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Effective dynamics and steady state of an Ising model submitted to tapping processes

A. Prados* and J. Javier Brey†
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A one-dimensional Ising model with nearest neighbor interactions is applied to study compaction processes
in granular media. An equivalent particle-hole picture is introduced, with the holes being associated to the
domain walls of the Ising model. Trying to mimic the experiments, a series of taps separated by large enough
waiting times, for which the system freely relaxes, is considered. The free relaxation of the system corresponds
to a T50 dynamics which can be analytically solved. There is an extensive number of metastable states,
characterized by all the holes being isolated. In the limit of weak tapping, an effective dynamics connecting the
metastable states is obtained. The steady state of this dynamics is analyzed, and the probability distribution
function is shown to have the canonical form. Then, the stationary state is described by Edwards thermody-
namic granular theory. Spatial correlation functions in the steady state are also studied.
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I. INTRODUCTION

Granular systems have attracted the attention of physic
in recent years. A review of some features of granular ma
can be found in Refs.@1,2#. One of the most outstandin
problems is the phenomenon of compaction, i.e., the incre
of the density of a loosely packed granular system wh
submitted to vibration or, more generally, to some kind
external excitation. Compaction has been extensively a
lyzed in a series of experiments by the Chicago group@3–5#.
Starting from a low-density configuration, near the rand
loose packed state, a system of monodisperse glass b
was vertically tapped. Between taps, a long enough time
considered, so that the system reached a mechanically s
~metastable! configuration before the next tap started. T
density was measured in the metastable states, and its e
tion as a function of the number of taps was studied. T
parameter controlling the dynamics of the system is the
mensionless vibration intensityG5a/g, wherea is the peak
acceleration in the tap, andg is the gravity. The density wa
observed to increase very slowly towards a steady value
lowing an inverse logarithmic law@3,4#, the steady density
being a monotonic decreasing function of the vibration
tensity @5,6#. Several models, with different underlyin
physical mechanisms, have been proposed to understand
behavior@7–12#, but a complete and detailed physical theo
is still lacking.

Simple Ising systems are often used as a first approxi
tion to many different phenomena in statistical physics. I
recent work@13,14#, the one-dimensional Ising model wit
nearest neighbor interactions has been applied to analyz
problem of compaction in dense granular media. This sys
can be regarded as one of the simplest cases of spin mo
on random graphs, which have been very recently use
investigate different aspects of granular matter@11,15,16#.
The ‘‘tapping’’ process is simulated in the following way, i
order to mimic what is done in the experiments@3–5#. First,
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the system freely relaxes until it gets stuck in a metasta
configuration (n50). This is done by considering a modifie
Glauber dynamics atT50, in which only those transitions
lowering the energy of the system are permitted. Thus, all
configurations with no spins antiparallel to both of their ne
est neighbors are metastable, i.e., they are absorbent s
@17# of this T50 dynamics. Starting from the metastab
staten50, the system is ‘‘vibrated’’ by allowing each spin t
flip with probability p, independently of the state of it
neighbors. Afterwards, another free relaxation atT50 is
considered, and the system reaches a new metastable
figuration n51. By repeating this process, a chainn
50,1,2, . . . of metastable configurations is generated. It
found that the energy of the system is a monotonic decre
ing function of the number of tapsn. This Ising model can be
mapped on a particle-hole model, in which a particles
associated to sitei if spins i andi 11 are parallel, and a hole
is spinsi and i 11 are antiparallel. In this way, holes corre
spond to the domain walls between arrays of parallel sp
Interestingly, the dynamics atT50 can be analytically
solved in the particle-hole picture@18#. As a decrease in the
energy corresponds to a decrease in the number of dom
walls, the density of holes is a monotonic decreasing fu
tion of the number of tapsn in the tapping process, i.e
compaction takes place. In the reminder of the paper, we
refer to this system as the TIM~tapped Ising model!.

An analogous description of tapping processes was pr
ously introduced for the one-dimensional one-spin facilita
Ising model ~1SFM! @10,19#, originally proposed by Fre-
drickson and Andersen in the context of structural relaxat
in glassy systems@20#. In this model there are no interac
tions, but only an applied external fieldh, and a spin can
only flip if at least one of its nearest neighbors is in t
excited state. This system is also equivalent to a particle-h
model, in which particles are associated to the spins alig
with the field, while holes correspond to the spins in t
excited state. Then, facilitated spin flips are equivalent
adsorption and desorption of particles on the on
dimensional lattice. These processes can only occur prov
that there is a hole on at least one of the nearest neigh
sites of the flipping spin. The tapping process is modeled
©2002 The American Physical Society08-1
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A. PRADOS AND J. J. BREY PHYSICAL REVIEW E66, 041308 ~2002!
the following way @10#. First, the system relaxes atT50,
where only adsorption processes are allowed, until the
tem reaches a metastable configurationn50. Due to the
facilitation rule, the metastable states are characterized b
the holes being isolated, i.e., surrounded by two partic
Then, starting from the metastable staten50, vibration is
introduced by letting the system evolve, with both facilitat
adsorption and desorption, for a given timet0. Afterwards,
the system relaxes again atT50, which leads the system t
a new metastable staten51. Iteration of this process gives
setn50,1,2,••• of metastable configurations, with the de
sity of particles being an increasing function of the numb
of tapsn @10,19#.

One of the most interesting physical questions in
problem of compaction is the description of the steady s
reached by the system in the limit of an infinite number
taps. Note that thermal energy is irrelevant for granular s
tems. The important energy scale for a grain of massm and
diameterd is mgd, whereg is the gravity. In a typical granu
lar system,mgd/kBT.1012 at room temperature. Therefor
while molecular systems explore phase space due to the
fluctuations, in a powder thermal energy is negligible. Unl
the system is externally perturbed, each metastable con
ration would last indefinitely. Thus, thermodynamics is n
directly applicable to powders. Nevertheless, some ye
ago, Edwards and co-workers@21,22# made the hypothesi
that the steady state of an externally perturbed granular
tem can be described by an extension of the usual statis
mechanics concepts to granular media. The central poin
the ergodic hypothesis for externally perturbed powders
the steady state, all the metastable configurations of a gr
lar assembly occupying the same volume are equiproba
Besides, its most stable configuration corresponds to
minimum volume. Therefore, the volume of a granular s
tem is the analog to the energy for a molecular system.
entropy is defined as the logarithm of the number of me
stable configurations, which is expected to be an exten
quantity. Then, it is possible to define a new parameter,
compactivityX5]V/]S, playing the role of the temperatur
in a molecular system, with the limitX50 giving the most
compact state.

In the last years, a lot of effort have been carried out
order to understand if the above ‘‘equilibrium statistical m
chanics’’ or ‘‘thermodynamic’’ approach describes accurat
the steady state of an externally perturbed granular sys
Most of this effort has been focused on the analysis of sim
models@13,14,19,23–27#, although there has been also som
attempts to test Edwards’ theory in experiments with r
granular systems@5#. Very recently, the theory has bee
checked in a numerical experiment with a realistic granu
matter model, specially conceived to be reproducible in
laboratory @28#. In the context of simple models, there
some numerical evidence of the validity of the thermod
namic description in the limit of gently tapped system
@13,24–27#, although for stronger tapping the situation is n
clear. In fact, numerical results@24,27# show that in the limit
of strong tapping, the Edwards measure does not provid
accurate description of the stationary state, at least in s
spin models. This has suggested an extension of the Edw
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approach by introducing a ‘‘restricted’’ measure@24,27#. On
the other hand, analytical results are scarce, even for
simplest models. To the best of our knowledge, the o
system in which Edwards theory has been analytically
rived for tapping dynamics is the 1SFM described above
the limit of weak tapping@19#. An effective dynamics for the
tapping process, connecting metastable configurations,
obtained and the steady probability distribution was sho
to have the canonical form. This leads to a relationship
tween Edwards’ compactivity and the dimensionless vib
tion intensity. Let us also mention that Crisantiet al. @29#
have studied one-dimensional kinetically restricted model
address the validity of the Stillinger-Weber construction,
approach that is related to the Edwards measure.

Due to the lack of analytical results, it seems interest
to investigate the possibility of deriving a thermodynamic
description in the steady state of other simple models. Th
an important task from a theoretical point of view. First, it
a relevant question if the thermodynamic picture is valid
not for models reproducing the experimentally observed
havior in granular systems. Second, if the answer is posit
it might be possible to derive relationships between the
rameters controlling the evolution of the system, for i
stance, the tapping intensityG in the compaction experiment
and the compactivityX, which characterizes the stationa
state. In this paper, we will center on the analysis of
effective dynamics and the steady state of the TIM, also
the limit of a gently tapped system. We will obtain the effe
tive dynamics between metastable states as an analytica
proximation to the original tapping dynamics. This will a
low us to derive, also analytically, the steady sta
probability distribution.

The paper is organized as follows. In Sec. II the mode
introduced, while the analytical solution of the modifie
Glauber dynamics atT50 is presented in Sec. III. Sectio
IV is devoted to the derivation of the effective dynamics
the limit of weak tapping. The properties of the steady st
reached in the limit of an infinite number of taps are d
cussed in Sec. V. It is shown that the steady probability
be written in the canonical form, with the role of the ener
played by the volume and the temperature being substitu
by a new parameter, the compactivity, which is related to
tapping intensity. Then, the steady state follows the statist
mechanics theory of Edwards and coworkers@21,22#. Fi-
nally, Sec. VI contains a summary of the work and so
final remarks.

II. AN ISING MODEL AT TÄ0 „FREE RELAXATION …

The Hamiltonian of the one-dimensional Ising model
given by

H52J(
i 51

N

s is i 11 , ~2.1!

whereJ.0 is the ferromagnetic coupling constant,N is the
number of spins on the lattice, ands i561 is the spin vari-
able at sitei. We will consider periodic boundary condition
so that formallysN115s1. The time evolution of the sys
8-2
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EFFECTIVE DYNAMICS AND STEADY STATE OF AN . . . PHYSICAL REVIEW E66, 041308 ~2002!
tem is governed by single-spin-flip dynamics@30#. The prob-
ability p(s,t) for finding the system in configurations
[$s i% at time t obeys a master equation of the form

] tp~s,t!5(
i 51

N

@w~suRis!p~Ris,t !2w~Risus!p~s,t !#.

~2.2!

HereRis is the configuration obtained froms by just chang-
ing the state of spini, andw(sus8) stands for the transition
rate from configurations8 to s. Following Lefevre and
Dean@13,14#, we introduce aT50 dynamics such that only
those spin flips decreasing the energy of the system are
lowed. Namely, the transition rates are

w~Risus!5
a

4
~12s i 21s i !~12s is i 11!. ~2.3!

It is easily verified that the above expression vanishes un
spin i is antiparallel to both of its nearest neighbors. T
constanta defines the basic time scale of the system. In
estingly, the most general transition rates bringing the Is
model to equilibrium at temperatureT are @30#

w~Risus!5
a

4 F11ds i 21s i 112
11d

2

3s i~s i 211s i 11!tanhS 2J

kBTD G , ~2.4!

whered is an arbitrary constant. The usual Glauber dyna
ics corresponds to the choiced50, whereas Eq.~2.3! is the
zero temperature limit of the cased51. The dynamics de-
fined by the transition rates~2.3! cannot be solved in the
standard way@30#, since the hierarchy of equations for th
momentsCn5^s is i 11& is not closed.

Let us go to an equivalent description of the Ising mo
in terms of particles and holes, by introducing a new se
variables

mi5
12s is i 11

2
. ~2.5!

If spins at sitesi andi 11 are antiparallel, it ismi51 and we
will refer to the sitei as empty or, equivalently, as bein
occupied by a hole. On the other hand, if spins at sitei and
i 11 are parallel it ismi50, and sitei is occupied by a
particle. Therefore, holes are associated to the bounda
between domains of parallel spins, i.e., to the so-called
main walls of the system. Due to the periodic boundary c
ditions, the number of holes must be even in any configu
tion.

In terms of themi variables, the Hamiltonian~2.1! reads

H~m!52J(
i 51

N

~122mi !52JN12J(
i 51

N

mi . ~2.6!

A dimensionless energy per spin« can be defined as
04130
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^H& t

JN
5211

2

N (
i 51

N

^mi& t , ~2.7!

where we use the notation

^A~m!& t5(
m

A~m!p~m,t !, ~2.8!

for an arbitrary functionA(m) of the site variablesmi .
In the hole-particle description of the dynamics, the flip

spin i modifies both the values ofmi 21 andmi . Then, from
Eq. ~2.3! we get for the transition rates in them variables

w~Ri 21Rimum!5ami 21mi , ~2.9!

where Ri is now the operator which transformsmi into 1
2mi . The master equation for the probabilityp(m,t) is

] tp~m,t !5(
i

@w~muRi 21Rim!p~Ri 21Rim,t !

2w~Ri 21Rimum!p~m,t !#. ~2.10!

In the dynamics defined by Eqs.~2.9! and ~2.10!, the only
possible transitions are the simultaneous adsorption of
particles on any two neighboring empty sites. After a lo
enough time, the system becomes trapped in a metas
state characterized by all the holes being isolated, i.e., all
empty sites surrounded by two particles. Of course, the p
ticular metastable state reached by the system will depen
the initial conditions.

The present model displays some similarities as compa
with the 1SFM@20# at T50. In the latter, a particle can b
adsorbed on an empty site as long as at least one o
nearest neighboring sites is empty@10,19#. Although the dy-
namics of both models are not equivalent, the metasta
states are the same, being characterized by having all
empty sites isolated.

III. ANALYTICAL SOLUTION OF THE DYNAMICS
AT TÄ0

Let us define the set of moments

Dr~ t !5^mkmk11•••mk1r& t , ~3.1!

with r>0. In the following, we will restrict ourselves to
homogeneous states, so thatDr(t) does not depend on th
positionk of the first site considered. The lowest moment

D0~ t !5^mk& t ~3.2!

is the density of holes. This quantity can be related to
energy per particle by means of Eq.~2.7!,

«52112D0 . ~3.3!

A hierarchy of equations for the momentsDr(t) is easily
obtained from the master equation~2.10!,

] tDr~ t !52arD r~ t !22aDr 11~ t !, ~3.4!
8-3
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valid for all r>0. In order to solve the above hierarchy w
introduce the generating function

G~x,t !5(
r 50

`
xr

r !
Dr~ t !, ~3.5!

from which all the momentsDr(t) can be obtained through

Dr~ t !5F ] rG~x,t !

]xr G
x50

. ~3.6!

From Eq.~3.4!, it follows that the functionG(x,t) obeys the
first-order partial differential equation

] tG~x,t !1a~x12!]xG~x,t !50. ~3.7!

By using standard techniques, the general solution of
above equation is found to be

G~x,t !5G0@~x12!e2at22#, ~3.8!

where the functionG0(y) is the initial condition, i.e.,

G0~y![G~y,0!5(
r 50

`
yr

r !
Dr~0!. ~3.9!

In the long time limit it is

G~x,`!5G0~22!, ~3.10!

so that

lim
t→`

D0~ t !5G0~22! ~3.11!

and

lim
t→`

Dr~ t !50, ~3.12!

for r>1. The last result shows that all the holes beco
isolated in the long time limit, and the probability of findin
r 11 consecutive holes, which equalsDr , vanishes forr
>1. The asymptotic density of holes depends on the ini
state, as indicated by Eq.~3.11!. In fact, it is trivially seen
that the hierarchy of Eqs.~3.4! admits as a solution any con
stant value ofD0 as long asDr50 for r>1.

Now, let us specify the initial condition. We will conside
that the system is in equilibrium at temperatureT at t50.
The equilibrium distribution is given by the canonical dist
bution corresponding to the Hamiltonian~2.1!,

pT
eq~s!5

e2bH(s)

(
s

e2bH(s)

, ~3.13!

or, equivalently,
04130
e
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l

pT
eq~m!5

e2bH(m)

(
m

e2bH(m)

, ~3.14!

whereb5(kBT)21. Using the Hamiltonian~2.6!, it is easy
to show that

pT
eq~m!5)

i 51

N

pT
eq~mi !, ~3.15a!

pT
eq~mi !5

e22bJmi

11e22bJ
. ~3.15b!

Therefore,

D0,T
eq 5^mk ;T&eq5

e22bJ

11e22bJ
5a, ~3.16a!

Dr ,T
eq 5^mkmk11•••mk1r ;T&eq5^mk ;T&eq

r 115ar 11,
~3.16b!

where 0<a<1. The valuea50 corresponds tob→` (T
→01), anda51 to b→2` (T→02). In the limit b→0
(T→`), it is a51/2, which corresponds to the most diso
dered state.

Therefore, the initial condition corresponding to an eq
librium state is given by

Dr~0!5ar 11, ~3.17!

which leads to

G0~x![G~x,0!5(
r 50

`
xr

r !
ar 115aeax. ~3.18!

With this choice, the solution given by Eq.~3.8! takes the
form

G~x,t !5a exp$a@~x12!e2at22#% ~3.19!

and, consequently, by using Eq.~3.6!,

Dr~ t !5ar 11exp@2art 12a~e2at21!#. ~3.20!

As pointed out above, all the momentsDr with r>1 vanish
in the long time limit, while the asymptotic value of th
density of holes reads

lim
t→`

D0~ t !5ae22a, ~3.21!

which depends on the initial density of holesa, being always
smaller than it, since only adsorption processes are allo
in theT50 dynamics. The dimensionless energy per parti
in the metastable final configuration«` follows directly from
Eqs.~3.3! and ~3.21!,

«`52112ae22a. ~3.22!
8-4



v

ra

n
ti

ity

t-
he
st

a
re
in
s
th
e

t
at
a

ts

tin

ta
e

e
a

-

s

il
IM
it
il
in
f

o

de
a
a

de
y

est

the
-

ion
-

a

ility

the
er

on-
g to

. 1,
ing

nt.

ng
that
ad-

ish-
ed
e

ith

,

EFFECTIVE DYNAMICS AND STEADY STATE OF AN . . . PHYSICAL REVIEW E66, 041308 ~2002!
This expression agrees with the result obtained by Lefe
and Dean@13,14#. The energy«` is maximum fora51/2,
i.e., when the system starts from a fully random configu
tion. Of course, this is equivalent to say thatD0(`) has a
maximum fora51/2. The existence of this maximum is i
contrast with the result for the 1SFM, where the asympto
density of holes is a monotonic function of the initial dens
@10,31#.

Therefore, atT50 the following picture emerges. Star
ing from any configuration, the system evolves until all t
holes become isolated, i.e., it gets stuck in a metastable
characterized by all the momentsDr vanishing for r>1.
Going back to the spin description, the metastable states
those such there is no spin antiparallel to both of its nea
neighbors. In other words, all the domains of parallel sp
have, at least, a length of two sites. The density of hole
the metastable state, or the density of domain walls in
spin image, depends on the initial configuration, being giv
by Eq. ~3.21!.

IV. EFFECTIVE DYNAMICS FOR TAPPING PROCESSES

Let us consider the model introduced in Sec. II to ge
theoretical approach to the compaction processes in vibr
granular systems. The model is tapped in the following w
@13,14#, trying to mimic what is done in the experimen
with real granular materials@3–5#. First, the system freely
relaxes as described in the preceding section, until get
trapped in a metastable configuration (n50), characterized
by the absence of spins being antiparallel toboth of their
nearest neighbors. These configurations are absorbent s
@17# for the dynamics atT50. Second, starting from th
metastable configurationn50, the system is ‘‘vibrated.’’
Each spin can flip with a probabilityp, independently of the
state of its neighbors. Afterwards, another free relaxation
T50 follows, until the system becomes again stuck in a n
metastable configuration,n51. By repeating this process,
chain of metastable configurationsn50,1,2, . . . is gener-
ated. It is important to note that we can restrict ourselves
values ofp in the interval 0<p<1/2, since the same evolu
tion of the energy is obtained for bothp and 12p. This is
because a probability 12p is equivalent to a simultaneou
flip of all the spins ~which does not change the energy!,
followed by a flip of each spin with probabilityp. Making
use of the notation introduced in the introduction, we w
refer to this tapped one-dimensional Ising model as the T

If p!1, the evolution of the system is very slow, since
is very improbable that a given spin flips. The dynamics w
be dominated by those transitions in which only a few sp
change their state during a vibration process. Therefore,
p!1 an expansion in powers ofp may be useful, since we
hope that retaining the lowest orders would provide a go
approximation.

In the preceding section we have shown that, in the
scription of particles and holes, the metastable states
characterized by having all the holes isolated, i.e., there
no domains of parallel spins with lengthl ,2. We are going
to consider the evolution of the system in a single tap,
fined as the sequence of a vibration process followed b
04130
re

-

c

ate

re
st
s
in
e
n

a
ed
y

g

tes

at
w

to

l
.

l
s
or

d

-
re
re

-
a

free relaxation to a metastable configuration, to the low
order in p. In this limit, only one flip during the vibration
takes place. The analysis to be presented depends on
length l of the domain of parallel spins containing the flip
ping spin. Our goal is to obtain expressions for the transit
probabilitiesWef(m8um) from the initial metastable configu
ration m to the final onem8 in a single tap.

Let us assume first that the flipping spin belongs to
domain of initial lengthl 52, i.e., the transition is like

. . . ↓↓↑↑↓↓ . . . → . . . ↓↓↓↑↓↓ . . . , ~4.1!

where the flipping spin has been underlined. The probab
that this process occurs in the cluster above isp(12p)5.
Afterwards, in the free relaxation atT50 the up-spin has to
flip necessarily, reaching a new metastable state in which
domain with l 52 has disappeared. Therefore, to first ord
in p

Wef~↓↓↓↓↓↓u↓↓↑↑↓↓ !52p, ~4.2!

where the factor of 2 follows because of the other path c
necting the same initial and final states, and correspondin
the flip of the spin on the right of the domain withl 52
during the vibration. These trajectories are shown in Fig
both in the spin and in the particle-hole pictures. Introduc
an usual notation, in the transition ratesWef(m8um) we have
only indicated the sites involved in the given rearrangeme
In the particle and hole picture, it is

Wef~00000u01010!52p, ~4.3!

the process involves the elimination of both holes. Duri
the vibration, one hole diffuses next to the other one, so
in the free relaxation two particles are simultaneously
sorbed on them, as it is shown in Fig. 1.

When the flipping spin belongs to a domain of lengthl
.2, we have to analyze two cases separately, by distingu
ing whether the flipping spin during the vibration is locat
at the domain wall or not. In the former case, for instanc

FIG. 1. ~a! Destruction of a domain of lengthl 52 in the tapping
process. In the vibration, one of the spins of the domain flips w
probability p, and the remaining unstable domain of lengthl 51
disappears in the free relaxation atT50. ~b! The same trajectories
in the particle and hole picture.
8-5
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~4.4!

no transition occurs in the following free relaxation, sin
the final state in the vibration process is metastable. Th
fore, the effective transition probability between the me
stable states is

Wef~↓↓↓↑↑u↓↓↑↑↑ !5p. ~4.5!

Similarly,

Wef~↑↑↓↓↓u↑↑↑↓↓ !5p. ~4.6!

These transitions are one-site diffusion processes of a ho
both directions,

Wef~0010u0100!5Wef~0100u0010!5p, ~4.7!

which are present for alll .2.
When one of the internal spin flips, we have to analy

separatelyl 53 and l>4. First, let us considerl 53. The
internal spin is a nearest neighbor of both the spins at
domain walls, and the rearrangement occurring in the vib
tion has the form

~4.8!

Afterwards, in the free relaxation, any of the three spins
the domain can flip, with the same probability, i.e., 1/3. If
is the central spin the one flipping, returning then to its ori
nal state, nothing has occurred globally, and the group
again in the initial state. On the other hand, if any of t
external spins of the domain flips first, say the one on
left, the reached state is not metastable yet. Then, the
relaxation involves another flip, in which the upward sp
has necessarily to go down. Therefore, the effective tra
tion probability for the complete process is

Wef~↓↓↓↓↓↓↓u↓↓↑↑↑↓↓ !5
2

3
p. ~4.9!

FIG. 2. ~a! Trajectories leading to the destruction of a domain
length l 53 in a tapping process. In the vibration, the central s
flips with probabilityp. Afterwards, the system freely relaxes atT
50. Paths leading to a final state identical to the initial one are
shown.~b! The same trajectories as in~a!, in the particle-hole pic-
ture. Note that the flip of one spin corresponds to the change of
consecutive sites in the associated particle lattice.
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The trajectories leading to this rearrangement are show
Fig. 2. The factor of 2/3 appears because the final state is
same, independently of which is the first external spin fl
ping in the free relaxation, and each trajectory in Fig. 2 co
tributesp/3. In the particle-hole picture, the process consi
of the occupation of two holes separated by two particl
with a probability

Wef~000000u010010!5
2

3
p. ~4.10!

In a domain of lengthl>4, there arel 22 internal spins.
Suppose that the one next to the left wall flips in the vib
tion,

~4.11!

To the right of the flipping spin, a stable domain of leng
l 22 appears, and the spin to its left must move downwa
in the free relaxation, i.e., the domain wall moves two si
to the right in the whole process. The probability of the tra
sition is

Wef~↓↓↓↓↑↑u↓↓↑↑↑↑ !5p, ~4.12!

or, in the particle-hole description,

Wef~00010u01000!5p. ~4.13!

The process corresponds to a two-sites diffusion of the h
to the right. Obviously, it is also possible that a hole diffus
two sites to the left, corresponding to the flip of the intern
spin next to the right wall in the vibration,

Wef~01000u00010!5p. ~4.14!

Finally, if the internal spin which flips in the vibration is no
next to any of the domain walls, it has to return to its origin
state in the free relaxation, and there is no global transitio
the tap. The obtained transition probabilities up to first ord
in p are summarized in Table I. The particle-hole descript
is used, since it is more convenient for the analysis of
compaction process. Therefore, to the lowest order, with o
one flip during the vibration, the density of particles cann
decrease and compaction takes place. When higher or
are retained, processes leading to a decrease of the numb
particles show up, as it will be discussed below.

f

t

o

TABLE I. Probabilities of the first-order transitions in a sing
tap, connecting metastable states.

Process Initial state Final state Wef

One-site diffusion 0100 0010 p
0010 0100 p

Two-sites diffusion 01000 00010 p
00010 01000 p

Destruction of a hole pair 01010 00000 2p
010010 000000 2

3 p
8-6
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EFFECTIVE DYNAMICS AND STEADY STATE OF AN . . . PHYSICAL REVIEW E66, 041308 ~2002!
The description of the effective dynamics between me
stable states is not complete, even qualitatively, if it is
stricted to the lowest order inp. In particular, the existence o
a steady state characterized by the flipping probability in
vibration p @13,14# is lost. The Markov process describin
the dynamics between metastable states is not irreduc
and the configuration with all the sites being occupied
particles is an absorbent state@17# of the dynamics. There
fore, in order to have a more complete description, we
led to consider higher orders inp, i.e., processes involving
more than one transition during the vibration. This will b
done in a physical way, similar to that of Ref.@19#. We are
not going to consider those second-order processes~two flips
in the vibration! whose effect can be obtained by means o
combination of two processes of orderp, but only those pro-
cesses for which the effective transition probabilityWef van-
ishes to the lowest order. In particular, this is the case for
those trajectories decreasing the density of particles, as
ready mentioned. The inclusion of these processes mod
essentially the physics of the tapping process, so that
must be taken into account in our effective dynamics.

Then, we will consider that there are two flips take pla
in the vibration. As in the free relaxation only transition
decreasing the energy are allowed, we have to analyze
cases:~i! flip of two nearest neighbors spins, and~ii ! flip of
two spins separated by one site. If the two flipping spins
separated by more than one site, the local free relaxat
associated to each of them are independent, and the res
a product of two first-order transitions.

Suppose the transition during the vibration in the clus
depicted in Fig. 3, whose probability isp2(12p)4. In the
free relaxation no transition can happen, since a metast
domain of lengthl 52 has been created. Therefore, to t
lowest order it is

Wef~↓↓↑↑↓↓u↓↓↓↓↓↓ !5p2, ~4.15!

or, in the particle-hole picture,

Wef~01010u00000!5p2. ~4.16!

In order to derive this transition probability it has been a
sumed that the domain which the flipping spins belong
initially is at least of lengthl 56. If it has a smaller length, i
is easily shown that the resulting rearrangement can be
tained as a combination of two first-order processes.

FIG. 3. ~a! Creation of a domain of lengthl 52 in the tapping
process. In the vibration, two consecutive spins belonging to a
main of lengthl>6 flip with probability p2. As a consequence,
new stable domain of lengthl 52 shows up.~b! The preceding
trajectory, in the particle-hole picture.
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other kind of second-order processes, we have to includ
our approximation corresponds to a transition during the
bration of the form

. . . ↓↓↓↓↓↓↓ . . . → . . . ↓↓↑↓↑↓↓ . . . ~4.17!

whose probability, to leading order, isp2. In the free relax-
ation process, first either one of the underlined spins wh
have just flipped or the one between them flips, the th
changes having the same probability. In the former case,
group of spins returns to the initial configuration, all of the
upwards. On the other hand, if the central spin flips, a n
domain of lengthl 53 appears, with probability

Wef~↓↓↑↑↑↓↓u↓↓↓↓↓↓↓ !5
1

3
p2. ~4.18!

The trajectory leading to this transition is shown in Fig. 4.
terms of particles and holes

Wef~010010u000000!5
1

3
p2. ~4.19!

It is easy to convince oneself that there are no more seco
order transitions increasing the number of holes, and that
other second-order process can be decomposed in a pro
of first-order transitions. The new transitions appearing
second-order are shown in Table II. Together with the fir
order processes in Table I, they define the approximate
fective model for tapping processes we are going to ana
in the following. It is important to note that the introductio
of the second-order processes is fundamental from a phy
point of view. The processes described in Figs. 3 and 4, w
probabilities given by Eqs.~4.16! and~4.19!, are the inverse
of the processes in Figs. 1 and 2, Eqs.~4.3! and ~4.10!, re-
spectively. Therefore, the Markov process defined by
transition probabilities in Tables I and II is irreducible@17#,
i.e., all the states are connected by a chain of transitions w

o-

FIG. 4. ~a! In the vibration, two spins of the domain of lengt
l>7 flip with probability p2, creating three consecutive unstab
domains of lengthl 51. If, in the subsequent free relaxation, it
the central spin the one which flips, a new stable domain of len
l 53 appears.~b! The same trajectory, shown for particles an
holes.

TABLE II. Probabilities of the second-order processes betwe
metastable states leading to an increase of the number of hole

Process Initial state Final state Wef

Creation of a hole pair 00000 01010 p2

000000 010010 1
3 p2
8-7
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nonzero probability. This property will be fundamental in t
analysis of the steady state, presented in the follow
section.

V. STEADY STATE SOLUTION

As pointed out above, the Markov process defined by
effective transition probabilities connecting metastable sta
is irreducible@17# and, consequently, there is a unique stea
state for each given value ofp. This steady state will be
reached by the system from any initial configuration. B
sides, it will be shown that the system described by the
fective master equation verifies detailed balance. By us
this property we will be able to obtain the steady distributi
analytically. With regards to the original model, the expre
sion holds in the limit of gently tapped systems,p!1, for
which the effective transition probabilities of Tables I and
have been obtained.

In order to calculate the steady distribution function, w
will bet a priori on a stationary solutionPs(m) of the master
equation for the tapping process verifying the detailed b
ance condition,

Wef~mum8!Ps~m8!5Wef~m8um!Ps~m!. ~5.1!

Given the uniqueness of the steady state, if a solution
found in this way, its own existence will be the proof of th
detailed balance property in the system. Detailed balance
plies that all the configurationsm(k) having the same numbe
of holes k will be equiprobable, since they are connect
through diffusion processes, which are isotropic. Their pr
ability will be denoted byPs(m

(k)). Moreover, for the pro-
cesses changing the density of the system it is

Ps~m8(k12)!

Ps~m(k)!
5

Wef~m8(k12) um(k)!

Wef~m(k)um8(k12)!

5
p

2
. ~5.2!

This expression applies for both pairs of transitions w
nonzero probability, given by Eqs.~4.16! and~4.3!, and Eqs.
~4.19! and ~4.10!, respectively~see also Tables I and II!.
Consequently,

Ps~m(k)!5
1

Z S p

2D k/2

, ~5.3!

whereZ is a normalization constant, and we have taken i
account that the number of holes is always even. Definin
new variableX by

e21/X5Ap

2
, ~5.4!

the steady probability distribution can be written in the ‘‘c
nonical’’ form

Ps~m(k)!5
1

Z
e2k/X, ~5.5!
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so thatX is identified as the compactivity of Edwards’ stati
tical mechanics theory of powders@21,22#. The number of
holesk plays the role of the volume or, more precisely, t
excess volume from the densest state. The normaliza
constantZ is the analog to the partition function. From it, a
the steady properties of the system can be obtained in
standard way.

The calculation ofZ is quite an easy task,

Z5 (
k50, k even

N/2

Zk , ~5.6a!

Zk5Vk
(N)e2k/X, ~5.6b!

with Vk
(N) being the number of metastable states withk holes

for a lattice withN sites. The maximum number of holes
N/2 ~we are assuming thatN is even!, and the number of
holes k must be even in the TIM because of the period
boundary conditions. A simple combinatorial argument lea
to

Vk
(N)5

N~N2k21!!

k! ~N22k!!
. ~5.7!

In the largeN limit, the sum in Eq.~5.6a! can be evaluated
by the saddle point method, sinceZk has a sharp maximum
as a function ofk, with the result

ln z[
1

N
ln Z5 ln

11~114e21/X!1/2

2
. ~5.8!

The number of holes is the property analogous to the ene
of a molecular system, and the steady hole density read

D0
s52

] ln z

]~1/X!
5

~114e21/X!1/221

2~114e21/X!1/2
. ~5.9!

It must be stressed thatD0
s5 k̄/N, being k̄ the value of the

number of holesk for which Zk reaches its maximum. The
steady probability distribution is a very sharply peaked fun
tion aroundk̄, which assures the equivalence of the micr
canonical and canonical ensembles for the calculation of
mean values of the physical properties in the steady st
The stationary density of holesrs512D0

s is a monotonic
decreasing function of the compactivityX. As the compac-
tivity, given by Eq.~5.4!, increases with the vibration inten
sity p, rs is also a monotonic decreasing function of t
vibration intensity, a behavior analogous to that of re
granular systems@5,6#. In the limit p!1, Eq. ~5.9! reduces
to

D0
s;e21/X5Ap/2. ~5.10!

In Refs. @13,14#, it was found that the steady density o
holes for arbitraryp is given by the solution of the equatio
8-8
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D0
s5@2pq1D0

s~124pq!#expF2
2pq

2pq1D0
s~124pq!

G ,

~5.11!

with q512p. Of course, as Eq.~5.11! gives the exact value
of the density of holes, it is symmetric against the chan
p→12p. In the limit p!1, the above expression yield
D0

s;Ap/2, which agrees with the smallp limit of the expres-
sion obtained from the effective dynamics, Eq.~5.9!. In Fig.
5, we compare the density of holes as a function ofp, ob-
tained from Eqs.~5.9! and ~5.11!. It is observed that the
agreement is quite good forp&0.15, i.e., for a steady den
sity of particlesrs512D0

s*0.85. On the other hand, th
leading behavior forp!1, Eq. ~5.10!, only holds for very
small values ofp, p&1023, as it is clearly shown in Fig. 6
Therefore, the accuracy of the results obtained from the
fective dynamics picture extends further than what might
expected from a second-order theory in the flipping proba

FIG. 5. Comparison of the numerical evaluation of the stea
density of holes, as given by Eq.~5.11!, ~circles! and the analytical
explicit expression obtained from the effective dynamics approa
Eq. ~5.9!. The agreement is quite good forp&0.15.

FIG. 6. Comparison of the numerical evaluation of the stea
density of holes, as given by the exact solution Eq.~5.11! ~circles!,
the analytical expression obtained from the effective dynamics
proach, Eq.~5.9! ~solid line!, and their leading behavior~5.10! in
the limit p!1 ~dashed line!, in the interval 1026,p,1021. It is
observed that Eq.~5.10! only gives a good approximation in th
very weak tapping regime,p&1023, for which the steady density
of particlesrs512D0

s*0.98.
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ity p. In fact, this is not so surprising, because a simi
behavior was found in the one-dimensional facilitated Is
model submitted to tapping processes@19#. The wide range
of applicability presented by Eq.~5.9! can be understood on
physical grounds, by realizing that the effective dynam
approach is not a standard second-order expansion in
flipping probabilityp. Among all the second-order processe
only those introducing new physically relevant transition
i.e., transitions that cannot be written as a combination
first-order processes, are collected. This physically motiva
expansion allows an analytical approach to the rather d
cult problem of tapping.

The entropy is defined in the usual way,

S52(
m

Ps~m!ln Ps~m!5
N

X
D0

s1 ln Z, ~5.12!

which is an extensive quantity. The specific entropy per s
is

s[
S

N
5

1

X
D0

s1 ln z

5
~114e21/X!1/221

2X~114e21/X!1/2
1 ln

11~114e21/X!1/2

2
.

~5.13!

It is possible to define a function analogous to Helmholt
specific free energy,

F52X ln z5D0
s2Xs, ~5.14!

so that Eq.~5.9! can be expressed

D0
s5

d~F/X!

d~1/X!
. ~5.15!

The description of the steady state of the TIM and that
the tapped 1SFM presented in Ref.@19# are closely related.
In both models, the metastable states are the same, nam
those characterized by having all the holes isolated, i.e.,
rounded by two particles. Moreover, in the weak tappi
limit, the steady state probability distribution has the cano
cal form in both models. This implies that their ‘‘thermody
namical’’ properties are the same, when expressed in te
of the compactivity. Probably, this equivalence does not h
for stronger tapping, for which the simple description for t
steady state developed here seems to need some refinem
as it follows from the numerical experiments reported
Refs. @24,27#. Finally, let us note that the number of hole
must be even in the TIM, while the 1SFM is free from th
restriction. Of course, this difference becomes irrelevan
the thermodynamic limit, in which the density of holes is
continuous variable.

A. Spatial correlations

In the steady state, the only spatial correlations presen
the model are due to the impossibility of having two near

y

h,

y

p-
8-9
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neighbor holes. This property can be used to simplify
calculation of the correlation functions in the steady state

We introduce two ‘‘entities,’’a and b, being a the set
formed by a hole with the particle that is at its right near
neighbor site, andb a single particle. Thus, any metastab
configuration is obtained as an, unrestricted, arbitrary per
tation of the entitiesa and b. Here we take a very large
system, so that we do not need to consider periodic boun
conditions. We will denote byNa and Nb the number of
entities a and b in a given configuration, respectively
Therefore,

2Na1Nb5N. ~5.16!

It is obvious thatNa equals the number of holesk in the
configuration, so that the density of entitiesa and b are
related to the density of holesD0,

xa[
^Na&

N
5D0 , ~5.17a!

xb[
^Nb&

N
5122xa5122D0 , ~5.17b!

where the averages are done over the considered ensem
systems.

Since the positions of entitiesa andb are independent in
the steady state, it is very easy to compute stationary co
lations. For instance, the probability of finding two hol
separated byr particles is given by

Fr
s5^mk~12mk11!•••~12mk1r !mk1r 11&s[xabr 21a

s .
~5.18!

Here,xabr 21a
s is the steady density of clusters composed

two entitiesa separated byr 21 entitiesb. The number of
entitiesb is r 21 because the particle in sitek11 together
with the hole in sitek constitute the first entitya. We will
consider thatr>1, since the holes are isolated in the me
stable states. It is

xabr 21a5
^Nabr 21a&

N
, ~5.19!

where Nabr 21a is the number of clusters of the kind ind
cated above. By definition,

^Nabr 21a&5^Na&P~b r 21aua!, ~5.20!

whereP(b r 21aua) is the conditional probability of finding
a cluster composed ofr 21 consecutive entitiesb and one
entity a to the right of one entitya. As the entitiesa andb
are independent in the steady state, the stationary valu
this conditional probability is

Ps~b r 21aua!5Ps~b r 21a!5@Pb
s # r 21Pa

s , ~5.21!

wherePa
s andPb

s are the probabilities of finding ana and a
b entity in the steady state, respectively. Obviously,
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Pa
s 5

^Na&s

^Na1Nb&s
5

D0
s

12D0
s

, ~5.22a!

Pb
s 5

^Nb&s

^Na1Nb&s
5

122D0
s

12D0
s

, ~5.22b!

where we have made use of Eq.~5.17!. Therefore, putting
together Eqs.~5.18!–~5.22!, we get

Fr
s5

~D0
s!2

122D0
s S 122D0

s

12D0
s D r

~r>1!. ~5.23!

Since the momentFr
s equals the probability of finding two

holes separated byr particles, it is clear that

F0
s50, ~5.24!

reflecting that two holes must always be separated by at l
one particle. The momentsFr obey the following ‘‘sum
rule,’’

(
r 50

`

Fr5D0 , ~5.25!

expressing that the sum of the probabilities of finding tw
holes separated by an arbitrary number of particles equals
probability of finding one hole, i.e.,

~5.26!

The calculation of other spatial correlations in the stea
state is straightforward, by following a line of reasonin
similar to the one used to findFr

s . For instance,Fr
s also

provides the probability of finding a cluster composed
two entitiesa and r 21 entitiesb, no matter the way they
are ordered, because of the independence of the entitiea
andb in the steady state.

VI. FINAL REMARKS

In this paper we have analyzed a one-dimensional Is
model with nearest neighbor interactions formulated in
way appropriated for the study of compaction in granu
media. An equivalent particle-hole description has been
troduced, in which the holes are associated to the dom
walls of the original Ising system. The free relaxation of t
system is modeled by aT50 dynamics@13#, which only
allows those spin flips decreasing the energy of the syst
Any configuration with all the holes~domain walls! being
isolated is metastable, i.e., it does not evolve with thisT
50 dynamics. The tapping process is described as comp
of two steps:~a! vibration, i.e., starting from a metastab
8-10
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EFFECTIVE DYNAMICS AND STEADY STATE OF AN . . . PHYSICAL REVIEW E66, 041308 ~2002!
configuration, each spin of the system is flipped with pro
ability p, and ~b! the system freely relaxes with theT50
dynamics until it reaches a, in general, different metasta
configuration. The parameter characterizing the tapping p
cess is the ‘‘vibration intensity’’p.

In the particle-hole description, the dynamics atT50 is
analytically solvable, by writing a closed hierarchy of equ
tions for the probability distribution functionsDr of finding
r 11 consecutive holes in the system@18#. In the long time
limit, the system gets stuck in a state whereDr50 for all
r .1, i.e., all the holes are isolated, as indicated above.

Tapping is a rather complex process, since each ta
composed of two neatly different processes: vibration a
free relaxation. In order to get a physical insight into t
mechanisms responsible for the behavior of the system u
tapping, the derivation of theeffectivetransition probabilities
for the Markov process connecting the metastable st
reached by the system in two consecutive taps is neede
general, this is a formidable task, but in the limit of a gen
tapped system these transition rates between metas
states can be computed up to the second-order inp.

In the first order, the only possible transitions are diff
sion and destruction of a hole pair. Then, compaction ta
place, since there are no processes decreasing the dens
particles in the system to the lowest order. To describe
steady state, second-order processes must be taken int
count, so as to have transitions that increase the numbe
holes. Interestingly, these transitions are just the invers
those decreasing the number of holes to the lowest or
Therefore, the Markov process is irreducible, i.e., all t
metastable configurations are connected through a cha
transitions with nonzero probability. As a consequence, th
is an unique, well-defined, steady probability distribution
each value ofp. Besides, the effective transition rates ver
detailed balance. This property has been used to derive
steady distribution analytically, finding that it has the cano
cal form. Thus, a relationship between Edwards’ compac
ity and the vibration intensityp is obtained, in the limit of
weak tapping.

The system analyzed in this paper, as formulated for m
eling tapped granular media, is closely related to the o
dimensional facilitated Ising model@10,19,23#. In the respec-
tive particle-hole pictures, the metastable states are the s
those having all the holes isolated. Although, in the limit
weak tapping, the corresponding effective dynamics conn
hy

.R

R.

.R
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ing metastable configurations are not equivalent, the ste
state is described in both cases by the canonical distribut
The role of the energy is played by the number of holes a
that of the temperature by Edwards’ compactivity, which
related to the vibration intensity by an Arrhenius-like expre
sion. In this way, we find a sort of ‘‘minimal’’ model for
Edwards’ description of the steady state of externally p
turbed granular media: a one-dimensional system of parti
and holes, with the metastable states characterized by ha
all the holes isolated, and a canonical probability distribut
function. Nevertheless, in order to have an actually comp
description of the steady state, a relationship between
parameters characterizing the statics and the dynamics o
system, i.e., between the compactivity and the vibration
tensity, is needed. Then, it is also necessary to derive
effective dynamics from the underlying original mode
~TIM, 1SFM, etc.!, when trying to understand the stead
state behavior.

The effective dynamics approach between metasta
states has been shown to be a powerful tool, in order to st
the steady state of models for granular systems submitte
tapping processes. It allows to identify the physical mec
nisms responsible for the increase of the density, and also
the existence of a steady state characterized by a de
being a monotonic decreasing function of the vibration
tensity. In simple models, the calculations can be thoroug
done in the limit of gentle tapping, deriving analytically th
steady state distribution. The results so obtained are con
tent with recent extensive numerical tests of Edwards’
pothesis in simple systems@13,24–27#, although the system
atic deviations found for stronger tapping@24,27# cannot be
accounted for within the second-order theory developed
this paper and in Ref.@19#. This would need an extension o
the effective dynamics approach to the whole range of vib
tion intensities, which is certainly not an easy task. Nev
theless, it is hard to believe that the simple structure of
transition probabilities of the effective dynamics should
main unaltered for stronger tapping, i.e., deviations from
simple canonical distribution found here are to be expec
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