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Model for granular texture with steric exclusion
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We propose a method to characterize the geometrical texture of a granular packing at the particle scale
including the steric hindrance effect. This method is based on the assumption of a maximum directional
disorder~statistical entropy! compatible with both the strain-induced anisotropy of the contact network and
steric exclusions. We show that the predicted statistics for the local configurations are in fairly good agreement
with our numerical data.
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I. INTRODUCTION

Modeling granular media from a microscopic standpo
poses a difficult problem: How does the spatial organizat
of particles control the behavior at the macroscopic scale
basic observation is that the flow and failure properties
granular materials arise mainly from the geometrical frus
tion of particles induced by contact, friction, and exclude
volume effects@1#. For this reason, the rheology is likely t
depend on more subtle structural properties than that enc
tered in other multibody materials or models of disorde
media@2#.

A very elementary effect of mutual exclusions is that
particle may be simultaneously touched by only a few nei
boring particles. The coordination number~the number of
touching neighbors! cannot exceed six in a two-dimension
~2D! assembly of particles of nearly the same size and 1
a 3D packing. Theselocal environmentsfluctuate strongly in
space in terms of both coordination numbers and the ang
positions of the neighbors.

Another important observation is that the relative angu
positions of the particles, i.e., the directions of contact n
mals, are not isotropically distributed@3,4#. Due to this struc-
tural anisotropy, the strength of a granular material is dep
dent on strain orientation. In the language of plasticity, t
means that the texture anisotropy, along with dilatancy,
haves as an internal variable for strain-stress characteri
of the material. This observation shows the central role of
contact network and its directional organization for granu
media.

The adequate description of local environments acco
ing for the geometrical features mentioned above, name
combination of excluded-volume constraints, disorder, a
anisotropy, is a crucial step in tracing back the rheology
granular materials to the particle scale. Consider, for
stance, a granular packing in static equilibrium. The fo
balance on a particle involves the angular positions of
contact neighbors belonging to the local environment of
particle. The requirement that two neighbors may not occ
angular positions closer than a finite angledu ~approxi-
matelyp/3 for particles of nearly the same size; see Fig.!
drastically reduces the accessible equilibrium configurati
of the contact neighbors and hence those of the whole p
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ing. This effect is obviously enhanced at incipient failure a
for large anisotropies. While the texture anisotropy has b
considered by several authors as a fundamental struc
factor for the behavior of granular materials@3#, the key role
of steric exclusions has almost always been disregarde
this context.

In this paper, we propose a statistical model of local e
vironments that incorporates steric hindrances, disorder,
structural anisotropy. We apply this model to a tw
dimensional packing and we solve the resulting equati
The predicted statistics for local environments will then
compared with raw data from numerical simulations.

II. DESCRIPTION OF GRANULAR TEXTURE

Let us consider the simple model of a 2D packing of rig
disks. In simulations or experiments in 2D geometry, a we
polydispersity is necessary to avoid local crystalline order
our theoretical description, as we shall see below, the g
metrical disorder is explicitly taken into account through t
coordination number and the contact directions. We may t
assume that the particles are of the same size, and the s
hindrance will be characterized by a single exclusion an
du5p/3.

A. Global texture

The directional organization of the contact network is d
scribed by the probability density function~PDF! of contact

FIG. 1. Schematic representation of a particle environment w
z54 contact neighbors. The angleu i is the angular position of
particle i anddu is the exclusion angle.
©2002 The American Physical Society05-1
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normalsp(u) @6–9#. This is the probability that a particle
has a contact alongu, the polar angle of the contact norm
nW ; Fig. 1. This distribution is induced by the relative motio
of the particles, reflecting thus the deformation history or
dynamics of the preparation process. The functionp(u) is p
periodic ~no intrinsic orientation can be attributed to a co
tact!. It is often assumed thatp(u) can be approximated b
its truncated Fourier transform@8#

p~u!5
1

p
$11a cos 2~u2up!%, ~1!

wherea represents the texture anisotropy andup is the aver-
age contact direction. This functional form is reasonable
a simple deformation history, but it may considerably devi
from this simple form otherwise@7,9,10#. In order to bypass
a particular fitting form such as Eq.~1! for characterizing the
anisotropy, one may consider instead the ‘‘fabric tensor’F
[^nW ^ nW & where the angular brackets denote averaging o
all contacts in a representative element of volume, and^ is
the dyadic product@11,12#. Then, the texture anisotropya is
defined to bea52uF12F2u whereF1 andF2 are the eigen-
values ofF.

A richer description of the texture is provided by the PD
f z(u) that a particle withz contact neighbors has one neig
bor at the angular positionu. This function is defined ove
the range@0,2p# and it can be Fourier expanded, as in E
~1!, but the corresponding anisotropy coefficients now w
depend onz. At leading order inu, we have

f z~u!5
1

2p
$11az cos 2~u2uz!%. ~2!

It is important to point out here that the steric exclusio
do not allow for arbitrary global distributionsf z . For f z de-
fined by Eq.~2!, the anisotropyaz could take any values in
the range@0,1# (az>1 implies negative values off z for
some directions, whereas negative values can be avoide
turning uz into uz1p/2). Nevertheless, the steric exclusio
impose an upper boundamax on the anisotropy. Indeed, a
most one contact can be found within an angular secto
p/3 around a particle, i.e.,

E
u2p/6

u1p/6

z fz~u!du<1, ~3!

which together with the expression off z given Eq.~2! yields

amax~z!5
4p

A3
S 1

z
2

1

6D . ~4!

This shows thatamax decreases with increasingz and be-
comes zero forz56. In order to evaluatef z for a granular
sample, the subset of particles withz contacts are to be
singled out. Our numerical simulations show thataz , cal-
culted for these subsets, indeed decreases with increasz
@13#.
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B. Local texture

The above PDF’s are, however, insufficient to repres
the local environments. A complete description requires
coordination numberz of a particle and the angular position
u1 , . . . ,uz of its contact neighbors. The particle enviro
ments are then characterized by amulticontact PDF
gz(u1 , . . . ,uz). This is a 2p-periodic function. By defini-
tion, the integration ofgz over all angles but one,uk , should
give back the global distributionf z(uk) introduced above:

E
Ez(k)

gz~$u i%!d$u i% iÞk5 f z~uk!, ~5!

whereEz(k) is the domain corresponding to integration fro
0 to 2p over all theu i exceptuk .

III. THE MODEL

Here, we would like to construct the local PDF’sgz($u i%)
from the global distributionf z(u). Of course, the solution is
not unique sincegz contains much richer information tha
doesf z . The point, however, is to get a solution that inco
porates the required local information with no bias toward
particular solution. In the absence of local steric constrai
the mostunbiasedsituation implies

gz~u1 , . . . ,uz!5)
i 51

z

f z~u i !. ~6!

In our case, this solution is wrong since the steric exclusi
require

gz~$u i%!50 if uu i2u j u,p/3, ~7!

for iÞ j . However, this basic requirement is not met by t
above solution.

The solution that we propose is still to resort to a simi
least biased assumption, provided the above steric c
straints are taken into account. This solution allows us
take into account the intrinsic disorder of the granular m
dium incorporating at the same time the required informat
~steric constraints and anisotropy!. But it is clear that this
approximation cannot be verified otherwise than by comp
ing the resulting solutions with suitable experiments or n
merical simulations.

Operationally, this solution translates into the maximiz
tion of an entropy functionalS@gz# under constraints. Ac-
cording to Shannon’s entropy, we have

S@gz#52E
Dz

gz~$u i%!ln@gz~$u i%!#d$u i%, ~8!

whereDz5(@0,2p#)z is the integration domain. This func
tional should be maximized over the set of functions th
satisfy both the steric exclusions Eq.~7! and the normaliza-
tion conditions Eq.~5!. We note that the entropy formalism
as a basic statistical tool, has been previously applied
5-2
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granular materials in order to characterize other aspects
random packing such as the coordination number and
void ratio @14#.

Equation~7! implies that the maximization ofSshould be
restricted to a domainAz ~insideDz) allowed by steric ex-
clusions. Indeed, the maximization applies only to the la
ing information, and here the value ofgz is already known
(gz50) for the angles belonging to the excluded regionBz
5Dz2Az . Thus, this restriction accounts for the steric co
straints. The normalization conditions@Eq. ~5!# can be im-
posed through Lagrange multipliers. This leads to the ma
mization of the functional

T@gz#5S@gz#2(
i 51

z E
0

2p

l i~u i !Ci@gz#du i ~9!

over Az , where thel i(u i) are the Lagrange multipliers an

Ci@gz#5 f z~u i !2E
Ez( i )

gz~$u i%!d$uk%kÞ i . ~10!

The solution of the above equation can be determined
setting the functional derivative ofT@gz# to zero. Let us
remark that here the only correlations among the angles
the steric exclusions themselves. This means that the an
u i can be considered as independent variables when the
restricted to the allowed domainAz . As a consequence, th
solution is given by a product of identical functionsh of a
single angle in the allowed domain. Thus, the general s
tion takes the following form:

gz~$u i%!5S)
iÞ j

G~u i2u j ! D )
k51

z

hz~uk!, ~11!

whereG(u) is a 2p-periodic function such thatG(u)50 for
uuu,p/3, andG51 otherwise. These prefactors take care
the steric exclusions. Note that, in the absence of steric
clusions, we would haveG51 for all angles and the solutio
~6! would be recovered withhz(u)[ f z(u).

The functionhz is fixed by the normalization condition
~5!. In terms ofh, this condition takes the form of the fol
lowing implicit equation:

E
Az( i )

)
k51

z

hz~uk!d$u j% j Þ i5 f z~u i !, ~12!

whereAz( i )5Ez( i )ùAz . This equation can be used for
numerical computation ofhz for a given f z .

We used an iterative scheme over the functionsun(u)
satisfying

un11~u1!

5eun1~12e!
f z~u1!

E
Az(1)

un~u2!•••un~uz!du2•••duz

,

~13!
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wheree is a relaxation parameter. The solutionhz of Eq. ~12!
is simply a fixed point of the latter recursion. This iterativ
process converges quite smoothly to the solution when
latter exists and its convergence domain matches exactly
set of admissible values of the anisotropy given by Eq.~4!.
One example is shown in Fig. 2: The functionh3(u) was
computed according to the above procedure withf 3(u) given
by Eq.~2! for z53 anda350.3. We see thath3 has the same
monotony asf 3, but it deviates from a simple sinusoida
form.

IV. COMPARISON WITH SIMULATIONS

Of course, it is desirable to compare the multicontact d
tributions gz predicted by the above approach with dire
data from experimental or numerical observations. Howe
a sufficient statistical precision requires very large samp
In fact, given a granular sample, the subset of particles w
z contacts should be considered. Assuming that in a 2D s
tem of disks the number of particles is the same for each
the prevailing values 3, 4, and 5 ofz, then only nearly one-

FIG. 2. The functionh3(u) calculated forf 3(u) with a350.3 by
solving Eq.~13!.

FIG. 3. Distribution f 4(u), represented in polar coordinate
evaluated for a simulated sample under simple shear~circles! and
fitted by a simple sinusoidal form~solid curve!.
5-3
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third of particles will be available for the evaluation ofgz .
On the other hand, subdividing the interval@0,2p# into n
angular sectors and requiring on averagem events in each
elementary box in@0,2p#z, one needs a sample ofm(nz)

FIG. 4. Probability density functionp(Du) of the differenceDu
between the angular positions of contact neighbors of a par
with z53 ~a!, z54 ~b!, andz55 ~c!, as predicted by our model an
evaluated by means of numerical simulations.
04130
contacts, or approximately (2m/z)nz particles. Forz54, n
520, andm5100, this amounts to 83106 particles. This is
inaccessible in practice with present-time computat
power.

Nevertheless, we still may get a reliable comparison
focusing on the distributionspd(Du) of the differenceDu
5uu12u2u between contact directions extracted from p
distributionsp2(u1 ,u2). The latter was calculated from bot
numerical samples and the theoretical estimation ofgz . To
do this, we performed numerical simulations of a system
4000 particles with biperiodic boundary conditions by mea
of the molecular dynamics method. We used a visco
regularized Coulomb friction law and a linear spring-dash
model for particle interactions@5#. The coefficient of friction
was 0.5 and the particle radii were uniformly distributed b
tweenR1 andR2 with R252R1. The system was subjecte
to simple shearing and because of the biperiodic bound
conditions we were able to keep shearing in the steady s
for very large strains without wall effects. The global stead
state anisotropya calculated from the fabric tensor was abo
0.13.

The global PDF’sf z obtained from these simulations wi
be used below as input to the model for comparison w
simulations. For the sake of illustration, in Fig. 3 we ha
shownf 4(u) in polar coordinates corresponding to the sub
of particles in the numerical sample with four contact neig
bors. We see that a simple fitting form such as Eq.~2! may be
used as a reasonable approximation as long as the aniso
a4 is is the relevant information for the texture. For compa
son with the model, we preferred, however, to use the
merical PDF’sf z as input to the model for the calculation o
gz in order to avoid discrepancies arising from the input da
We emphasize that our main concern in this paper is not
shape of the global PDF’sf z or p, but the relation between
these global distributions and the local multicontact PD
gz .

le

FIG. 5. Representation of a typical particle environment w
z53 contact neighbors. The force balance requirement here i
important as the steric hindrances.
5-4
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The distributionpd was calculated over accumulated da
from several well-separated snapshots of the steady stat
the set of particles with coordination numberz. For the the-
oretical evaluation ofpd , f z(u) as input for the calculation o
gz following our model was used. Then, the distributionsp2
andpd were extracted fromgz .

In Fig. 4 we have plotted the theoretical and numericalpd
as a function ofDu for z53, z54, andz56. Although only
the geometrical constraints are taken into account for
theoretical construction ofgz ~no force considerations!, we
see that the predicted distributionspd for both z54 andz
55 fit the numerical data fairly well . The fit is better fo
z55 than forz54. On the other hand, the fit forz53 is
much less satisfactory. The numerical curves show additio
peaks around 2p/3 and 4p/3 for z53. These peaks clearl
correspond to configurations such as the one shown in Fi
Such configurations happen frequently since they satisfy
the force balance for a particle with only three contact nei
bors, whereas the model incorporates only steric constra
at the particle scale in addition to the global texture anis
ropy. In fact, in going fromz53 to z55, the requirement of
force balance becomes less and less stringent, while s
exclusions increasingly dominate the behavior.

V. CONCLUDING REMARKS

Our results suggest that, even if only the steric exclusi
are taken into account at the particle scale, a satisfac
,
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evaluation of the statistics of local environments in terms
the functionsgz can be obtained at least forz54 andz55.
The steric exclusions control to a large extent the local d
tributions ~Fig. 4! and reduce the range of admissib
anisotropies@Eq. ~4!#.

A natural extension of our model, at the cost of addition
parameters, is to include force balance as well as steric
clusions at the particle scale. Then, both contact directi
and contact forces should be considered in the model.
forces are coupled to a local stress tensor in the same wa
the contact directions were coupled to the fabric tensor. T
entropy of local distributions is then maximized taking in
account constraints arising from steric exclusions and
force balance requirement, as well as contact laws suc
the positivity of normal forces and Coulomb’s law of fric
tion.

Apart from its importance in itself as a general model f
granular texture including steric exclusions, the character
tion of the texture in terms of local environments is a cruc
step in order to relate the macroscopic behavior to the p
ticle scale. For example, the range of admissible stresses
be studied by considering representative configurations g
erated according to the multicontact statistics of local en
ronments@13#. A similar procedure based on entropy forma
ism may be applied as well to other relevant microsco
configurations, such as cells composed of contiguous
ticles that carry local strains.
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