th
remarks, it is not surprising that the present second-o
theory differs substantially from that of our previous wo
@5#. Our calculation is, however, of quite similar order
magnitude as the recent DLVO calculation by Kaldas
Laven, and Stein@16# using the same methodology. The r
liability of our numerical results is thus established. In t
following, we give details of our numerical computation a
plied to the Belloni and DLVO models.

B. Liquid-liquid and liquid-solid phase diagrams:
Effects of TA

Since the stability of the liquid-liquid coexistence curv
is intimately connected with the whereabout structure of
liquid-solid curves, it would be instructive to present the
curves together. We display in Figs. 1~a!–1~d! the k vs h
curves calculated in the Belloni model ats053000 Å and
c525 mV for the parametersTA52500, 4000, 5000, and
6000 K, respectively. In other words, we vary the attract
parameterTA to reflect the increasing or decreasing stren
of V(r m) with TA and, for the sames0 , determine the liquid-
liquid and liquid-solid coexistence curves. Note that in th
case, since

TL5~Z0
2X2LB /kB!exp@2k#, ~22!

the repulsive part of the charged colloidal interaction d

FIG. 1. Reduced ionic concentrationk vs effective volume frac-
tion h in both the Belloni~full curve! and DLVO ~dashed curve!
models calculated for colloids withs053000 Å at various Ha-
maker constantsA.
04140
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pends onh through the functionX, i.e., TL is an explicit
function of h. Operating at the same surface potentialc
525 mV, the numerical procedure is repeated ats0
56000 Å andTA is changed until a stable liquid-liquid co
existence curve emerges. In Figs. 2~a!–2~d! we depict for the
sames056000 Å the calculated results forTA52000, 4000,
5000, and 7000 K, respectively. In comparison, we carr
out the same calculations for the DLVO model and they
displayed in the corresponding Figs. 1~a!–1~d! and 2~a!–
2~d!. These figures illustrate a basic difference in the t
models that deserves emphasis. It is seen that the liq
liquid coexistence phases, stable or metastable, predicte
the Belloni model generally fall into the lowerk region,
although the positions of the critical valueshc in the two
models do not differ very much. To understand this tre
physically, we recall from our discussion of the intercolloid
potential that the Belloni model hasTL explicitly dependent
on h, whereas, in the DLVO theory for whichh→0, TL is
independent ofh. As a result of these dependences the s
tial correlation of charged colloids in the Belloni model di
fers substantiately from that in the DLVO model. The re
sonableness and the quantitativeness of these two mode
correctly describing the structural properties of a char
stabilized dispersion have been discussed at length in
literature@33#. Here we draw attention to the realistic calc
lations of the static liquid structure factors reported pre
ously by Belloni@2#, subsequently by Sheu, Wu, and Ch
@12#, and more recently by us@7,9#. All these studies have
pointed to the fact that the DLVO model is generally mo
repulsive~see also Fig. 4 in Ref.@7#!. A higher value ofk is
therefore not unexpected in the DLVO model in order

FIG. 2. Same as Fig. 1 but fors056000 Å.
3-5
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S. K. LAI AND K. L. WU PHYSICAL REVIEW E 66, 041403 ~2002!
simulate sufficient attraction for the van der Waalsvvdw(r ) to
be realized. This is in contrast to the Belloni model where
theoretical consideration of correlations between~pointlike!
small ions and colloids has resulted in the finiteh depen-
dence ofTL . For k@1, such a correlation effect that burie
the interactions between small ions and macroions~via X and
henceTL) will lead to a reduction in strength with increasin
h. Thus, it is not unreasonable that lesser electrolytes
drive a liquid-liquid phase transition in the Belloni model.
should be stressed that asTA increases both models approa
their respective threshold minimumTA

th below which no
stable liquid-liquid phase separation is seen. To gain furt
insight into the basic difference between these two model
is perhaps worthwhile comparing the two thresholdV(r )’s.
For this purpose we show in Figs. 3~a! and 3~b! the V(r )’s
calculated at the thresholdTA

th corresponding tos053000
and 6000 Å, respectively. As the figures reveal, their sec
minimaV(r m) are essentially the same but the barrierV(r M)
of the Belloni model is comparatively lower. TheseV(r M)
values contain important pieces of information on theh de-
pendence ofTL .

C. Liquid-liquid and liquid-solid phase diagrams:
Effects of s0

In view of the fact that the Belloni model is physical
more realistic, we shall from hereon apply this model
study the colloidal phase separation; the corresponding
sults for the DLVO model are readily deduced from t
phase diagrams calculated in Sec. III B. We again sec

FIG. 3. Comparison of the colloid-colloid potential functions~in
units of kBT! vs x5r .s0 calculated at the thresholdTA

th ~see text!
between the Belloni~full curve! and the DLVO ~dashed curve!
models for~a! s053000 Å and~b! s056000 Å.
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525 mV and consider the aqueous charged colloids for v
ous fixedTA . Given these parametric values, the effect of t
coupling strengthTL in the conformation of a stable liquid
liquid phase separation can equivalently be examined
varying s0 @see Eq.~22! above#. Figures 4~a!–4~d! and
5~a!–5~d! show thek vs h curves forTA54650 and 5800 K,
respectively. Note that the protrudent structures of thestable
liquid-liquid phases are here calculated relative to the liqu
solid coexistence curves which are included in the same
ures. We note two general features. First, the criticalkc of
k-h plots decreases with decreasings0 as does the critica
hc albeit its change is less conspicuous. Second, there e
a thresholds0

th below ~above! which the colloidal system
sustains a stable~metastable! low-density liquid coexisting
with a stable~metastable! high-density liquid. Both features
imply that for a fixedTA a decrease ins0 has the conse-
quence of enhancing attraction among the charged collo
To dwell further into the role ofTL or s0 , a further remark
is in order. Although we can identify a stable liquid-liqui
phase separation with respect to the liquid-solid counterp
one should be cautious as to the possibility of the colloi
system being kinetically driven to become unstable@6~b!#.
We believe that this may be the situation for thes0
52000 Å system atTA54650 K where it has a potentia
barrier V(r M).3.5kBT and a potential second minimum
V(r m).21.5kBT which is comparable in magnitude with a
other systems having a largers0 .

To recapitulate, we portray in Fig. 6 theTA
th vs s0

th bound-
ary defining threshold values separating the stable liqu
liquid from the metastable liquid-liquid; the indicated r

FIG. 4. Reduced ionic concentrationk vs effective volume frac-
tion h in the Belloni model calculated for various sizes atTA

54650 K.
3-6
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LIQUID-LIQUID AND LIQUID-SOLID PHASE SEPARATION AND . . . PHYSICAL REVIEW E66, 041403 ~2002!
gions of the stable and metastable liquid-liquid coexiste
phases are calculated with respect to the liquid-solid pha

D. Reversible flocculation vs irreversible coagulation

We now turn to a discussion of the colloidal stabilit
There are two key factors that generally determine the
glomeration state of charged colloids. The first factor
based on theenergy criterionthat is intimately connected
with the potential barrierV(xM). For this factor, the revers
ible flocculation or the irreversible coagulation in a charg

FIG. 5. Same as Fig. 4 but forTA55800 K.

FIG. 6. Loci of the threshold points@TA
th ~K! , s0

th ~Å!# separat-
ing the metastable liquid-liquid region from the stable counterpa
04140
e
s.

g-
s
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colloidal dispersion depends, in the former, on the prese
of a second minimum and, in the latter, on the possibility
charged colloids thermally collided and trapped into the fi
deep minimum. The situation is best realized by focusing
the thermal energy of colloidal particles in theT-h phase
diagram and stipulating certain energy criterion@such as
checking the thermal energy of collided particles for t
kBTc whether it is greater or smaller thanV(xM)]. The sec-
ond factor is based on thekinetic criterion where one is
concerned with the rate of coagulation whose magnitude
be estimated from knowledge ofV(x) @6~c!#. The two factors
are, however, closely related since both criteria depend
V(x). In the following analysis, we study the onset of flo
culation phenomenon by applying the energetic criterion.

Let us begin with Eq.~8! obtained fromV8(x)50. If xM
is the solution that yieldsV(xM) for given valuesTL and
TA , Eq. ~7!

V~xM !5LS exp@2k~xM21!#

xM
2

TAH~xM !

12TL
D . ~23!

implies the existence of a maximum reduced small ions c
centration,kmax, for a reasonable prescription onV(xM).
The reason is that with the addition of electrolytes the C
lomb repulsion between charged colloids decreases withk.
Thus, one can imagine starting from a charge-stabilized
loidal dispersion, gradually increasing the salt concentrat
@whereV(xM) is seen to reduce#, and progressively adding in
more salt resulting ink approaching but less thankmax. If a
second minimumV(xm) appears, the reversible phase sep
ration is expected. However, the system will be driven
crossover into an irreversible coagulation in an excess
condition for k.kmax. Accordingly, whenk attains kmax
value, theV(x) will approach an optimizedVop(xM) below
which ~when k.kmax) the irreversible coagulation sets in
The introduction of such aVop(xM) ~and the accompanied
kmax) can thus be used to demarcate the revers
flocculation
 irreversible coagulation, although rigorous
speaking there is still an arbitrariness in choosingVop(xM).
In this work, we have chosenVop(xM)515kBT0 based on
some recent experiments@13,19#. The T0 is at this point a
temperature whose value we shall define below. Making
propriate substitution forVop(xM) on the left-hand side of
Eq. ~23!, we obtain

S exp@2k~xM21!#

xM
2

TAH~xM !

12TL
D515T0 /TL . ~24!

To proceed further, we should make an important rema
Since our interest is to study the reversible and irrevers
phenomena within the context of energetic criterion, it
natural to work on theT-h phase diagram. Keeping as abo
c525 mV and given input valuesTL , TA , andk, the deter-
mination of the critical points (Tc ,hc) requires solving the
equations (r0xTkBT)2150 and ]@(r0xTkBT)21#/]h050,
wherexT is the isothermal compressibility. There is, how
ever, no guarantee that the predictedTc should satisfy~i!
Tc>273 K and~ii ! kBTc<V(xM). Condition~i! ensures the
predictedTc be physically realistic since it always lies abovs.
3-7
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S. K. LAI AND K. L. WU PHYSICAL REVIEW E 66, 041403 ~2002!
the freezing point of water, and condition~ii ! is meant toob-
struct the thermally collided colloidal particles energetica
driven into the deep primary minimum and thus prevent
irreversible coagulation. In view of this, we fixT05Tc , and
for given TA and s0 , find kmax and hence the criticalhc .
Recalling from Eq.~22! TL}X2 in which X depends onh,
s0 , andk, the boundary for the parametric phase diagra
TL-TA , as well ass0-TA can then be obtained. It should b
stressed that in the Belloni model becauseTL depends ex-
plicitly on h, the whole numerical work has to be done se
consistently~see Ref.@5# for details!. We display, respec
tively, in Figs. 7 and 8 the plotsTL vs TA ands0 vs TA for
T05Tc5273, 293, 303, and 450 K. There are two interest
features that deserve emphasis. First, there exists a minim
TL

min or s0
min for each of the stability curves and theTL

min or
s0

min increases with increasingT05Tc . Second, a monodis
perse charged colloidal dispersion can undergo irrevers
coagulation
reversible flocculation phase transition in
dispersive medium either with a smallerTA and at a higher
hc or with a largerTA and at a lowerhc . The first feature

FIG. 7. Plot of the stability curve for the coupling strengthTL

vs Hamaker constant temperatureTA ~K! at T05Tc5273 ~bottom!,
293, 303, and 450~top! K.

FIG. 8. Plot of the stability curve for thes0 ~Å! vs TA ~K!
~Hamaker constant temperature! at T05Tc5273 ~bottom!, 293,
303, and 450~top! K.
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means that a liquid-liquid phase transition can be obser
only for an aqueous solution of colloidal particles withs0

>s0
min given that each particle is maintained atc525 mV.

Quite generally, if we begin withc,25 mV, constrains0

>s0
min , and keep a sameTL , one would anticipate the re

versible flocculation
 irreversible coagulation to happen fo
a larger sizes0 , a prediction readily deducible by resortin
to Eq. ~22!. In Fig. 9 we detail the connection ofs0 andc
for one suchTL . The stability curves given in Figs. 7 and
are therefore boundaries demarcating charged colloidal
persions in the liquid-liquid phase transitions from those
the irreversible coagulation. Each of the stability curves c
responds toT05Tc(kmax) and can be used to study the vari
tion of the critical points (Tc ,hc) with k,kmax. As an illus-
tration, we have plotted in Fig. 10 the change of (Tc ,hc)
with k for a given (s0 ,TA) point. Note thatk is bounded
below by akmin which is the valueTc(kmin)5273 K. The

FIG. 9. Variation of s0 ~Å! vs c ~mV! calculated atTL

532 775 K, TA51000 K, andTc5293 K.

FIG. 10. The critical temperatureTc ~K! ~left ordinates, solid
circles! and hc ~right ordinates, solid squares! vs reduced ionic
concentrationk calculated for the rangekmin5178.08<k<kmax

5201.9 at (s0 ,TA)5(3300 Å, 1000 K) with respect to the stabilit
curve T05Tc5315.5 K. Thekmin is the minimum reduced ionic
concentration such thatTc(kmin)5273 K is the freezing point of
water. Note that forkmin,k,kmax andTc(k).T0 a lower density
liquid coexists with a higher density liquid.
3-8
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LIQUID-LIQUID AND LIQUID-SOLID PHASE SEPARATION AND . . . PHYSICAL REVIEW E66, 041403 ~2002!
decrease inTc(k) with k is seen to arise from the increasin
role played by the Coulomb repulsion between colloids t
considerably masks the strength of the van der Waals at
tion. Coming to the second feature, the point to be note
that this scenario for the aqueous monodisperse charged
loids only occurs in a restricted region ofTA . Figure 8
shows further that the restricted region increases with
creasingT0 .

E. Comparison with other works and discussion

Several early and recent experiments@17,34–38,13# have
been reported for understanding the stability of charged
loids. These experimental works on the coagulation of c
loids cover a wide range of dispersions such as polystyr
latex particles, paraffin wax particles, iron~III ! hydroxide
particles, globules, etc. and were carried out to check
quantitativeness of the DLVO theory in explaining the c
loidal state of flocculation. Many of these experiments,
one way or another, have invoked the second potential m
mum as a mechanism of flocculation. Strategically, in co
paring experiments and theories, the colloidal parameterA,
s0 , and k are taken as controlled parameters and th
changes are followed and analyzed in the light of the rate
coagulation. The kinetic criterion in conjunction with th
DLVO model has often been used for this purpose. Of p
ticular relevance to the present work is the experiment
ported by Kotera, Furusawa, and Kubo@13#. These authors
studied reversible flocculation of charged spherical partic
in water. The experimental conditions for the colloidal d
persion closely mimic the present study. In their collo
chemical studies for a series of ‘‘soap-free’’ polystyrene la
particles, Kotera, Furusawa, and Kubo applied both the
tical method and the microscopy to investigate the role
V(r m) on the colloidal stability. By monitorings0 and c,
they determined the critical flocculation concentration
KCl using the transmission coefficient of light as well
microscopy. Anomaly in the change of the critical floccu
tion concentration was observed—the latter does not incre
with increasings0 . Upon further analysis, these autho
conjectured that the reversible flocculation
 irreversible co-
agulation occurs ats0.7000– 8000 Å. We have previousl
made a comparison betweens0 predicted in our first-order
thermodynamic perturbation calculation ands0 in this size
range. We founds055152 Å at the Hamaker constant tem
peratureTA5942 K suggested by Kotera, Furusawa, a
Kubo on the basis of his experimental result~see Ref.@5# for
further comments!. Referring to Fig. 8, the present secon
order theory yieldss053046 Å which is considerably lower
We attribute this disparity ins0 value to two possible rea
sons. First, the numerical treatment of various contributi
to the thermodynamic functions is done differently but qua
titatively. These include the exact evaluation ofS in Eq. ~14!,
the use of the analytic Verlet-Weisg(r ) without further ap-
proximation in its argument@appearing in the evaluation o
the integrals given by Eq.~15!#, the derivation of analytica
formulas for the referenceFhs, etc. all of which are calcu-
lated at minimal numerical errors. Second, we judge fr
Fig. 6 that the aqueous charged polystyrene latices disper
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at T5293 K in the experiment of Kotera, Furusawa, a
Kubo appears to have fallen into the metastable liquid-liq
region if the size of particles takes ons0.7000– 8000 Å
and TA5942 K asproposedin their experimental analysis
On the other hand, for the stable liquid-liquid coexistin
phases~defined with respect to the liquid-solid coexistin
phases! to occur, thes0.7000 Å colloidal system at the
same temperature must have a Hamaker constant tem
ture '5640 K or A57.79310220 J. To make clear this
point, one should proceed to study the kinetics of floccu
tion which is an issue we intend to address in our subseq
work. It would certainly be helpful also if more careful me
surement onTA can be performed. Nevertheless, we sho
point out that the colloidal conditions between the pres
work and theirs are not exactly the same~their k is consid-
erably larger than ours and theirc lies in the range 23–29
mV in contrast to the constant 25 mV in our work!. Our
calculatedk vs h phase diagrams are, however, of the sa
order of magnitude as the recent second-order calculatio
Kaldasch, Laven, and Stein@16# using the DLVO model.

F. Summary and conclusion

The interparticle interaction for an aqueous charged c
loidal dispersion was modeled by an effective hard-sph
Yukawa repulsion to which is added the long-range van
Waals attraction. Differing from the widely used DLVO re
pulsion, the coupling coefficient of the present Yukawa fo
depends on the colloidal volume fraction whose origin ari
from an explicit consideration of spatial correlations betwe
colloids and small ions. By use of this two-body colloid
colloid potential function and in conjunction with th
second-order WCA theory, we construct the colloidal Hel
holtz free energy and calculate from it the pressure a
chemical potential needed in the determination of the liqu
liquid and liquid-solid coexistence curves. For an aqueo
charged colloidal dispersion with particles maintaining
surface potentialc&25 mV, we study separately the effec
of the Hamaker constant and particle size on the liquid-liq
phase transition calculated with respect to the liquid-so
coexistence curves. Confining to the phase diagramk vs h, it
is found that there occurs a threshold ‘‘point,’’ the Hamak
constant~in which cases0 is fixed! or the particle size~in
which caseA is fixed!, whose value demarcates the occu
rence of the stable liquid-liquid phase separation from tha
the metastable counterpart. Generally, the Hamaker cons
that simulatesV(xm) is more sensitive for the conformatio
of liquid-liquid phase separation compared with varying p
ticle sizes. Extending the same numerical technique,
study the conglomeration phenomenon by analyzing theT vs
h phase diagram within the energetic criterion. Here, o
goal is to find a stability curve at a given temperatureT0 and
to determine the parametric phase diagram for the coup
strength~or particle size! vs the Hamaker constant given th
surface potential atc525 mV. On this stability curve, we
impose two criteria on the thermal energy of colloids. T
first criterion is to set it equal to the potential barrier and t
second one is to stipulate the critical temperatureTc of
theT-h curve such that it is always at least equal to or abo
3-9
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the freezing temperature of water. The stability curve o
tained thus marks the boundary of an irreversible�
reversible phase transition. An interesting result that o
finds is the appearance of a minimum size below~above!
which the colloidal dispersion is driven to an irreversib
~reversible! phase transition. It would be interesting if mo
experimental works can be carried out to check this pre
tion.
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