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Model for granular texture with steric exclusion
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We propose a method to characterize the geometrical texture of a granular packing at the particle scale
including the steric hindrance effect. This method is based on the assumption of a maximum directional
disorder (statistical entropy compatible with both the strain-induced anisotropy of the contact network and
steric exclusions. We show that the predicted statistics for the local configurations are in fairly good agreement
with our numerical data.
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[. INTRODUCTION ing. This effect is obviously enhanced at incipient failure and
for large anisotropies. While the texture anisotropy has been
Modeling granular media from a microscopic standpointconsidered by several authors as a fundamental structural

poses a difficult problem: How does the spatial organizatiorfactor for the behavior of granular materigf, the key role
of particles control the behavior at the macroscopic scale? Rf Steric exclusions has almost always been disregarded in

basic observation is that the flow and failure properties ofhis context.

granular materials arise mainly from the geometrical frustra—V iréﬂr;hel?ltrs)a}tﬂz' i\rluvc?ofrgfaot: ;s:%t'ﬁﬁfﬁawggsel doi;clj?gglr e;r; d
tion of particles induced by contact, friction, and excluded- P ' '

. L structural anisotropy. We apply this model to a two-
volume effectd1]. For this reason, the rheology is likely to dimensional packing and we solve the resulting equation.

?epzn_d or:hmore Sﬁ‘.g“% struc:urgllpropertlzs lthar} tg.at e:co%%e predicted statistics for local environments will then be
ered in other multibody materials or models ot disordere compared with raw data from numerical simulations.

media[2].

A very elementary effect of mutual exclusions is that a Il. DESCRIPTION OF GRANULAR TEXTURE
particle may be simultaneously touched by only a few neigh- . _ ) o
boring particles. The coordination numbghe number of Let us consider the simple model of a 2D packing of rigid

touching neighbopscannot exceed six in a two-dimensional disks. In simulations or experiments in 2D geometry, a weak
(2D) assembly of particles of nearly the same size and 12 ipolydispersity is necessary to avoid local crystalline order. In
a 3D packing. Theskcal environment§luctuate strongly in  our theoretical description, as we shall see below, the geo-
space in terms of both coordination numbers and the anguldnetrical disorder is explicitly taken into account through the
positions of the neighbors. coordination number and the contact directions. We may thus

Another important observation is that the relative angula@ssume that the particles are of the same size, and the steric
positions of the particles, i.e., the directions of contact norhindrance will be characterized by a single exclusion angle
mals, are not isotropically distribut¢@,4]. Due to this struc- 960=m/3.
tural anisotropy, the strength of a granular material is depen-
dent on strain orientation. In the language of plasticity, this
means that the texture anisotropy, along with dilatancy, be- The directional organization of the contact network is de-
haves as an internal variable for strain-stress characteristiegribed by the probability density functig®DF) of contact
of the material. This observation shows the central role of the
contact network and its directional organization for granular
media.

The adequate description of local environments account-
ing for the geometrical features mentioned above, namely, a
combination of excluded-volume constraints, disorder, and
anisotropy, is a crucial step in tracing back the rheology of
granular materials to the particle scale. Consider, for in-
stance, a granular packing in static equilibrium. The force
balance on a particle involves the angular positions of the
contact neighbors belonging to the local environment of the
particle. The requirement that two neighbors may not occupy
angular positions closer than a finite ang¥ (approxi-
mately /3 for particles of nearly the same size; see Fig. 1  FIG. 1. Schematic representation of a particle environment with
drastically reduces the accessible equilibrium configurationg=4 contact neighbors. The angl is the angular position of
of the contact neighbors and hence those of the whole paclparticlei and 86 is the exclusion angle.

A. Global texture
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normalsp(#) [6—9]. This is the probability that a particle B. Local texture
Plas a contact along, the polar angle of the contact normal The above PDF’s are, however, insufficient to represent
n; Fig. 1. This distribution is induced by the relative motions the local environments. A complete description requires the
of the particles, reflecting thus the deformation history or thecoordination numbez of a particle and the angular positions
dynamics of the preparation process. The funcpés) is7  ¢,, ... .8, of its contact neighbors. The particle environ-
periodic (no intrinsic orientation can be attributed to a con-ments are then characterized by raulticontact PDF
tach. It is often assumed thai(#) can be approximated by g,(6,, ...,6,). This is a 2r-periodic function. By defini-
its truncated Fourier transfori] tion, the integration ofj, over all angles but one),., should
1 give back the global distributiof,(6,) introduced above:

p(0)=;{1+ac0516— 0p)}, (1)
fgz(k)gz({ai})d{ﬁi}i;&k:fz(ak), 5
wherea represents the texture anisotropy ahds the aver-
age contact direct.ion. This functipnal form is reasonable' fo'i/vheregz(k) is the domain corresponding to integration from
a simple deformation history, but it may considerably deviatey o 277 over all thed; except, .
from this simple form otherwisg7,9,10. In order to bypass

a particular fitting form such as E(l) for characterizing the
anisotropy, one may consider instead the “fabric tender”

=(n®n) where the angular brackets denote averaging over Here, we would like to construct the local PDRL{6:})

all contacts in a representative element of volume, @nis  from the global distributiorf,(#). Of course, the solution is

the dyadic producit11,12. Then, the texture anisotro@yis  not unique sincey, contains much richer information than

defined to bea=2|F;—F,| whereF, andF, are the eigen- doesf,. The point, however, is to get a solution that incor-

values ofF. porates the required local information with no bias toward a
Arricher description of the texture is provided by the PDF particular solution. In the absence of local steric constraints,

f,(6) that a particle withz contact neighbors has one neigh- the mostunbiasedsituation implies

bor at the angular positiod. This function is defined over

the rangd 0,27] and it can be Fourier expanded, as in Eq. z

(1), but the corresponding anisotropy coefficients now will g,(64, ... ,02)=H f,(6,). (6)

depend ore. At leading order inf, we have =1

Ill. THE MODEL

1 In our case, this solution is wrong since the steric exclusions
fz(a)zﬁ{lJraZcosZ(a— 0,)}. (2)  require

It is important to point out here that the steric exclusions 9.{6:)=0 if |6;—6;/<m/3, 0

do not allow for arbitrary global distributiorfs,. For f, de-
fined by Eq.(2), the anisotropya, could take any values in ;
the range[0,1] (a,>1 implies negative values of, for ~ @Pove solution. L .
some directions, whereas negative values can be avoided by 1he solution that we propose is still to resort to a similar
turning 6, into 6,+ /2). Nevertheless, the steric exclusions [€ast biased assumption, provided the above steric con-
impose an upper bound,,,, on the anisotropy. Indeed, at straints are taken into account. This solution allows us to

most one contact can be found within an angular sector o‘i"’,‘ke i_nto account the intrinsic d_isorder of th_e grf";mular me-
713 around a particle, i.e dium incorporating at the same time the required information

(steric constraints and anisotrgpyBut it is clear that this

for i #j. However, this basic requirement is not met by the

0+ /6 approximation cannot be verified otherwise than by compar-
J zf,(0)do<1, (3)  ing the resulting solutions with suitable experiments or nu-
o= ml6 merical simulations.

. _ . _ _ Operationally, this solution translates into the maximiza-
which together with the expression bfgiven Eq.(2) yields  tion of an entropy functionag,] under constraints. Ac-
cording to Shannon’s entropy, we have

(2 477(1 l) 7
aAmax2)=—=|=-—=|.
z 6

E Sta-- | adobiiadanisn), @
This shows thaia,,,, decreases with increasingand be-
comes zero foz=6. In order to evaluaté, for a granular where D,=([0,27])? is the integration domain. This func-
sample, the subset of particles withcontacts are to be tional should be maximized over the set of functions that
singled out. Our numerical simulations show tlagt cal-  satisfy both the steric exclusions EJ) and the normaliza-
culted for these subsets, indeed decreases with increasingion conditions Eq(5). We note that the entropy formalism,
[13]. as a basic statistical tool, has been previously applied to
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granular materials in order to characterize other aspects of a [ ' '
random packing such as the coordination number and the —f
void ratio[14]. - h

Equation(7) implies that the maximization & should be
restricted to a domaitd, (inside D,) allowed by steric ex-
clusions. Indeed, the maximization applies only to the lack-
ing information, and here the value gf is already known
(g,=0) for the angles belonging to the excluded regi®n
=D,— A,. Thus, this restriction accounts for the steric con-
straints. The normalization conditiof&q. (5)] can be im-
posed through Lagrange multipliers. This leads to the maxi-
mization of the functional

o/n

z 2 . .
T[9,]=Sg,]— Z‘l J'O \i(6)Ci[g,]d6, 9) SOI\I/:iInC;. é.qj('i%.functlomﬂe) calculated forf 5(6) with az=0.3 by
over A,, where the\;(#;) are the Lagrange multipliers and wheree is a relaxation parameter. The solutiepof Eq. (12)
is simply a fixed point of the latter recursion. This iterative
process converges quite smoothly to the solution when the
(i)gz({ai})d{ Oktii - 10 |atter exists and its convergence domain matches exactly the
set of admissible values of the anisotropy given by E&g.

The solution of the above equation can be determined b§Pne example is shown in Fig. 2: The functibg(6) was
setting the functional derivative of[g,] to zero. Let us computed according to the above procedure i) given
remark that here the only correlations among the angles af®y Eq.(2) for z=3 anda;=0.3. We see thdi; has the same
the steric exclusions themselves. This means that the angléonotony asfs, but it deviates from a simple sinusoidal
0, can be considered as independent variables when they al@rm.
restricted to the allowed domaify,. As a consequence, the

Cilg.l=1.6)— ,L

z

solution is given by a product of identical functiohsof a IV. COMPARISON WITH SIMULATIONS
single angle in the allowed domain. Thus, the general solu-
tion takes the following form: Of course, it is desirable to compare the multicontact dis-

tributions g, predicted by the above approach with direct

z data from experimental or numerical observations. However,

9.({6}) = ( I ceo- 9J)) [T h,(60, (1)  a sufficient statistical precision requires very large samples.

' k=1 In fact, given a granular sample, the subset of particles with

. I . _ z contacts should be considered. Assuming that in a 2D sys-

r\éTiﬁ%(, 2#32:271'23:';3\'/?;:n.?;'gg::f;;gfr(ft)aig (tgrre Oftem of digks the number of particles is the same for each of

the steric exclusions. Note that, in the absence of steric ext-he prevailing values 3, 4, and 5 fthen only nearly one-
clusions, we would hav&=1 for all angles and the solution

(6) would be recovered with,(0)=f,(6).

The functionh, is fixed by the normalization condition
(5). In terms ofh, this condition takes the form of the fol-

lowing implicit equation:

—e—-G'\

Q

z 9
Az(i)k[ll h(6)d{6;};1=1.(6,), (12) 95 Q
Q ®
where A,(1)=¢&,(1)N.A,. This equation can be used for a \ 4
numerical computation dfi, for a givenf,. RN 95
1

We used an iterative scheme over the functioné6)
satisfying

Unt1(61)

f,(0 B -
=eu,t+(1—¢) (6:) o--C

fA (l)un(‘92)' “Un(6,)d6;- - -do, FIG. 3. Distribution f4(6), represented in polar coordinates,
z evaluated for a simulated sample under simple skeesles and
(13 fitted by a simple sinusoidal forrsolid curve.
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(a)

T T T T T T T T T I

&-o simulations
-- theory

(b)

&-o simulations FIG. 5. Representation of a typical particle environment with
-- theory z=3 contact neighbors. The force balance requirement here is as
important as the steric hindrances.

0.2 -

& | contacts, or approximately (2z)n* particles. Forz=4, n
o\ 7\ =20, andm= 100, this amounts to 8 1C° particles. This is
01k 1 P40 "W / | inaccessible in practice with present-time computation
Nt W, power.
| | Nevertheless, we still may get a reliable comparison by
focusing on the distributionpy(A 8) of the differenceA
T =|6,— 0,| between contact directions extracted from pair
1 2 3 4 5 6 distributionsp,( 64, 6,). The latter was calculated from both
(0, —0,)/(n/3) numerical samples and the theoretical estimatioig,of To
do this, we performed numerical simulations of a system of
() 4000 particles with biperiodic boundary conditions by means
r T T of the molecular dynamics method. We used a viscous-
e-o simulations regularized Coulomb friction law and a linear spring-dashpot
model for particle interactions]. The coefficient of friction
was 0.5 and the particle radii were uniformly distributed be-
tweenR; andR, with R,=2R;. The system was subjected
to simple shearing and because of the biperiodic boundary
conditions we were able to keep shearing in the steady state
for very large strains without wall effects. The global steady-
state anisotropg calculated from the fabric tensor was about
0.13.

The global PDF'S, obtained from these simulations will
be used below as input to the model for comparison with
simulations. For the sake of illustration, in Fig. 3 we have
(0, — 0,)/(1/3) shownf4(6) in polar coordinates corresponding to the subset
of particles in the numerical sample with four contact neigh-
bors. We see that a simple fitting form such as ymay be
used as a reasonable approximation as long as the anisotropy
Q4 is is the relevant information for the texture. For compari-
son with the model, we preferred, however, to use the nu-
merical PDF’sf, as input to the model for the calculation of
g, in order to avoid discrepancies arising from the input data.
third of particles will be available for the evaluation gf. We emphasize that our main concern in this paper is not the
On the other hand, subdividing the internjd, 2] into n  shape of the global PDF’8, or p, but the relation between
angular sectors and requiring on averagesvents in each these global distributions and the local multicontact PDF's
elementary box inf0,27]% one needs a sample af(n?)  g,.

FIG. 4. Probability density functiop(A ) of the differencel 0
between the angular positions of contact neighbors of a particl
with z=3 (a), z=4 (b), andz=5 (c), as predicted by our model and
evaluated by means of numerical simulations.

041305-4



MODEL FOR GRANULAR TEXTURE WITH STERIC EXCLUSION PHYSICAL REVIEW B6, 041305 (2002
The distributionpy was calculated over accumulated dataevaluation of the statistics of local environments in terms of
from several well-separated snapshots of the steady state ftite functionsg, can be obtained at least far=4 andz=5.
the set of particles with coordination numt®rFor the the-  The steric exclusions control to a large extent the local dis-
oretical evaluation opy,f,(6) as input for the calculation of  tributions (Fig. 4 and reduce the range of admissible
g, following our model was used. Then, the distributigns  anisotropiegEq. (4)].
andpy were extracted frong, . A natural extension of our model, at the cost of additional
In Fig. 4 we have plotted the theoretical and numenxal  parameters, is to include force balance as well as steric ex-
as a function ofA ¢ for z=3, z=4, andz=6. Although only  ¢lysjons at the particle scale. Then, both contact directions
the geometrical constraints are taken into account for th@ng contact forces should be considered in the model. The
theoretical construction of, (no force considerationswe  forces are coupled to a local stress tensor in the same way as
see that the predicted distributiopg for bothz=4 andz  he contact directions were coupled to the fabric tensor. The
=5 fit the numerical data fairly well . The fit is better for onio0y of local distributions is then maximized taking into

z=5 than forz=4. On the other hand, the fit fa=3 s ccount constraints arising from steric exclusions and the

much less satisfactory. The numerical curves show additionaﬁJrce balance requirement, as well as contact laws such as
peaks around 2/3 gnd 477/3 forz=3. These peaks c!ear!y he positivity of normal forces and Coulomb’s law of fric-
correspond to configurations such as the one shown in Fig. on

Such configurations happen frequently since they satisfy best o -

the force balance for a particle with only three contact neigh- Apart from |ts.|mpor_tance N itself asa general model for
bors, whereas the model incorporates only steric constrain%ranmar texture mpludmg steric exclus_lons, the characten_za—
at the particle scale in addition to the global texture anisot!On Of the texture in terms of local environments is a crucial
ropy. In fact, in going fronz=3 to z=5, the requirement of step in order to relate the macroscopic behavior to the par-

force balance becomes less and less stringent, while sterf¢!e scale. For example, the range of admissible stresses can

exclusions increasingly dominate the behavior.

V. CONCLUDING REMARKS

be studied by considering representative configurations gen-
erated according to the multicontact statistics of local envi-
ronmentq 13]. A similar procedure based on entropy formal-
ism may be applied as well to other relevant microscopic

Our results suggest that, even if only the steric exclusionsonfigurations, such as cells composed of contiguous par-
are taken into account at the particle scale, a satisfactorijcles that carry local strains.
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