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Effective dynamics and steady state of an Ising model submitted to tapping processes
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A one-dimensional Ising model with nearest neighbor interactions is applied to study compaction processes
in granular media. An equivalent particle-hole picture is introduced, with the holes being associated to the
domain walls of the Ising model. Trying to mimic the experiments, a series of taps separated by large enough
waiting times, for which the system freely relaxes, is considered. The free relaxation of the system corresponds
to a T=0 dynamics which can be analytically solved. There is an extensive number of metastable states,
characterized by all the holes being isolated. In the limit of weak tapping, an effective dynamics connecting the
metastable states is obtained. The steady state of this dynamics is analyzed, and the probability distribution
function is shown to have the canonical form. Then, the stationary state is described by Edwards thermody-
namic granular theory. Spatial correlation functions in the steady state are also studied.
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[. INTRODUCTION the system freely relaxes until it gets stuck in a metastable
configuration 6=0). This is done by considering a modified
Granular systems have attracted the attention of physicist&lauber dynamics af =0, in which only those transitions
in recent years. A review of some features of granular mattelowering the energy of the system are permitted. Thus, all the
can be found in Refs[1,2]. One of the most outstanding configurations with no spins antiparallel to both of their near-
problems is the phenomenon of compaction, i.e., the increagest neighbors are metastable, i.e., they are absorbent states
of the density of a loosely packed granular system whenl7] of this T=0 dynamics. Starting from the metastable
submitted to vibration or, more generally, to some kind ofstaten=0, the system is “vibrated” by allowing each spin to
external excitation. Compaction has been extensively andlip with probability p, independently of the state of its
lyzed in a series of experiments by the Chicago gri@#b].  neighbors. Afterwards, another free relaxationTatO is
Starting from a low-density configuration, near the randomconsidered, and the system reaches a new metastable con-
loose packed state, a system of monodisperse glass bediyuration n=1. By repeating this process, a cham
was vertically tapped. Between taps, a long enough time was 0,1,2 ... of metastable configurations is generated. It is
considered, so that the system reached a mechanically stalit®ind that the energy of the system is a monotonic decreas-
(metastable configuration before the next tap started. Theing function of the number of taps This Ising model can be
density was measured in the metastable states, and its evolmapped on a particle-hole model, in which a particles is
tion as a function of the number of taps was studied. Thessociated to siteif spinsi andi + 1 are parallel, and a hole
parameter controlling the dynamics of the system is the diis spinsi andi+ 1 are antiparallel. In this way, holes corre-
mensionless vibration intensily=a/g, wherea is the peak spond to the domain walls between arrays of parallel spins.
acceleration in the tap, arglis the gravity. The density was Interestingly, the dynamics at=0 can be analytically
observed to increase very slowly towards a steady value folsolved in the particle-hole pictufd.8]. As a decrease in the
lowing an inverse logarithmic lay3,4], the steady density energy corresponds to a decrease in the number of domain
being a monotonic decreasing function of the vibration in-walls, the density of holes is a monotonic decreasing func-
tensity [5,6]. Several models, with different underlying tion of the number of tap® in the tapping process, i.e.,
physical mechanisms, have been proposed to understand tlismpaction takes place. In the reminder of the paper, we will
behavio{7-12], but a complete and detailed physical theoryrefer to this system as the TIMapped Ising modegl
is still lacking. An analogous description of tapping processes was previ-
Simple Ising systems are often used as a first approximasusly introduced for the one-dimensional one-spin facilitated
tion to many different phenomena in statistical physics. In dsing model (1SFM) [10,19, originally proposed by Fre-
recent work[13,14], the one-dimensional Ising model with drickson and Andersen in the context of structural relaxation
nearest neighbor interactions has been applied to analyze tive glassy system$20]. In this model there are no interac-
problem of compaction in dense granular media. This systertions, but only an applied external field and a spin can
can be regarded as one of the simplest cases of spin modelaly flip if at least one of its nearest neighbors is in the
on random graphs, which have been very recently used texcited state. This system is also equivalent to a particle-hole
investigate different aspects of granular maftét,15,18. model, in which particles are associated to the spins aligned
The “tapping” process is simulated in the following way, in with the field, while holes correspond to the spins in the
order to mimic what is done in the experimefi8s-5]. First,  excited state. Then, facilitated spin flips are equivalent to
adsorption and desorption of particles on the one-
dimensional lattice. These processes can only occur provided
*Electronic address: prados@us.es that there is a hole on at least one of the nearest neighbor
"Electronic address: brey@us.es sites of the flipping spin. The tapping process is modeled in
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the following way[10]. First, the system relaxes @=0, approach by introducing a “restricted” meast24,27. On
where only adsorption processes are allowed, until the syghe other hand, analytical results are scarce, even for the
tem reaches a metastable configuraton0. Due to the simplest models. To the best of our knowledge, the only
facilitation rule, the metastable states are characterized by aystem in which Edwards theory has been analytically de-
the holes being isolated, i.e., surrounded by two particlesiived for tapping dynamics is the 1SFM described above, in
Then, starting from the metastable state 0, vibration is  the limit of weak tapping19]. An effective dynamics for the
introduced by letting the system evolve, with both facilitated!@Pping process, connecting metastable configurations, was
adsorption and desorption, for a given timge Afterwards, ~obtained and the steady probability distribution was shown
the system relaxes again B0, which leads the system to t0 have the canonical form. This leads to a relationship be-
a new metastable state=1. Iteration of this process gives a tween Edwards’ compactivity and the dimensionless vibra-
setn=0,1,2; - - of metastable configurations, with the den- ion intensity. Let us also mention that Crisaetial. [29]
sity of particles being an increasing function of the numberave studied on_e-.dlmensmnall I_<|net|cally restricted quels to
of tapsn [10,19. address the valldlty of the Stillinger-Weber construction, an
One of the most interesting physical questions in the2PProach that is related to the Edwards measure. _
problem of compaction is the description of the steady state Due to the lack of analytical results, it seems interesting
reached by the system in the limit of an infinite number oft© investigate the possibility of deriving a thermodynamical
taps. Note that thermal energy is irrelevant for granular sysdescription in the steady state of other simple models. This is
tems. The important energy scale for a grain of masand ~ a@n important task from a theoretical point of view. First, it is
diameterd is mgd, whereg is the gravity. In a typical granu- & relevant question if th(_e thermodynamlc picture is valid or
lar systemmgd ks T= 102 at room temperature. Therefore, NOt 'for.models reproducing the expe_rlmentally observeq _be—
while molecular systems explore phase space due to thermBfVior in granular systems. Second, if the answer is positive,
fluctuations, in a powder thermal energy is negligible. Unlesdt Might be possible to derive relationships between the pa-
the system is externally perturbed, each metastable configli@meters controlling the evolution of the system, for in-
ration would last indefinitely. Thus, thermodynamics is notStance, the tapping intensityin the compaction experiment,
directly applicable to powders. Nevertheless, some yeardnd the compactivityX, which characterizes the stationary
ago, Edwards and co-workef&1,22 made the hypothesis state. In this paper, we will center on the analysis of th.e
that the steady state of an externally perturbed granular sy&ffective dynamics and the steady state of the TIM, also in
tem can be described by an extension of the usual statisticil€ limit of a gently tapped system. We will obtain the effec-
mechanics concepts to granular media. The central point {&V€ dynamics between metastable states as an analytical ap-
the ergodic hypothesis for externally perturbed powders: ifProximation to the original tapping dynamics. This will al-
the steady state, all the metastable configurations of a granlf@W US to derive, also analytically, the steady state
lar assembly occupying the same volume are equiprobabl@robability distribution. .
Besides, its most stable configuration corresponds to the 1he paper is organized as follows. In Sec. Il the model is
minimum volume. Therefore, the volume of a granular Sys_mtroduced, Whl_Ie the analytlcal solutlpn of the modl_fled
tem is the analog to the energy for a molecular system. Th&lauber dynamics at=0 is presented in Sec. Ill. Section
entropy is defined as the logarithm of the number of metalV 1S dgvoted to the d.er|vat|on of the _effectlve dynamics in
stable configurations, which is expected to be an extensivii® limit of weak tapping. The properties of the steady state
quantity. Then, it is possible to define a new parameter, thééached in the limit of an infinite number of taps are dis-
compactivityX=gV/4JS, playing the role of the temperature cusse_d in _Sec. V. Itis ghown that t_he steady probability can
in a molecular system, with the limX=0 giving the most be written in the canonical form, with the role (_)f the energy
compact state. played by the volume and the temperature b.elng substituted
In the last years, a lot of effort have been carried out inPY @ héw parameter, the compactivity, which is related to the
order to understand if the above “equilibrium statistical me-1@PPing intensity. Then, the steady state follows the statistical
chanics” or “thermodynamic” approach describes accuratelymMechanics theory of Edwards and cowork¢?d,22. Fi-
the steady state of an externally perturbed granular systerfidlly, Sec. VI contains a summary of the work and some
Most of this effort has been focused on the analysis of simplénal remarks.
models[13,14,19,23-2] although there has been also some
attempts to test Edwards’ theory in experiments with real Il. AN ISING MODEL AT T=0 (FREE RELAXATION )
granular systemg5]. Very recently, the theory has been I . . . .
checked in a numerical experiment with a realistic granular . The Hamiltonian of the one-dimensional Ising model is
matter model, specially conceived to be reproducible in th&'Ven by

laboratory[28]. In the context of simple models, there is N
some numerical evidence of the validity of the thermody- H= —JE 001 2.1)
namic description in the limit of gently tapped systems 3T

[13,24-21, although for stronger tapping the situation is not

clear. In fact, numerical resulfg4,27] show that in the limit whereJ>0 is the ferromagnetic coupling constaNtjs the
of strong tapping, the Edwards measure does not provide amumber of spins on the lattice, ang= *1 is the spin vari-
accurate description of the stationary state, at least in somable at sitd. We will consider periodic boundary conditions,
spin models. This has suggested an extension of the Edwards that formallyoy 1= 0. The time evolution of the sys-
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tem is governed by single-spin-flip dynam[&0]. The prob- (H), o N
ability p(o,t) for finding the system in configuratiowr €= IN :_1+NE (my)y, (2.7
={o;} at timet obeys a master equation of the form =1
N where we use the notation
ap(a,)= 2, [W(oIR@)P(Rio,) ~W(Riolo)p(a,1)].
i (2.2 (A(m))=2 A(m)p(m,D), 2.8

HereR; o is the configuration obtained from by just chang-  for an arbitrary functioPA(m) of the site variablesn; .

ing the state of spif, andw(eo]o”) stands for the transition In the hole-particle description of the dynamics, the flip of
rate from configurationo’ to o. Following Lefevre and spini modifies both the values af;,_; andm;. Then, from
Dean[13,14, we introduce & =0 dynamics such that only Eq. (2.3) we get for the transition rates in tme variables
those spin flips decreasing the energy of the system are al-

lowed. Namely, the transition rates are W(R;_1Rimm)=am;,_,;m;, (2.9

a where R; is now the operator which transfornms; into 1
wW(Riolo)= 2(1-0i109)(1-0ioiy). (23 —m;. The master equation for the probabilipym,t) is

It is easily verified that the above expression vanishes unless ap(m,t)=> [w(mR_;Rim)p(R_;Rm,t)
spin i is antiparallel to both of its nearest neighbors. The i

coqstanta defines the basic timg_scale of the_ system. Int_er- —w(R,_;Rmm)p(m,)]. (2.10
estingly, the most general transition rates bringing the Ising
model to equilibrium at temperatufieare[30] In the dynamics defined by Eq&.9) and (2.10, the only
145 possible transitions are the simultaneous adsorption of two
a icles on any two neighboring empty sites. After a lon
R = |14+80 0, ——" particles y g g pty . g
w(Rio{o) 4 Ti-1%i+17 75 enough time, the system becomes trapped in a metastable

state characterized by all the holes being isolated, i.e., all the
.49 empty sites surrounded by two particles. Of course, the par-
ticular metastable state reached by the system will depend on
the initial conditions.
where d is an arbitrary constant. The usual Glauber dynam-  The present model displays some similarities as compared
ics corresponds to the choiée=0, whereas Eq(2.3) is the  with the 1SFM[20] at T=0. In the latter, a particle can be
zero temperature limit of the cas®=1. The dynamics de- adsorbed on an empty site as long as at least one of its
fined by the transition rate€.3) cannot be solved in the nearest neighboring sites is empi0,19. Although the dy-
standard way{30], since the hierarchy of equations for the namics of both models are not equivalent, the metastable
momentsC,=(oj0;.1) is not closed. states are the same, being characterized by having all the
Let us go to an equivalent description of the Ising modelempty sites isolated.
in terms of particles and holes, by introducing a new set of

2]
Xoi(oi-1tojs)tan kT

variables IIl. ANALYTICAL SOLUTION OF THE DYNAMICS
AT T=0
100 .
mi——z . (2.9 Let us define the set of moments

D () ={mmyy 1 - My )i, (3.1

In the following, we will restrict ourselves to

If spins at siteg andi + 1 are antiparallel, it isn;=1 and we
will refer to the sitei as empty or, equivalently, as being with r=0.

occupied by a hole. On the other hand, if spins atisaad homogeneous states, so thi(t) does not depend on the

i+1 are parallel it ism=0, and sitei is occupied by a ,qsjtionk of the first site considered. The lowest moment
particle. Therefore, holes are associated to the boundaries

between domains of parallel spins, i.e., to the so-called do- Do(t)={my); (3.2
main walls of the system. Due to the periodic boundary con-

ditions, the number of holes must be even in any configurais the density of holes. This quantity can be related to the
tion. energy per particle by means of EQ.7),

In terms of them, variables, the Hamiltoniaf2.1) reads
e=—1+2Dyg. (3.3
N N
H(m)=—J>, (1-2m))=—JIN+2J>, m;. (2.6) A hierarchy of equations for the momeris(t) is easily
i=1 i=1 obtained from the master equatiGh10),

A dimensionless energy per spincan be defined as D, (t)=—arD,(t)—2aD, . 1(1), (3.9
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valid for all r=0. In order to solve the above hierarchy we

introduce the generating function

G(x =3, D), 39

from which all the moment®,(t) can be obtained through

I"G(x,t)

Di(t)=| —

(3.6

x=0

From Eq.(3.4), it follows that the functiorG(x,t) obeys the
first-order partial differential equation

3G(X,1) + a(x+2),G(x,t) =0. (3.7)

By using standard techniques, the general solution of the

above equation is found to be

G(x,t)=Gg[ (x+2)e” *'—-2], (3.9
where the functiorGy(y) is the initial condition, i.e.,
-y
Go(Y)=G(y,0)= 2, [7Dr(0). (3.9
In the long time limit it is
G(x,%2)=Go(—2), (3.10
so that
limDg(t)=Go(—2) (3.11)
ton
and
limD,(t)=0, (3.12

t—oo
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e_ﬁH(m)
z e_ﬁH(m)

m

(3.19

where 8= (kgT) . Using the Hamiltoniar(2.6), it is easy
to show that

N
psm =TT psim),

(3.153
. e—ZﬁJmi
pTim)= PR (3.15b
Therefore,
e—ZBJ
Dg%:<mk;T>eq:m:a, (3.163
DE%=(MyMis 1+ Mg s Theg= (M ;T>(r£1: a+t

(3.160

where Csa=<1. The valuea=0 corresponds t@8—x (T
—07"), anda=1 to B—— (T—07). In the limit 3—0
(T—), it is a=1/2, which corresponds to the most disor-
dered state.

Therefore, the initial condition corresponding to an equi-
librium state is given by

D,(0)=a""?, (3.17
which leads to
[ee] Xr
Go(X)=G(x,0)= 2, r—la”l:aeax. (3.18
r=01:

With this choice, the solution given by E¢3.8) takes the
form

for r=1. The last result shows that all the holes become

isolated in the long time limit, and the probability of finding
r+1 consecutive holes, which equdls , vanishes forr

=1. The asymptotic density of holes depends on the initial

state, as indicated by E@3.17). In fact, it is trivially seen
that the hierarchy of Eq$3.4) admits as a solution any con-
stant value oD, as long adD,=0 forr=1.

Now, let us specify the initial condition. We will consider
that the system is in equilibrium at temperatiret t=0.
The equilibrium distribution is given by the canonical distri-
bution corresponding to the Hamiltoni&®.1),

e_ﬁH(ﬂ')

2 e BH(0o)

[0

(3.13

or, equivalently,

G(x,t)y=aexpa[(x+2)e *'—2]} (3.19
and, consequently, by using E@®.6),
D,(t)=a""texg —art+2a(e “'—1)].  (3.20

As pointed out above, all the momerds with r=1 vanish
in the long time limit, while the asymptotic value of the
density of holes reads

limDy(t)=ae 23,

t—oo

(3.20

which depends on the initial density of holgsbeing always
smaller than it, since only adsorption processes are allowed
in theT=0 dynamics. The dimensionless energy per particle
in the metastable final configuratien, follows directly from
Egs.(3.3) and(3.2)),

£.=—1+2ae %2

(3.22
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This expression agrees with the result obtained by Lefevre (a)
and Dean13,14. The energye., is maximum fora=1/2,

i.e., when the system starts from a fully random configura- y \

tion. Of course, this is equivalent to say tHag() has a ‘ \ ‘ [ ‘ \ \ l \ \ ‘ \
maximum fora=1/2. The existence of this maximum is in

contrast with the result for the 1SFM, where the asymptotic
density of holes is a monotonic function of the initial density

[10.31. : i (b) 00110

Therefore, afT=0 the following picture emerges. Start- y’
ing from any configuration, the system evolves until all the 01010 00000
holes become isolated, i.e., it gets stuck in a metastable state \ /
characterized by all the momenB, vanishing forr=1. Px01100

Going back to the spin description, the metastable states are

those such there is no spin antiparallel to both of its neare%gc FIG. 1. (a) Destruction of a domain of lengff-2 in the tapping

rocess. In the vibration, one of the spins of the domain flips with

. ! ~probability p, and the remaining unstable domain of lengjthl
have, at least, a length of two S'te_s' The densf'ty of ho,les ! isappears in the free relaxationTat 0. (b) The same trajectories,
the metastable state, or the density of domain walls in the, o particle and hole picture.

spin image, depends on the initial configuration, being given

neighbors. In other words, all the domains of parallel spin

by Eq.(3.21. free relaxation to a metastable configuration, to the lowest
order inp. In this limit, only one flip during the vibration
IV. EFFECTIVE DYNAMICS FOR TAPPING PROCESSES takes place. The analysis to be presented depends on the

i . . length| of the domain of parallel spins containing the flip-
Let us consider the model introduced in Sec. Il to get &,ing spin. Our goal is to obtain expressions for the transition

theoretical approach to the co_mpaction processes in_ Vibrateif’robabilitieswef(m’|m) from the initial metastable configu-
granular systems. The model is tapped in the following way,ation m to the final onem’ in a single tap.

[13,14 trying to mimic what is done in the experiments | ot 5 assume first that the flipping spin belongs to a

with real granular materialg3—5]. First, the system freely q4omain of initial lengthl = 2, i.e., the transition is like
relaxes as described in the preceding section, until getting

trapped in a metastable configuratiam<0), characterized R 4.1
by the absence of spins being antiparallelbtth of their . -llITll o -lliTll Y @D

nearest neighbors. These configurations are absorbent stateﬁ the fliopi in has b derlined. Th babilit
[17] for the dynamics aff=0. Second, starting from the where Ine Tlipping spin has been underiined. The probabiiity

metastable configuration=0, the system is “vibrated.” :[:f?t this dpro_ceis (f:)ccurslln the calu_s'[grhabOVQ)Qg ﬁ) :
Each spin can flip with a probability, independently of the ° erwaras, I'rl] the re;]e relaxation at= tbF up-spin ahs. tﬁ h
state of its neighbors. Afterwards, another free relaxation afﬂ'p necessartly, reaching a new metastable state n whic the
T=0 follows, until the system becomes again stuck in a nev\gomam withl=2 has disappeared. Therefore, to first order

metastable configuratiom=1. By repeating this process, a in
chain of metastable configuratioms=0,1,2 ... is gener-
ated. It is important to note that we can restrict ourselves to Wed LLLLLLILLTTLL)=2p, (4.2
values ofp in the interval G=p=<1/2, since the same evolu-
tion of the energy is obtained for bofhand 1—p. This is  Where the factor of 2 follows because of the other path con-
because a probability 4p is equivalent to a simultaneous Necting the same _|n|t|al and fl_nal states, and co_rrespondlng to
flip of all the spins(which does not change the energy the flip of the spin on the right of the domain witk=2
followed by a flip of each spin with probabilitp. Making during the vibration. These trajectories are shown in Fig. 1,
use of the notation introduced in the introduction, we will Poth in the spin and in the particle-hole pictures. Introducing
refer to this tapped one-dimensional Ising model as the TIM&n usual notation, in the transition ratég{(m’|m) we have
If p<1, the evolution of the system is very slow, since it Only indicated the sites involved in the given rearrangement.
is very improbable that a given spin flips. The dynamics will In the particle and hole picture, it is
be dominated by those transitions in which only a few spins
change their state during a vibration process. Therefore, for W,{0000001010 = 2p, (4.3
p<<1 an expansion in powers @ may be useful, since we
hope that retaining the lowest orders would provide a goodhe process involves the elimination of both holes. During
approximation. the vibration, one hole diffuses next to the other one, so that
In the preceding section we have shown that, in the dein the free relaxation two particles are simultaneously ad-
scription of particles and holes, the metastable states aorbed on them, as it is shown in Fig. 1.
characterized by having all the holes isolated, i.e., there are When the flipping spin belongs to a domain of lengith
no domains of parallel spins with lengtkc2. We are going >2, we have to analyze two cases separately, by distinguish-
to consider the evolution of the system in a single tap, deing whether the flipping spin during the vibration is located
fined as the sequence of a vibration process followed by at the domain wall or not. In the former case, for instance
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(a) TABLE I. Probabilities of the first-order transitions in a single
. { \ { \ ‘ J \ tap, connecting metastable states.

T
1 J \ [ \ \ \ \/ Process Initial state Final state W

(b) One-site diffusion 0100 0010 p
1370001 10\ 0010 0100 p

01001 0—p> 011110 00000 Two-sites diffusion 01000 00010 p
%Ol 1000/ 00010 01000 p

Destruction of a hole pair 01010 00000 p2
FIG. 2. (a) Trajectories leading to the destruction of a domain of 010010 000000 %p

lengthl =3 in a tapping process. In the vibration, the central spin

flips with probability p. Afterwards, the system freely relaxesTat ) . ) . )
=0. Paths leading to a final state identical to the initial one are nofl N€ trajectories leading to this rearrangement are shown in

shown. (b) The same trajectories as (g), in the particle-hole pic- Fig. 2. The factor of 2/3 appears because the final state is the
ture. Note that the flip of one spin corresponds to the change of twgame, independently of which is the first external spin flip-
consecutive sites in the associated particle lattice. ping in the free relaxation, and each trajectory in Fig. 2 con-
tributesp/3. In the particle-hole picture, the process consists
! of the occupation of two holes separated by two particles,

—_——

LT s LT (4.4 With a probability

2
N ) . ) ) W, 000000010010 = = p. (4.10
no transition occurs in the following free relaxation, since 3

the final state in the vibration process is metastable. There-

fore, the effective transition probability between the meta-" @ domain of length =4, there ard —2 internal spins.
stable states is Suppose that the one next to the left wall flips in the vibra-

tion,

W LLLTTILLTTT) =P 4.5 , ,

—_— ——

Similarly, C LTI = LT LT (41D

Wed TTLLLITTTLL) =P. (4.6
To the right of the flippi in, a stable d in of length
These transitions are one-site diffusion processes of a hole ing 2 :prpl)garso ang tr:gpslg?n stgl?ts ?e?t ?nuest ﬁ]?\?;ndgwr?vr\;eg\rds
both directions, in the free relaxation, i.e., the domain wall moves two sites
W,{(00100100 = W,(01040010 = p, (4.7) ;?ti?r? irsight in the whole process. The probability of the tran-
which are present for all>2.
When one of the internal spin flips, we have to analyze Wed LLLLTTILLTTTD =P, (4.12
separatelyf =3 andl=4. First, let us considet=3. The . i, the particle-hole description
internal spin is a nearest neighbor of both the spins at the ’ ’
domain walls, and the rearrangement occurring in the vibra- W, 0001001000 = p. (4.13

tion has the form ' -
The process corresponds to a two-sites diffusion of the hole

PN PN to the right. Obviously, it is also possible that a hole diffuses
SERT TIT b=l TB Lo (48 two sites to the left, corresponding to the flip of the internal
spin next to the right wall in the vibration,

Afterwards, in the free relaxation, any of the three spins of _

the domain can flip, with the same probability, i.e., 1/3. If it We((010000010 =p. 4.19

is the central spin the one flipping, returning then to its origi-Finally, if the internal spin which flips in the vibration is not
nal state, nothing has occurred globally, and the group igiext to any of the domain walls, it has to return to its original
again in the initial state. On the other hand, if any of thestate in the free relaxation, and there is no global transition in
external spins of the domain flips first, say the one on thehe tap. The obtained transition probabilities up to first order
left, the reached state is not metastable yet. Then, the fré@ p are summarized in Table I. The particle-hole description
relaxation involves another flip, in which the upward spinis used, since it is more convenient for the analysis of the
has necessarily to go down. Therefore, the effective transicompaction process. Therefore, to the lowest order, with only

tion probability for the complete process is one flip during the vibration, the density of particles cannot
5 decrease and compaction takes place. When higher orders
W, =y, 4.9 are retained, processes leading to a decrease of the number of
el LLLLLLLLLITTTLD 3p “.9 particles show up, as it will be discussed below.
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(a) (a)

U =TT

b (b)
83000_172-01010 000000-2~01111043-010010

] ) ) ) FIG. 4. (@) In the vibration, two spins of the domain of length
FIG. 3. (@) Creation of a domain of length=2 in the tapping |7 fip with probability p?, creating three consecutive unstable

process. In the vibration, two conse.(.:utivze spins belonging to0 a dogomains of lengti=1. If, in the subsequent free relaxation, it is
main of lengthl =6 flip with probability p. As a consequence, & e central spin the one which flips, a new stable domain of length

new stable domain of length=2 shows up.(b) The preceding | _3 appears(b) The same trajectory, shown for particles and
trajectory, in the particle-hole picture. holes.

The description of the effective dynamics between metapther kind of second-order processes, we have to include in

stable states is not complete, even qualitatively, if it is re-our approximation corresponds to a transition during the vi-
stricted to the lowest order in In particular, the existence of pration of the form

a steady state characterized by the flipping probability in the

vibration p [13,14] is lost. The Markov process describing e I A U A (4.17

the dynamics between metastable states is not irreducible, -~ - -

and the configuration with all the sites being occupied bywhose probability, to leading order, . In the free relax-
particles is an absorbent stdtE7] of the dynamics. There- ation process, first either one of the underlined spins which
fore, in order to have a more complete description, we aréave just flipped or the one between them flips, the three
led to consider higher orders im i.e., processes involving changes having the same probability. In the former case, the
more than one transition during the vibration. This will be group of spins returns to the initial configuration, all of them
done in a physical way, similar to that of R¢L9]. We are  upwards. On the other hand, if the central spin flips, a new
not going to consider those second-order proce@sesflips  domain of length =3 appears, with probability

in the vibration whose effect can be obtained by means of a

combination of two processes of orderbut only those pro- 1

cesses for which the effective transition probability; van- Wed LLTTTLLILLLLLLD) = §p2. (4.18
ishes to the lowest order. In particular, this is the case for all

those trajectories decreasing the density of particles, as aFhe trajectory leading to this transition is shown in Fig. 4. In
ready mentioned. The inclusion of these processes modifigerms of particles and holes

essentially the physics of the tapping process, so that they
must be taken into account in our effective dynamics.

Then, we will consider that there are two flips take place
in the vibration. As in the free relaxation only transitions
decreasing the energy are allowed, we have to analyze twib is easy to convince oneself that there are no more second-
cases(i) flip of two nearest neighbors spins, afig flip of  order transitions increasing the number of holes, and that any
two spins separated by one site. If the two flipping spins ar®ther second-order process can be decomposed in a product
separated by more than one site, the local free relaxationsf first-order transitions. The new transitions appearing to
associated to each of them are independent, and the resultsscond-order are shown in Table Il. Together with the first-

a product of two first-order transitions. order processes in Table I, they define the approximate ef-

Suppose the transition during the vibration in the clusteffective model for tapping processes we are going to analyze
depicted in Fig. 3, whose probability §2(1—p)*. In the in the following. It is important to note that the introduction
free relaxation no transition can happen, since a metastabi# the second-order processes is fundamental from a physical
domain of lengthl=2 has been created. Therefore, to thepoint of view. The processes described in Figs. 3 and 4, with

1
W, 010010000000 = 3 p2. (4.19

lowest order it is probabilities given by Eqg4.16 and(4.19, are the inverse
of the processes in Figs. 1 and 2, E¢s3) and (4.10), re-
W LLTTLLILLLLLL) =p?, (4.15  spectively. Therefore, the Markov process defined by the
transition probabilities in Tables | and Il is irreducill&7],
or, in the particle-hole picture, i.e., all the states are connected by a chain of transitions with
W,(0101000000 = pz_ (4.16 TABLE Il. Probabilities of the second-order processes between
metastable states leading to an increase of the number of holes.
In order to derive this transition probability it has been as- o .
sumed that the domain which the flipping spins belong ta Process Initial state Final state W
initially is at least of length =6. If it has a smaller length, it Creation of a hole pair 00000 01010  p?
is easily shown that the resulting rearrangement can be ob- 000000 010010 1p2

tained as a combination of two first-order processes. The
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nonzero probability. This property will be fundamental in the so thatX is identified as the compactivity of Edwards’ statis-

analysis of the steady state, presented in the followindical mechanics theory of powdef81,22. The number of

section. holesk plays the role of the volume or, more precisely, the
excess volume from the densest state. The normalization

V. STEADY STATE SOLUTION constantZ is the analog to the partition function. From it, all
the steady properties of the system can be obtained in the
As pointed out above, the Markov process defined by thatandard way.
effective transition probabilities connecting metastable states The calculation ofZ is quite an easy task,
is irreducible[17] and, consequently, there is a unique steady

state for each given value gf. This steady state will be N/2

reached by the system from any initial configuration. Be- z= > Zy, (5.69
sides, it will be shown that the system described by the ef- k=0, k even

fective master equation verifies detailed balance. By using

this property we will be able to obtain the steady distribution Zk=Q(kN)e* KIX (5.6b

analytically. With regards to the original model, the expres-

sion holds in the limit of gently tapped systenps<1, for  with O\ being the number of metastable states witioles
which the effective transition probabilities of Tables | and I for a lattice withN sites. The maximum number of holes is
have been obtained. o _ N/2 (we are assuming that is even, and the number of

will bet a priori on a stationary solutioRg(m) of the master  poundary conditions. A simple combinatorial argument leads
equation for the tapping process verifying the detailed balig

ance condition,

Wed(m|m’)Pg(m’) = Wedm'[m) Pg(m). (5.1) QN N(N—k—1)!

Ko kI(N=2k)! .7

Given the uniqueness of the steady state, if a solution is o ]

found in this way, its own existence will be the proof of the In the largeN limit, the sum in Eq.(5.6a can be evaluated
detailed balance property in the system. Detailed balance inf2y the saddle point method, sinZg has a sharp maximum
plies that all the configurations® having the same number @s @ function ok, with the result

of holesk will be equiprobable, since they are connected
through diffusion processes, which are isotropic. Their prob-
ability will be denoted byP(m®). Moreover, for the pro-
cesses changing the density of the system it is

1+(1+4e )12
2

1
In gzﬁln Z=In (5.8

) ) The number of holes is the property analogous to the energy
Py(m'2) ~ We(m' <2 |mM) —p 5.2 of a molecular system, and the steady hole density reads
- 2 . .

P(m®) W)y (k+2)

Wedm™fm ) g (1+em P2

This expression applies for both pairs of transitions with O LX) 2(1+4e V2

nonzero probability, given by Eq§4.16) and(4.3), and Egs.

(4.19 and (4.10, respectively(see also Tables | and)ll
Consequently,

S

(5.9

It must be stressed th@5=k/N, beingk the value of the
number of holesk for which Z, reaches its maximum. The
steady probability distribution is a very sharply peaked func-

(5.3)  tion aroundk, which assures the equivalence of the micro-
canonical and canonical ensembles for the calculation of the

) o ~mean values of the physical properties in the steady state.
whereZ is a normalization constant, and we have taken intorpe stationary density of holgss=1— D} is a monotonic

account_that the number of holes is always even. Defining fecreasing function of the compactivi As the compac-
new variableX by tivity, given by Eq.(5.4), increases with the vibration inten-
sity p, p° is also a monotonic decreasing function of the

p| X2
z\2) ’

Py(m®)= E(_

o 1X— \/E (5.4) vibration intensity, a behavior analogous to that of real
2’ ' granular systemps,6]. In the limit p<1, Eq. (5.9 reduces
to
the steady probability distribution can be written in the “ca-
nonical” form Dj~e ¥X=p/2. (5.10
P (M) = Ee‘k’x 5.5 In Refs.[13,14), it was found that the steady density of
S 4 ' ' holes for arbitraryp is given by the solution of the equation
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0.25 : ‘ - , ity p. In fact, this is not so surprising, because a similar
behavior was found in the one-dimensional facilitated Ising
0.2 1 model submitted to tapping proces$é&$]. The wide range
of applicability presented by E@5.9) can be understood on
, 015} : physical grounds, by realizing that the effective dynamics
D, approach is not a standard second-order expansion in the
01} 1 flipping probabilityp. Among all the second-order processes,
only those introducing new physically relevant transitions,
0.05 |1 ] i.e., transitions that cannot be written as a combination of
first-order processes, are collected. This physically motivated
0 . ‘ . . expansion allows an analytical approach to the rather diffi-
0 61 02 03 04 05 cult problem of tapping.
p The entropy is defined in the usual way,

FIG. 5. Comparison of the numerical evaluation of the steady N
density of holes, as given by E¢p.11), (circles and the analytical S=— 2 Ps(m)in Pg(m)=—D3+InZ, (5.12
explicit expression obtained from the effective dynamics approach, m X

Eq. (5.9. The agreement is quite good fprs0.15. o ] ] -~ ]
which is an extensive quantity. The specific entropy per site

is
2pq
S S
=[2pq+D (1—4pq)]exr{— :
° ° 2pg+D§(1-4pa) o= 2psiing
N X0
(5.1

with g=1—p. Of course, as Eq5.11) gives the exact value (1+4e " Y12—1 1+ (1+4e )12
of the density of holes, it is symmetric against the change = 2X(1+4e 1X)172 +in 2
p—1—p. In the limit p<1, the above expression yields
D5~ Vp/2, which agrees with the smadllimit of the expres- (5.13

sion obtained from the effective dynamics, E§.9). In Fig. , ) , ) ,
5, we compare the density of holes as a functiorp,0bb- It is ppssmle to define a function analogous to Helmholtz's
tained from Eqgs.(5.9) and (5.12). It is observed that the SPEcific free energy,

agreement is quite good f@=<0.15, i.e., for a steady den- _ S

sity of particlesp®=1-Dy=0.85. On the other hand, the ©==XIn{=Do~Xo, (.14
leading behavior fop<1, Eq.(5.10, only holds for very
small values ofp, p<103, as it is clearly shown in Fig. 6.
Therefore, the accuracy of the results obtained from the ef- d(®/X)
fective dynamics picture extends further than what might be Dg= ax)
expected from a second-order theory in the flipping probabil- (

so that Eq.(5.9 can be expressed

(5.15

The description of the steady state of the TIM and that of
the tapped 1SFM presented in REE9] are closely related.
In both models, the metastable states are the same, namely,
those characterized by having all the holes isolated, i.e., sur-
rounded by two particles. Moreover, in the weak tapping
limit, the steady state probability distribution has the canoni-
cal form in both models. This implies that their “thermody-
namical” properties are the same, when expressed in terms
of the compactivity. Probably, this equivalence does not hold
for stronger tapping, for which the simple description for the
N steady state developed here seems to need some refinements,
10 10° 100 10°  10°  10%  10” as it follows fr_om the numerical experiments reported in
p Refs.[24,27]. Finally, let us note that the number of holes
must be even in the TIM, while the 1SFM is free from this
FIG. 6. Comparison of the numerical evaluation of the steadyrestriction. Of course, this difference becomes irrelevant in
density of holes, as given by the exact solution &g11) (circles, the thermodynamic limit, in which the density of holes is a
the analytical expression obtained from the effective dynamics apeontinuous variable.
proach, Eq.(5.9) (solid line), and their leading behavig6.10 in
the limit p<1 (dashed ling in the interval 108<p<1071. It is
observed that Eq(5.10 only gives a good approximation in the
very weak tapping regimgy=10"3, for which the steady density In the steady state, the only spatial correlations present in
of particlesp®=1—-Dy=0.98. the model are due to the impossibility of having two nearest

D’ 107

0

107

A. Spatial correlations
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neighbor holes. This property can be used to simplify the (N)S DS

calculation of the correlation functions in the steady state. PS= = - (5.223
We introduce two “entities,”« and B8, being « the set (N,+Npg)° 1-Dg

formed by a hole with the particle that is at its right nearest

neighbor site, angB a single particle. Thus, any metastable s (Ng)® 1-2Dj3

configuration is obtained as an, unrestricted, arbitrary permu- = = ' (5.22h

ﬁ_ S_ S
tation of the entitiese and 8. Here we take a very large <N“+N3> 1-Dg
system, so that we do not need to consider periodic boundagyhere we have made use of E.17. Therefore, putting
conditions. We will denote byN, and N the number of together Eqs(5.18—(5.22, we get

entities « and B in a given configuration, respectively.

Therefore, r

(D3)?
1-2D}

1-2D3
1-DS

(5.23

r

(5.16

2N, +Ng=N.

It is obvious thatN, equals the number of holdsin the
configuration, so that the density of entitiesand 8 are
related to the density of hold3,

(5.173

(Ng)
N (5.17b

Xg=——=1-2X,=1-2D,

Since the momenE; equals the probability of finding two
holes separated hyparticles, it is clear that

(5.29

reflecting that two holes must always be separated by at least
one particle. The moments, obey the following “sum
rule,”

o=0,

> F.=D,, (5.29
r=0

where the averages are done over the considered ensemble of

systems.
Since the positions of entities and 8 are independent in

expressing that the sum of the probabilities of finding two
holes separated by an arbitrary number of particles equals the

the steady state, it is very easy to compute stationary correyrobability of finding one hole, i.e.,

lations. For instance, the probability of finding two holes

separated by particles is given by

Fr=(m(1—mgq)---(1- mk+r)mk+r+1>SEXZBr’la'

(5.18

Here,xZB,,la is the steady density of clusters composed by

two entitiesa separated by —1 entitiesB. The number of
entities B is r —1 because the particle in siket-1 together
with the hole in sitek constitute the first entityr. We will

Do={m)=(mpm 1) +{mp(1—my 1))

S— ———
Fo

=Fo+F+{m(1—mp1)(1—myi,))

(5.26

The calculation of other spatial correlations in the steady

Consider that'?l, Since the hOles are iSOIated in the meta'state is Straightforward, by fo”owing a line of reasoning

stable states. It is

Na r—1q
Xaﬁrfla: %,

(5.19

whereN,zr-1, is the number of clusters of the kind indi-

cated above. By definition,
(Nopr-1)=(No)P(B" " tala), (5.20

whereP(B" tala) is the conditional probability of finding
a cluster composed af—1 consecutive entitie® and one
entity « to the right of one entityx. As the entitiesx and 8

similar to the one used to fing}. For instanceF; also
provides the probability of finding a cluster composed by
two entitiesa andr —1 entitiesB, no matter the way they
are ordered, because of the independence of the entities
and g8 in the steady state.

VI. FINAL REMARKS

In this paper we have analyzed a one-dimensional Ising
model with nearest neighbor interactions formulated in a
way appropriated for the study of compaction in granular
media. An equivalent particle-hole description has been in-
troduced, in which the holes are associated to the domain

are independent in the steady state, the stationary value @falls of the original Ising system. The free relaxation of the

this conditional probability is
Py(B" tala)=Py(Bta)=[P3]"*P;, (5.2

whereP?, and P} are the probabilities of finding am and a
B entity in the steady state, respectively. Obviously,

system is modeled by @=0 dynamics[13], which only
allows those spin flips decreasing the energy of the system.
Any configuration with all the holesdomain wallg being
isolated is metastable, i.e., it does not evolve with this

=0 dynamics. The tapping process is described as composed
of two steps:(a) vibration, i.e., starting from a metastable
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configuration, each spin of the system is flipped with prob-ing metastable configurations are not equivalent, the steady
ability p, and (b) the system freely relaxes with tHE=0 state is described in both cases by the canonical distribution.
dynamics until it reaches a, in general, different metastabl@he role of the energy is played by the number of holes and
configuration. The parameter characterizing the tapping prathat of the temperature by Edwards’ compactivity, which is
cess is the “vibration intensityp. related to the vibration intensity by an Arrhenius-like expres-
In the particle-hole description, the dynamicsTat0 is  sion. In this way, we find a sort of “minimal” model for
analytically solvable, by writing a closed hierarchy of equa-Edwards’ description of the steady state of externally per-
tions for the probability distribution function®, of finding  turbed granular media: a one-dimensional system of particles
r+1 consecutive holes in the systddB]. In the long time  and holes, with the metastable states characterized by having
limit, the system gets stuck in a state wh&e=0 for all  all the holes isolated, and a canonical probability distribution
r>1, i.e., all the holes are isolated, as indicated above. function. Nevertheless, in order to have an actually complete
Tapping is a rather complex process, since each tap igescription of the steady state, a relationship between the
composed of two neatly different processes: vibration angarameters characterizing the statics and the dynamics of the
free relaxation. In order to get a physical insight into thesystem, i.e., between the compactivity and the vibration in-
mechanisms responsible for the behavior of the system undégnsity, is needed. Then, it is also necessary to derive the
tapping, the derivation of theffectivetransition probabilities effective dynamics from the underlying original models
for the Markov process connecting the metastable statedIM, 1SFM, etc), when trying to understand the steady
reached by the system in two consecutive taps is needed. Biate behavior.
general, this is a formidable task, but in the limit of a gently The effective dynamics approach between metastable
tapped system these transition rates between metastalsitates has been shown to be a powerful tool, in order to study
states can be computed up to the second-order in the steady state of models for granular systems submitted to
In the first order, the only possible transitions are diffu-tapping processes. It allows to identify the physical mecha-
sion and destruction of a hole pair. Then, compaction takepisms responsible for the increase of the density, and also for
place, since there are no processes decreasing the densitytbe¢ existence of a steady state characterized by a density
particles in the system to the lowest order. To describe théeing a monotonic decreasing function of the vibration in-
steady state, second-order processes must be taken into &nsity. In simple models, the calculations can be thoroughly
count, so as to have transitions that increase the number @bne in the limit of gentle tapping, deriving analytically the
holes. Interestingly, these transitions are just the inverse dfteady state distribution. The results so obtained are consis-
those decreasing the number of holes to the lowest ordetent with recent extensive numerical tests of Edwards’ hy-
Therefore, the Markov process is irreducible, i.e., all thepothesis in simple systeni$3,24—-27, although the system-
metastable configurations are connected through a chain @fic deviations found for stronger tappifg4,27] cannot be
transitions with nonzero probability. As a consequence, theraccounted for within the second-order theory developed in
is an unique, well-defined, steady probability distribution forthis paper and in Ref19]. This would need an extension of
each value of. Besides, the effective transition rates verify the effective dynamics approach to the whole range of vibra-
detailed balance. This property has been used to derive tHn intensities, which is certainly not an easy task. Never-
steady distribution analytically, finding that it has the canoni-theless, it is hard to believe that the simple structure of the
cal form. Thus, a relationship between Edwards’ compactiviransition probabilities of the effective dynamics should re-
ity and the vibration intensityp is obtained, in the limit of main unaltered for stronger tapping, i.e., deviations from the

weak tapping. simple canonical distribution found here are to be expected.
The system analyzed in this paper, as formulated for mod-
eling tapped granular media, is closely related to the one- ACKNOWLEDGMENT
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