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Method of moments for the dilute granular flow of inelastic spheres
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Some peculiar features of granular materigisiooth, identical spherem rapid flow are the normal pres-
sure differences and the related anisotropy of the velocity distribution funtiarkinetic theories have been
proposed that account for the anisotropy, mostly based on a generalization of the Chapman-Enskog expansion
[N. Sela and I. Goldhirsch, J. Fluid MecB61, 41 (1998]. In the present paper, we approach the problem
differently by means of the method of moments; previously, similar theories have been constructed for the
nearly elastic behavior of granular matter but were not able to predict the normal pressures differences. To
overcome these restrictions, we use as an approximation dftha truncated series expansion in Hermite
polynomials around the Maxwellian distribution function. We used the approximiéfédo evaluate the
collisional source term and calculated all the resulting integrals; also, the difference in the mean velocity of the
two colliding particles has been taken into account. To simulate the granular flows, all the second-order
moment balances are considered together with the mass and momentum balances. In balance equations of the
Nth-order moments, theN+ 1)th-order momentgand their derivativesappear: we therefore introduced
closure equations to express them as functions of lower-order moments by a generalization of the “elementary
kinetic theory,” instead of the classical procedure of neglecting M¢ {)th-order moments and their deriva-
tives. We applied the model to the translational flow on an inclined chute obtaining the profiles of the solid
volumetric fraction, the mean velocity, and all the second-order moments. The theoretical results have been
compared with experimental ddt&. Azanza, F. Chevoir, and P. Moucheront, J. Fluid Mekd0, 199 (1999;
T. G. Drake, J. Fluid Mech225, 121 (1991)] and all the features of the flow are reflected by the model: the
decreasing exponential profile of the solid volumetric fraction, the parabolic shape of the mean velocity, the
constancy of the granular temperature and of its components. Besides, the model predicts the normal pressures
differences, typical of the granular materials.
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[. INTRODUCTION tals and polar fluid$18,19]; his work resulted in the intro-
duction of the density gradient in the constitutive relations of
In recent years, many efforts have been made to obtain #€ granular material. A point of view close to that of Cowin
better understanding of the granular matter, owing to thévas developed by Kanataj20] who applied methods taken
large number of industrial processes that involve granuIaFrom the theories of micropolar fluid21-24 (a_nd, more
materials. In the literatur¢l,2], the regimes of flow of a recently, Ref.[27]) to the flow of granular media; he also

ranular material have been classified as frictional coIIi-trieOI to take into account the effect of the couple stfess-
9 ' 34], writing a balance equation for the angular momentum

sional, translational, and viscous flow. Theoretical work ony,q pifferent, more empirical approaches can be found in
the dynamics of granular matter reflects the classification ofhe works of Pouliquen and Gutfraifigs], in which a proba-
the regimes. For the frictional regime, a basic idea has beesilistic model is coupled with the Coulomb relation, and
to extend to the granular state the Coulomb friction law.Santomaso and Cari86], who considered the granular me-
Sokolovskij [3] introduced the Mohr-Coulomb criterion in dia as a pseudofluid that follows a non-Newtonian behavior.
the continuum(statio balances of the forces for a yielding On the other side there are works devoted to the rapid
granular material; others},5] generalized to a granular ma- flow (collisional and translational regimesThis area has
terial concepts of the theory of plasticityielding criteria,  been investigated essentially by means of computer simula-
particularly the Mohr-Coulomb criterion, and the flow rules tions[37,3§ or by a microstructural kinetic modeling. The
in order to describe the transition from static to dynamicbasic ideas of this second approath which the present
behavior and the slow movement of the material. These paper belongswere first presented in the pioneering work of
similar) models have been used subsequently to simulate thBagnold[1], who constructed a simplified expression to re-
flow on inclined chute$6,7] or the shear flow8]. Another Iate the gradient of the mean velocity with the stresses, and
approach was carried on by Cowfi—14] (but also Jenkins above all by Ogaw439,40, who emphasized the presence
[15]) and was based on continuum thermodynamic considefsf the fluctuating components of the velocity of the particles
ations[16,17 and on the analogy with models of liquid crys- and introduced the concept of “granular temperature,” stat-
ing a clear analogy between the kinetic theory of gdsiés
lute and denseand the behavior of granular medi@ansla-
*Corresponding author. Mailing address: DIPIC—Dipartimento ditional and collisional regimesFollowing Ogawa, Haff41]
Principi e Impianti di Ingegneria Chimica, Universith Padova, wrote a paper in which he, with heuristic arguments, deter-
Via Marzolo 9, 35131, Padova, Italy. FAX:+39) 049 8275461. mined the transport coefficients and the collisional dissipa-
Email address: paolo.canu@unipd.it tion of mechanical energy and found the solutions of the
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balance equations for some common applications. Then, ré&sased on thggeneralizel Chapman-Enskog expansion is
searchers went deeper inside the analogy with the kinetithat they can predict only normal solutions and not the most
theory of gase$42—44 and introduced in the granular field general one$42].

the use of the distribution functions. First, for a system com- In the present work, we apply the method of moments to
prizing smooth, rigid, elastic spheres, a Maxwellian distribu-predict the behavior of fast flow of smooth, identical spheres
tion function was usef5], then[2,46,47 balance equations and particularly to account for the anisotropy of the second-
in a general form and expressions for collisional source an@rder moments. The principal features of this paper are the
flux terms were given and applications were made to smootHollowing. First, beyond the mass and momentum balances,
nearly elastic spheres using non-Maxwellian distribution@!l the second-order moment balances are considered. Sec-

functions. Attempts to generalize these ideas have been ma@8d; the velocity distribution functiofi*) has been approxi-
to include rough particlef48] and the case of a mixture of Mated by a truncated series expansion in Hermite polynomi-
particles[49]. als aroun.d .the Maxwellian dls.tr|but|on fu_nct|c{t63] in a
Simulations of the granular behavior taking into account@shion similar to that of Jenkins and Richmp4v]. The
all the regimes(frictional, collisional, translationalhave intégrals of the collisional source term are rigorously evalu-
been performed by Savagg0,6], Johnson, Nott, and Jack- ated, without introducing further restrictions corresponding
son[7], Anderson and Jacksd®1] in the case of the in- (O the hypothesis of nearly elastic particles; also the differ-
clined chute and by Johnson and JackE®hin the case of ©nce In the_mean veIocny of the two c.olllldmg particles is
plane shearing. Simulations of the chute flow limited to theconsidered in the evaluation of the collisional source term.
rapid regimes have been proposed by Richman and Maf-inally, having used the method of momeftid], the closure
ciniec [52] and recently by Massoudi and Boy&3]. The equations have been specified: tHN}‘l'(l)th order moments
problem of the vertical vibration of granular material has(N being the order of the moments of which we consider the
been approached, among the others, by Warr, Huntley, arRglancesand their derlvatlve_s have t_)een expr(_assed in terms
Jacqueg$54]. of the Iower-_order moments mtrpdupmg some |mprovements
The presence of the viscous contribution to the transfer of0 the classical “elementary kinetic theory5,42. This
particles properties has been considered by Nott and Jacks&hoice is different with respect to the solution adopted by
[55] while the influence of the boundary conditions has beer{>rad[63] and by Jenkins and Richm#47], who considered

investigated by Huet al. [56], Jenkins and Richmaf57], equal to zero theN+ 1)th-order moments and their deriva-

and recently by Cho{58]. tives, in the hypothesis that tHiéY) is approximated by an
Turning back to the case of smooth, spherical, identicaHermite expansion truncated to theh order. The model has
particles in rapid flow, it has been recently pointed G8—  been applied to the translational flow on an inclined chute,

61] that, while for a gas the distribution function at equilib- obtaining the profiles of the solid volumetric fraction, the
rium is Maxwellian and in some applications the Maxwellian Mean velocity, and all the second-order moments. The model
approximation is satisfactory, granular matter also in the simcan be extended to all the rapid regimes once the collisional
plest cases deviates from the Maxwellian behavior. Accountflux terms are considered; expressions for these fluxes have
ing for deviations, through all second-order moments, foP€en given by Jenkins and Savd@e and by Jenkins and
example, is required to give a proper description of theRichman[47]. Finally, the theoretical results have been com-
granular dynamics and to represent phenomena that are négred with the experimental data of Azanza, Chevoir, and
ligible in the classical fluids but not in the granular field, asMoucheront[66] and of Drake[67]. Other measurements
the differences between the normal pressures. RicHi@in have been presented by Savde,68, Ishida and Shirai
introduced an anisotropic Maxwell distribution function, de- [69], Ahn, Brennen, and Sabersky0], Hanes and Walton
pendent on all second-order moments of the fluctuant veloci38], Santomaso and Car{@6] but the papers of Azanza,
ties, and used all the second-order moment balances to sol¢evoir, and Moucherorj66] and of Drake[67] report the

the dilute, steady, homogeneous shear flows. A systematf®0st complete series of data, including the profiles of
approach has been developed by Goldhirsch and sekgcond-order moments and the values of the microstructural
[60,61], based on a generalization of the Chapman-EnskoﬁfOpertieS and of the operative parametgestitution coef-
expansion. A direct analysis of the Boltzmann equation vidicient, chute angle, particles diameter, and defsity

an appropriate Chapman-Enskog expansion was previously

suggested by Goldshtein and Shapif2], who studied a || STATEMENT OF THE PROBLEM AND DEFINITIONS

weakly inhomogeneous system consisting of rough spheres

and calculated the partition of fluctuating kinetic energy be- We will consider particles that are smooth spheres of uni-
tween the rotational and translational components. Sela arf@'m diameterD; the particles are noncohesive and electro-
Goldhirsch [61] proposed a method to generalize thestatic effects are neglected. The particle interactions are only
Chapman-Enskog expansion to smooth inelastic spherd¥nary instantaneous collisions.

based on a double expansion with respect to both the KnudFhe single particle velocity distribution functioit® is de-

sen number and the degree of inelasticity. They obtainefined so that (Y)(c,r,t)dcdr is the probable number of par-
constitutive relations for the heat flux and for the stress tenticles with actual velocities i+ dc, in the volume element
sor and calculated the normal pressure difference in the case-dr, at the timet. The actual particle velocitg can be

of the shear flow, resulting in a good agreement with theassumed as the sum of the fluctuant velo€itgnd the mean
numerical calculations. A shortcoming of all the methodsvelocity u. the single particle velocity distribution function
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can be expressed both as a function @f (t) or as a func-

tion of the fluctuant velocity C,r,t) and r2

f(c,r,t)ydedr=f(C+u(r,t),r,t)dCdr
=f(C,r,tydCdr. (1)

The zeroth-order moment is defined p§t")(C,r,t)dC and

is equal to the number density(r,t) (number of particles
per unit of volumg here and in the followingdC
=dC,dC, dC, and the integration is intended over all val-
ues ofC. The first-order moments of the fluctuant velocities
are defined byfC;f((C,r,t)dC and are always equal to
zero; the second-order moments of the fluctuant velocities
are given bnyiij(cl)(C,r,t)dC, where the generic indices

i andj refer to theith andjth components of the fluctuant o N )
velocity. Similarly, it is possible to define the fluctuant ve-  FIG. 1. Definitions ofr,, r,, andr, position of the particle’s
locity moments of higher order. centers and of the contact point, respectively=r+j,(D/2). k is

In the same manner, actual velocity moments of a generig'e unit vector directed from the center of the first particle to the
order can be defined; the first-order moments of the actuaﬁenter of the second.

velocities arefc;f*(c,r,t)dc and they are equal to th¢h _ L
component of the mean velocity, multiplied by n. The (3) to reflect the increase of collisions in moderately dense

mean value of a generic property which depends upon thaystems, where a fraction of the volume is occupied by the
actual velocity ¢(c) is given by (p)=(n"1)[y(c)fD(c, ~ Particles[42,71,7Q.

r,t)dc; or, in terms of fluctuations, ifyy=(C) (i)

=(n"YHfy(C)fM(C,r t)dC. Following Jenkins and Rich- Ill. THE APPROXIMATION FOR

man [47], we introduce the notation Mi i, iy . ] 1)
To develop an explicit expression fdé we follow a

E<C‘lc,‘Z'”C‘N> _fc,)r th? .genencNth-order moment of the 04 similar to that suggested by Gf&a®] in the theory
fluctugtlng velocities divided by; the granular temperature of gijute gases, i.e., we use a series expansion based on the
is defined byT=(Myx+Myy+M,;)/3 and represents a mea- pjaxwell distribution function,

sure of the kinetic energy of the particles associated with the

fluctuating velocities, which is the only “internal” energy to o
be considered for smooth particles. fOCcr=flCr.t a™(r tyH™ 4
The pair distribution functionf® is defined so that ¢ (Crh=feyCur, )Z’o i (MOHW), (@)

f)(cy,r1,6,,r,,t)dc; dryde, dr, is the joint probability
that at the same timé a particle with actual velocity oy where f&)(C,r,t)=n/(27T)*2exp(~|C|2/2T) is the Max-
dcy) is in (ry+dry) and a particle with actual velocity well distribution function,w=C/\/T is the nondimensional

(G dcy) Is in (rp+dry). For granular materials in transla- ¢ ¢ o andi, is a permutation of indices chosen among

Egggl fc%gzinthiohzvph?éuetséz c;\flvomoéfg;l;‘sr ?::\?; ir?t:ia: gﬁg,y,z The summation is intended overand, for each value
' 9 P PeNGt n, over all the permutations of indices(chosen among

dently, X,Y,2. ai(:) are the expansion coefficients and the functions
ey .G )= FD(Cyr ) fD(cprpit), () HIY are Hermite orthogonal polynomial63].
The polynomialsH(" are symmetrical with respect to ev-
if we are considering moderately dense systéoudlisional  ery combination of their indices, that iH,i(:)= HJ(:) if j,isa

regime, in which a significant fraction of the volume is oc-

i i icient" (n)
cupied by the particles, EG2) must be corrected into permutation ofi,, and the related coefﬂuemer{n and aj

are equal too; so, the same quantity can be written more
times in the expansion. Instead, we prefer to introduce a
single coefficientb(", equal to the summatiora(™ +a{"
=go(r1+3Dk,t)f (e, ry,H)f M (cyry +DKY), +--+) of the a{” over the different permutationss, for a
(3)  fixed choice of the indices; all thesg" to be summed are
identical Accordingly, the expansidd) becomes

£ (cy,ry,6,,r+ DK, 1)

in the case ofr,=r,;+ DKk, wherek is the unit vector di-

rected from the center of the particleiip to the particle in P

r,, as depicted in Fig. 1. The functiap, is the radial distri- F_ (D) 2 bW (M (5)
bution function at contact and it has been introduced in Eq. C G0, T i
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where the summation is intended oveand, for each value D 4 J
of n, over the choices of the indicesy,z(but not over their Dt at U — ar
permutations r,C i tC

The expressions of thie{” can be obtained requiring the p=nm is the mass bulk density; is the mean velocity,
condition of orthogonality oH(”) usingf&) as weight func- ~ ©() is the collisional flux of the property in the direction

tion. Up to the third order they result in i, and x(y) is the collisional source of the propergyin the
unit of time and of volume.
h0=1, (6) From the general population balandd), it is possible to
derive specific balances depending on the type of function
b=0, (7) #(C). In the following, the balance of magkq. (12)], the

three momentum balancégq. (13)] the balance of energy
M;; [Eq. (14)], and of the deviatoric part of the second-order
(/3)(2 b(2 =—l- 5ij (8)  moments of the fluctuant velocifiEq. (15)] are reported in

T the form of Jenkins and Richmdna7],

Mijk Dp ¢9u|

(B)K(3) — —
(B)ijbijk === T ©) ot TP ar. =0, (12
i @ =2 jf j= (D=1 if j#i B=6 if i=i Du; dP;;
with (B)(Q) if i=j (B)ij ifi#j, (B)ik=6if i= j poi (13
=k (B)ijk=2 if two of the three indices are equa,Bx( Dt dr;j
=1 if all the three indices are different. It can be easny seen
that the sumb,,+ by, +b,,=0. 3 DT 9Q; du; 1

2P0t T, G, T 2,2, X (14

IV. BALANCE EQUATIONS

1 S 1 1
Balance equations can be written following Chapman and ~ 2PMii +(Qkij =3 Qudij) k[ Piilj k+ Pji il

Cowling [42]. They derived the balance for a generic prop- TSN S (15)
erty ¢ function oft, r, ¢ from the Boltzmann equation, 3 T kntn k% = 2 Xij »
in which
i, "m e o ai |y Xijiy i =X(MG Ci ---Cp ),
I I Oji,i, iy =0i(MG Ci---C),
o <E rC> +< g IC> T

10 Pij=pM;j+ 0,
equal to the sum of the diffusive translational momentum

where F; are the external forces anu is the mass of a flux [42] and the collisional flux of the propermC;; Q;

particle. The summation over the same indices conventior=1/23;_, , ,(pM;j; +®;;;) and Z;_,, (pMjj; + Oj;;) is

has been adopted and so will be in the followif@y) is the  equal to the sum of the diffusive translational flux of energy

rate of change of the property per unit volume due to and the collisional flux of energy along théh direction;

collisions. Quij= (PMyij+ 0,ij) /2,

In the present work we will use propertigs= (C) de-

pending only on the fluctuating velocities, which do not de- Mi=Mi— S (Mo3)8,

pend ont and onr; in this hypothesis and ifs is expressed as " Ty KK i

a function ofC (fluctuating velocitiesinstead ofc, the bal-

ance(10) can be rewritten ap47] -
Xij = Xij _k;X:yZ (ka/3)5ij )

J
2D oyl L ey 0 mi) A
Fi t,C t,c A DM ij
. Y Dt
Al
Dt mJ\JCif | ICil,, Similarly, higher-order moment balances can be derived.
omy P Note that the first-order moment balance, ELB), contains
+0, ( ) )_J = y(my), (1)  Mjj, i.e., second-order moments; similarly the second-order
dC; ar; t.C moment balances, Eq$14) and (15), contain third-order
moments, and so on. Solutions of these equations require
in which some sort of closure, discussed in Sec. VII.
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V. THE COLLISIONAL SOURCE OF A PROPERTY

To solve the balance equatiofsee Eq(11) for a general ——
expressioffy we need an expression for the collisional contri- — e
butions xy(#) and ®;(). In the following we will develop e
an expression fo(y) while we will not discuss the colli-

sional fluxes®,, already determined by Jenkins and Savage
[2] and Jenkins and RichmdA7].
If we consider two particles labeled 1 and 2, we deiine
as the propertyy of particle 1 andy, as the same property
for particle 2. The meaning of(¢) is the variation of the
sum (1 + #,) due to the collisions between two particles,
that occur inside the element of volurde around the refer-
ence pointr and during the timeé—t+dt, per unit of vol-
umedr and of timedt. The collisions are considered instan-
taneous. When a collision takes place, the variation in the
sum (1 + ¢,) will be associated with the volume element 2,
dr where the contact point liggig. 1). To calculatey(y) we (D/Q,J dj"
have to know the probability that a collision might take place
between two particles inr(dr) during (t,dt) and we call it FIG. 2. Definition of the volume element aroungdin a spheri-
Peo - cal reference frameR is the radial coordinatedj, is the differential
The functionf{" is defined so that{"(c,r,t)dcdr rep-  of the solid angle and defines the surface elemBxi2)?d;j, on the
resents the probable number of particles with actual velocisphere of radiu®/2 centered irr.
ties in c+dc, whose center is inside the volume element

+dr, at the timet. It can be demonstrated thif”=f(). the lines withk inside the interval shown in Fig. 3 have to be
The probabilityP . that a collision might take place be- considered, otherwise the lines will not pass across the vol-
tween two particles inr(dr) during (t,dt) is given by the umer, dr and the collision that we want to monitor will not
joint probability of two events to happen simultaneously. Theoccur inr, dr. So, the second event is that there are particles
first event is that the particle 1, candidate for collision in2 with actual velocities arounch+ dc,, the center of which
(t,dt), atthe timetisinr,, dry withr;=r+(D/2)j,, where  can be connected at the impact to the center of particle 1 by
j1 is a generic unit vector applied in(Fig. 1). The second a unit vectork, with k inside the interval shown in Fig. 3.
event is that at the timethere are other particlgparticles Let us consider a volume element around a pojntFig.
2), with actual velocities around,+dc;, likely to collide 4, where a geometrical sphere of radRisnot a particle, is
against particle 1 in the _foIIowingIt and th_e contact_p_oint shown whose base is the surface elem@%dj and genera-
between the particles at impact would berirdr. The joint i g The probable number of particles with actual veloci-

p_robability of both e.v.ent.s can be determined once eachgg aroundc, + dc, whose center is in a volume element
single event's probability is given. +dr,, at the timet, is

Let us consider irr a rectangular reference framxey,z
and a spherical reference frange 6, R whereR is the radial i ) )
coordinate,d is the angle betweeRj, andy, and ¢ is the fiH(cy,rp,t)dcRdj(dl - j).
angle between the projection Bj; on thex-z plane andx.
Pointsr, can be approximately described by the spherical
shell between two spheres centred jrthe first with radius
(D—-dR)/2, the second with radiud(+dR)/2.

The probable number of particles with actual velocities
around c; +dc; whose center is in the volume element
(D/2)?dR d, aroundr; (Fig. 2), at the timet (first eveny, is

2
dRd,

f(cl)(cl el ,t)d01<§

=fB(¢cy,ry,t)de;

D 2
5) dRd,. (19

To determine the probability of the second event let us con-
sider a particle 1 centered in the point=r+(D/2)-j;. If

we connect the center of particle 2 with the center of particle
1 by a straight line defined by a unit vector(Fig. 1), only FIG. 3. Range ok such that the impact between the particles is
those particles 2 situated at the time of impact in points alongnside (,dr).
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FIG. 5. Relative position of particles that are going to collide
duringt—t+dt: the first is located i, while the second is in a
pointr, before impact, such that the vectolinking the particle’s
centers at the impact passes throughir. The view is bidimen-
sional (see Fig. 4.

The probabilityP., in the unit of time and volume, in the
hypothesis of independence of the two events, is given, ac-
cordingly to Eq.(3), by the product of the two probabilities
corrected by the radial distribution functiay,

Peoi=go(r 1) fP(cy,ry,t)dey fP(cy 15, t)dy{g- k}D2dk,
17

_ with g=c;—¢C,.
(b) ™ The cases described Wy, in which a collision during
FIG. 4. Definition of the volume element around the painby ~ bdtcould happen must satisfy the conditiap k) >0, which
means of the generatrd and the basésurface elemenR? dj; j is means that only approaching particles are considered, and
a unit vector ancR is the radius of a geometrical sphere, not of a N0t departing ones, since these will not collide. Omig
particle. The same image is shown in three-dimensidgagaland ~ has been specified, it is easy to calculate an expression for

two-dimensionalb) views. the collisional source of a properiy(#), that is,

The direction ofdl is such that @l-j)>0. :ff f f LU — (et 0 TP 18
The particles 2, fulfilling the requirements abovetgfac XW)=3 [t d2) = (Wt ) [Pear, - (18)

lay on the element surfacdS of the geometrical sphere g-k>0

shown in Fig. 5, which approximately measurat?4 where . o

dA is the magnitude of any of the six faces that are thevherey’ is the property after the collision, where the coef-
boundaries of the volume elemett (dA=dz dyin Fig. 5). ficient 1/2 has been introduced to avoid counting the same
These particles in the timebeforet;y,acare inside the vol- collision twice. Therefore,

ume whose base measured A and whose generatrix is 1

(c;—c,)dt [42]. Therefore the probability of the second X(‘”):Ef j f [+ ) — (1 + P2) 190(T 1)

event is given by
g-k>0

f(]-)(Cl,rz,t)dcz{[(cl_CZ)dt] -k}4dA, % f<1)(cl,rl,t)dclf(l)(cz,rz,t)d(‘a{g- k}Dzdk,

D 1 D (19
r,=r+=k+ 5(c,—c)dt=r+ k.
2 2 2 where the integrations are for all valuesogf c,, andk such
that (g- k) is positive. The result in Eq19) is similar to the
Beingk=—j;, thendk=dj; and Eq.(16) can be rewritten expressions that could be obtained by the classical method of
as Chapman and Cowlinf#2]. The difference is due to the fact
D\2 o2 that we calculatedP.,; makingr (the point of evaluation of
1 1 the P,) identify with the point in which the collision hap-
f >(cl,r1,t)dc1<§) dRd,=f )(Cl’rl’t)dcl(f) dR k. pens, keeping it fixed while particles 1 and 2 move around it;
(16")  in this way the functiong, can be evaluated at and the
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positions of the particles 1 and 2, namely, andr,, are
symmetrical with respect to. We will take advantage of
these features in the following evaluation xfi) (Sec. V).
Otherwise, applying properly the expressions of Chapman
and Cowling[42], the fixed point isr;, while the point in
which the collision happens argd move around ; there-
fore fM(c,,ry=r,t) and fY(c,,r,=r,;+Dk,t) are evalu-
ated in the shifted points ang}, should be evaluated at the
point of collisionr,+ (D/2)k.

VI. THE EVALUATION OF x(#)

A Taylor expansion around truncated to the first-order
term is used to expre$§t)(c,,r;,t)f*(c,,r,,t) in terms of
f(cy,r,1),f3(c,,r,t) and their spatial derivativeg7],

afM(cy,r.t)

f(l)(cl,rl,t)Ef(l)(cl,r,t)—5ki o
i

oyt

(20

beingr,=r+(D/2)j,=r—(D/2)k.
In the same wayconsideringr,=r+kD/2)

D ﬂf(l) C ,rit
f(l)(cz,rz,t)gf(l)(cz,r,t)‘f' ki %
[

cyit

(21)
Therefore,
f1(cy,r, V(e rp,1)
=fD(c,,r,H)fV(c,,r 1)

D afW(c,,r,t
L2 (co,r,t)

Sk (e
|

it
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D 2
Fij(lﬁ)zz%(r.t)f J J foﬂond’)(f) (9-k)
ui(r,)]

[Coi—ui(r,t)][coj—
Jfeuon

ui(r,t)J[cqj—u(r,t)]
T j i 25”}

n [Cii—

x dk dc, dc,, (247)

D 2
G(lﬁ):Zgo(r:t)babstJJA(lﬂ)foﬂoz(E) (9-k)

X[[CZa_ua(r!t)][CZb_ub(r!t)] 5ab]
T
X[[Cls_ Us(r,t)J[Cqe—Uy(r,t)] 5st}
T
x dk dc, dcy, (24'"")

where we used the following abbreviations:

foa=f5"(co,1 ),
f01: fg)l)(cl!r’t)!
f2: f(l)(Cz,I‘,t),
f1= f(l)(clyrvt)y

A= (1+ b3) = (Y1t ).

Note that all the involved integrals have to be calculated for
g-k>0.

The integral termF can be written as the sum of other

nine terms, since

D . af B (cy,r )

— 5k o] (22)

Bcy,r,t),

¢yt

if the second-order terms can be neglected.
Introducing the result of Eq22) in Eq.(19) and if a good

s ot |, (D
1&rmc . Z&rmc J 2
=at+b+c+d+e+f+g+h+i,

approximation forf(®) is given by Eq.(5) truncated to the where

second-order term@xpressed in terms of actual velocilies
the collisional source of a properji) can be obtained as a
sum of four terms,

x()=E(¢) +F(¥) +bjjFij () + G(4), (23

where

2
E(4)=20o(r 1) f f f w>f01foz( )(g K)dk dc; dc,

(29
of, ot
F(¢)=go(r, t)f f f |f1(9rm _fzﬂTmC J]A(lﬂ)km
D
2) (g-k)dk dc, dc,, (24')

D by
2 e o

a= (C—Uu)ps(C—U)y
—(c—u)s(C—U)gel,
D\1 by by

o= 3 7 80 g

Xl__(c_u)ls(C_u)lt(C_U)Zi(C_u)Zj

+(c—u)gi(c—u)qj(C—U)ps(C— )]

1| du 10T
s _ T g ).
¢ f°1f°2( T) I Targ 9
+1 8TG D
T orm 0-9fkm| 7
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b
d= 163 15 [(6—U)as(C— U)ot (6= U)1s(C— )]

2ll-1

be B
= 10 [(C= U)o~ W2 5= [(C= Wra(C— W]

Ju 10T

ﬁTm T ory,

19T

K A e

— Go- g}

01 T
‘ D 1\| du 10T 10T KAIS
Kl 2\ 7T O T a8 T o, 00l
bj; dInT\  duu;
(1)(1) T i
f_f f ( )(bstHst(Cl) uiuj( z9l’m) (?I‘m
au, alnT ﬂul alnT
—Cy; ar —Uj— ar —Coj| = o UiTm —bgHsi(c)
alnT +&uiuj auJ alnT
o | B arm ar Yo

au, alnT K D
~ il g T Ml 2 )
b Ju; ainT
(1) e .
f01f02( T )[(()—,rm uj ar )g|
au, alnT " D

bjj\ dInT D
h:_f(l)f(l)( ) i {CZiczj—cliclj}km(E),

+0j o

{bStHSI(Cl)C2IC2J

2

b;i\ dIn
(1)£(1)
~forfo (T)&r

—bgsHsi(C2)C1iC1j K

and Gy=(c; +¢,)/2. Collecting all these pieces we finally

obtainF as the sum of nine integral terms,

F()=Fa()+Fu(¢h) +Fe(9)+Fq(4)
TFe()+Fe(4h)+Fq(4h) + Fn(4h) +Fi(4).

VIlI. THE CLOSURE EQUATIONS

A generic flow of granular material can be simulated us-

PHYSICAL REVIEW E66, 041304 (2002

been simply neglected because & has been approxi-
mated by the expansigh) truncated to thélth-order terms.
However, we question the conclusion that, even in the case
of negligible (N+ 1)th-order coefficients, their derivatives
vanish as well. It is generally not true that a satisfactory
approximation forf(®) turns out in a satisfactory approxima-
tion for the derivative off ™). Therefore in the present sec-
tion we develop new closure equations for the
(N+ 1)th-order momentgand their derivativesas functions
of the lower-order terms. The solution followed by Gf&3]
and by Jenkins and Richm##7] should be preferable if we
are sure that the approximatéfl) fits sufficiently well the
real distribution, so that the same truncation is adequate for
the f() derivatives as well. Generally, however, this ap-
proach requires raising the orddrat which the distribution
function is truncated in Eq(5), increasing the number of
balance equations and variables involved and then the diffi-
culties for calculating the collisional source term.

Let us recall thall\/liliz...iNHE<Cilc 'N 1) is equal
to the generic Il + 1)th-order moment of the fluctuating ve-
locities divided byn; besides the genericN(+ 1)th-order
moment of the fluctuating velocities

f Cjcil“‘C

is equal to the diffusive flux along thg direction of the
propertyC; ---C; [42] and can be easily calculated once

f&(c,r,t)dC

f Cici, ¢ fE(Cr,tydC (25)

is known. As an example, the lower termd€1N=2) re-
sult in

f CjCilf(Cl)(C,r,t)dC=fCjcilfg)(c,r,t)dC, (26)

fcjcilcizfg”(c,r,t)dc
:f Cjci ¢, fE(CrtydC

—uilf Cjci,f&(C.r,hdC

ing the balances of ma$$2), of momentum(13), and of the
second-order momentgl4), (15). In these equations, the
third-order momentgand their derivativesalso appear and,
more generally, balance equations up tolttie order always
involve the N+ 1)th-order momentgand their derivatives

—uizf Cjci,fe'(C.r,hdC. (26')

These quantities have to be expressed as functions of the Again, the integra(25) is equal to the diffusive flux along

other variablegdensity, three components of the mean ve-thej direction of the propertg; ---c;

[42]. In the following

locity, moments until theNth orde) in order to solve the we will construct an approximate expression for such diffu-

system of equations. Frequenik3,47), the (N 1)th-order

sive fluxes, based on some concepts of the “elementary ki-

coefficients of the expansiofb) and their derivatives have netic theory,”

041304-8
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(diffusive flux of the propertyc; ---c; on the genericj direction)

= (positive diffusive flux of particles on th¢ direction

X (difference of the mean value of the properttyl---ciN). (27
|
The positive diffusive flux of particles on thedirection has AP= pJ*(H:*)_ pJ*(H:*)_ (29)
been calculated using the expansion of Eg}.truncated to
the second-order terms, Given the resultd28) and (29), we can write the diffusive

flux of the propertyc; ---c; on thej direction, according to

-
f c.fd(c,r,dc=n/=—(1+b;). (28 FEG- (27 as
ci=0 ' o ii

i=

T S o
We call AP the difference of the mean value of the property ny E(lJfbjj)[Pﬁ(lr)_ P! (I} )] 27)
Ci,""Ci. To determine it, we consider an area elemeAt
and we set im a reference framg j, k (Fig. 6); r is the point  or
where we want to calculate the fluxes. We focus on the par-
ticles that in the time interval—t+dt go through the area T _
elementdA These particles are those which at the tinaee \/ 5= (1+bj)[P; ") —P(l
inside the volumeal A dtc, ¢ being their velocity. The mea-
sure of the volume elemedtA dtc is dA dtic|cos,  being T IP
the angle betweepandc. AP is equal to the mean value of =n (1+b;j))
the propertyc; - -C; conveyed througldA in the time inter-

;
val dt by particles moving in the “positive direction,” i.e., { T (7<Ci1"'CiN>
Voo (b)) ——

M1

according to the unit vectgr, minus the same quantity for (I}+—I}‘)l,
those moving in the “negative directionAP will be esti- r=r
mated byP) ™ — P~ whereP!* (and, respectivelyP! ") is 27"
the mean value of the property ---c; , over the values;
>0, evaluated on thek plane(Flg 6) where particles had, if the averageP’* over the valueg;>0 (and, respectively
on the average, the last collision before passing thraugh P!~) can be substituted by the meﬁhover all possible
The distance on the genedadirection between the mean values ofc. . _
posmon of the last collision of the particles that move in the  An expression fonl}+ (andl}‘) as a function of density,
“positive direction” with respect ta is Ij+ while IJ‘ isthe three components of the mean velocity, and moments up to
distance along in the “negative direction,” thereforeP'* the Nth-order needs to be developed. Generauy can be
has to be evaluated zhﬁ (and, respectivelyP~ at Ij ). calculated as the mean value of €4t;), wherecy is the
Then, neglecting external forces, the differenc can be velocity at the point of particles crossinglAin dt andt, is
expressed as the interval between the time of the last collision and the
time in which the particle arrives at the pointThis calcu-
lation can be approximated as the producttdf ) (the mean
value of t. over the particles that travel in the “positive
direction”) by(c'*)* (the mean value af, over all value of
¢;>0). The first one(tL™), is overestlmated byl *, the
collision interval (the mean time between two successive
collisions for particles in the “positive direction,” sd){]+ is
calculated as

==K (el o=Kl'<1. (30

This expression has been obtained neglecting the influence

of the external forces on the particle moving towards the

surface elementA, namely, considering that the particle

travels todA with the velocityc,, that the particle has at the
FIG. 6. Area element aroundand volume elemerdA dtc in pointr. Instead, in the case of a constant external force act-

which the particle that is flowing throughA with velocity c during ~ ing along theq direction, F, the velocity of the particle

dt is contained. after the last collisior{before crossinglA) is given by
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F . . . 1
Cq— — ¢, 1" =—K§ 7(r.b) <c1q+>*—K{q+§

F
= (LY

m
therefore, the mean value of the velocity of the particle from
the last collision to the surface elemeath is 0< K£q+<l' (30'")

Cq— 5 —t.
2m A better approximation can be obtained expressirigas the

arithmetical mean of the values efat (r,t) and at the last

becauser, is constant. In this hypothesis, EO) is re- collision, defined by i+, 71+,

placed by
1= =KL A (el )y - K“EETH o=Kl*<1. 1 . .
’ 2m ’ R E(NIE (ST
(30) 2
The collision intervalrin a specific ¢,t) has been evaluated ~(r) 1o7 i+ lar .
by a method similar to that provided by Chapman and Cowl- —TLUT S ar, P25t o '
ing [42], but using the expansigi) truncated to the second- B
order terms to express thié!) instead of the Maxwellian
distribution function, a7 1
At=|r(r,t)+=— 1N .
1 == 20rp,_, P 1ot
= : (3D) e

D2n4(7rT)°5[1— &bﬁy

the dependency upanandt is given through the quantities However, this introduces an additional dependencyrdf

n (proportional to the densilyT, by . uponli*, which is the quantity sought for. Consequently, in
Then, we can provide a first approximation k{\f of Eq.  this second approximation, the terrir@ﬁ result from the so-
(30) with 7+ =17(r,1), lution of the following algebraic equations:

aT . 1 . 1F 107 ) 1

— _Kit + | jtye _gitZ_49 - [l
=Ky et 5 T 1or () Ka m{T(w 204, Lor | ¢
r=t 1+ E_ r=t 1+ E—
at ot at t=t
O=Kl*<1. (30"

In the previous equation80)—(30'""), we presented differ- petweenc, and || (=cosyif j=q) over the values of

ent approximations foIJqJ', in the following calculations gych thatc;>0. Besides, to calculate the mean valug @f
(Sec. VII), we will use the expression of Eq30) with  the Maxwell distribution function has been used and nonzero
7" =1(r,t) because it is the easier to implement, thoughcomponents of the mean velocity have been neglected. These
possibly less precise. The mean Va{lﬂ% )* of cqoverall  reasonements bring to the classical expressiont,fof65],

valuesc;>0, for particles crossindAin dt, is given by calculated by Eq(30), in the casg =q,
" Je=0Cqf P(cr,tyde(dA dic| cosy)
* . 2
(¢ fcjgof(l)(c,r,t)dc(dA dtc|cosy) |}+:—)\§,

fcjgocqf(l)(c,r,t)cj dc

fcjzo(c,r,t)cj dc - where\ is the mean free path’ ™= 7(r,t) and K}+ is as-
sumed equal td.
In the classical perspective this value can be calculated, Differently, we calculated more rigorously the average
with further approximation, as the average |of over all (c”)* taking advantage of the expansion fg! of Eq. (5)
possible values of, multiplied by the average of the ratio truncated to the second-order teriwgith C=c—u) to ex-
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press thef(?). Specifically, we obtained explicit solutions
(besides the error functigrfor both the numerator and the
denominator, as follows.

(1) Forj=q.

fcjzocjzf“)(c,r,t)dc

Je=of™M(er,t)cyde

(chiy*= (32

with

f c’f®(c,r,t)de
CJ'ZO

n ‘ +oo

— n,—Y?2
T ey

—UJ' V2T

b“uJE(TZ)ZS

2 1 3
a1:8’7TT Uj_fb”U]’IT(TZ) ,

a2—27rT(T2)3’2——b (T2)35+ bjjufm(T2)%%,

iy
1 3
a3=?b“2ujﬂ'(T2) i

1
Q= T ” (T2)35

and

4
n
fW(c,r,t)c.dc=
Jc _fMernedes o 2 7

]

) ne=Yqy

—Uj/v‘ﬁ

‘yOZZWTUj\/ﬁ—

bjju 7 (12)%8,

yl=47rT2— (T2)3

bjj> 2
1 25
’}/ZZTb“UJW(TZ) ~

1 3

(2) Forj#q.

fcj>ocqf(1)(c,r,t)cj dc
Je=ofP(cr tc;de

(el = (33

with

PHYSICAL REVIEW E 66, 041304 (2002

f cof P(cr,tyc;de
cJ-zO
n > o
=——=52 6 ne=Yqy,

1 ™
So=2mTUjUqV2T = TbjjUjUg (T2)%%,

+= b u; (T2)3

51=47TT2uq— ailiZ

JJuqz (T2)3

q,-Z(Tz) 5= b jUqujm(T2)25,

1
83==b;u,m(T2)3
T i '

and, for the denominator, the same expression obtained for
j—q holds. Note that all the integrals involved

[t uj I+ orY'e ~Y?dY can be evaluated analytically,uf=0, or

through the standard error function. Some details are re-
ported in the Appendix.

Summarizing, knowledge o¢c”)* and 7" allows to
determmelJ+ (and, similarly, I}, ) with Egs. (30—(30""")
and then, through Eqg27), we can evaluate the diffusive
fluxes or the N+1)th-order moments as functions of the
density, three components of the mean velocity, and mo-
ments until theNth order.

VIIl. THE TRANSLATIONAL REGIME IN A CHUTE
FLOW

Jenkins and Richmaf7] used the Grad’'s method as a
basic scheme to study granular dynamics. They tried to ob-
tain a general solution, valid for any kind of motion, for the
constitutive equations of the coefficients of the series expan-
sion (5), but they said that the procedure was valid in the
limit e—1 (eis the restitution coefficient

Here, we follow a different approach searching a solution
for a specific configuration, but without restrictions@rThe
procedure used can be applied in a similar way to any other
kind of flow, but is expected to result in different solutions,
instead of a single, general one.

We concentrate on the fully developed, gravity driven,
stationary granular flow in an inclined chute. The coordinate
system is sketched in Fig. 7. It is supposed that the influence
of the confining walls is negligible, so that there are no varia-
tions of the quantities along (z-independent flux We ad-
dress to the translational regime, i.e., we will neglect the
collisional terms of flux of a propert§; with respect to the
translational ones. In order to extend the model to simulate
also the collisional regime, neglected fluxes must be consid-
ered. On the contrary, the collisional source tgfiwannot be
anticipated to be negligible with respect to the derivative of
the translational flux terms or to the product of the transla-
tional flux terms by the mean velocity gradigiiq. (11)].
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become a system of ordinary differential equatig@DES
with respect to the independent variapl¢o be solved in the
six dependent variablgs u,, T, by, and two independents
coefficients among thk;; . To solve the ODEs system, some
pieces of information must be additionally given, namely,
Xij » Myjj» Myyy, and appropriate boundary conditions.

A. The evaluation of y;

The collisional source terny;; has to be expressed as a
function of p, uy, T, b,,, and two independents coefficients
among theb;; . To explicitly determine these dependencies,
we used Eqs23) and(24)—(24'""), which have been derived
introducing Eqs(22) and (5) truncated to the second-order
terms in Eq(19). A detailed investigation should be useful to
understand how much this approximation fits the real value
of the productf®)(cy,rq,t)f(cy,r5,1).

FIG. 7. Sketch of the chute geometry with reference frame.

Accordingly, we keep consideringalso with the dilute flow.
For the granular type of flow considered here, the balanc

of mass(12) and momentum along thecoordinate are iden-

tically satisfied, while the momentum balan¢&8) along the

x andy coordinates reduce to

dpThyy Here, we just observe that Drak&7] and Azanza, Chev-
P9x= ay (34) oir, and Moucheronf66] showed experimentally that for the
kind of flow considered herei(*) is an anisotropic quasi-
g :‘7PT(1+2byy) (35) Maxwellian. Accordingly, thef*) expansion of Eq(5) trun-
y .

ay cated to the second-order terms is a good approximation to
_ calculatey;; . Despite the fact that the experiments of both
The balance of the hydrostatic part of the second-order mayere performed in a bidimensionénly one layer of par-

ments[Eq. (14)] becomes ticles in thez direction channel, the qualitative features of
the flow is expected to be the same for three-dimensional
1 AdUy 1 d
5. ij:ﬂ_prXy+§' 2 &_(pMyj])’ (36 channels.
1=xy.2 y j=xy.z %Y An even more precise expression would be given by Eq.

(5) truncated to the third-order terms. The only terms of the
third order to be considered in this configuration of flow
Uy d would be those with the coefficients;; . The others can be
PTW(l”LZbyy):Xxy_@(PMyxy)' 37) neglected because the genebig is proportional toM;j
and the termsM,,, and Mzi can be taken equal to zero
because of the symmetry ()4 ) with respect taC, while the
PMyyy_gij,y,zPMij terms M,;; are proportional to the diffusive fluxes of the

three equations among the E@$5) reduce to

J
2 _ou
- §PTo7—yxbxy+ 7y prc.)pert.yM” and th_ese can be evaluated as equal to zero
(this will be shown in Sec. VIII B.
1 However, the approximation of the expansion truncated to

= Xyy™ §_7§  Xii (38)  the second-order terms brings to quite complex expressions,
=y and the truncation to the third-order terms is even worse,

1 increasing the chances of computing errors. Consequently,
> (9( pM 2z~ §2j=x,y,zPMyn) we remained with the second-order truncation of ftHe for
— —pT—Xbe+ the following developments.
30 dy ay Therefore, the expression@3) and (24)—(24''') have
1 been used to calculate the general expressiong;fand the
= Xpy— §j:;yz Xij - (39 results, in the case of flow considered héwg=u,(y), T

=T(y), by,=by,=0], are reported in the Appendix. The
calculations have been carried out taking into account the
difference in the mean velocity between two colliding par-
ticles and all the derivatives of the mean quantities that ap-
Rear inf(),

Equations(37), (38), (39) are, respectively, the balances of
(C,Cy), (C,C,—C?3), (C,C,-C?3). Balance of C,Cy
—C?/3) is dependent on the baland@8), (39).

To obtain the previous results, it has been considered th
in the case of a fully developed, stationamindependent
chute flow,b,, andb,, are equal to zero, because the diffu-
sive translational momentum fluxes along theoordinate In the following, we will consider the averages over the
p My, andpM,;, related toby, andb,, by Eq.(8), are also  values ¢;>0 (Sec. VI) of some particle properties
null; moreoveruy andu, are zero. Once the terms of colli- (c,,ccy,cycy,C,C,). For the kind of flow discussed here,
sional sourcey;; , the My;; and theM,,,, are expressed as such averages can be approximated by the means over all
functions of variableg, uy, T, b,,, two independents coef- possible values ot. Therefore, from Eqs(26), (26'), and
ficients among thé;; , and their derivatives, Eq$34)—(39) (27"), we obtain

B. The evaluation ofM;; and My,
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1o -
Myiizﬁx(dlﬁuswe flux of the propertyC;C; on they direction

=f CyCiCif(Cl)(C,r,t)dC=f Cycicifg)(c,r,t)dc—uif Cycifg)(C,r,t)dC—uiJ C,cif&(C,r,tdC

/ [T d
(1 byy) (3= |—2u E(Hbyy)[ <C>(|y+ 5‘)}
> y+ _y-
(1 byy) (5=

6'<C| t>

from Egs.(30) and(32), we calculate T HC.C: KYt 4 KY™
Myii=— \/—(1+2byy)[uT\/ZT’n(u”.
O KRYTHKYT (1+2by,) 2m Yy 2
Yy =—| X Y | T
y oy 2 (1+byy)
being In the caseky ™=K}~ =1, it simplifies to
Je=oCsfP(crtyde  \2T7 (1+2b
<C¥+>*: > - (1) = 2 s 1+b yy) 0"<Cici>
Je,z0cyf 7 (crtyde (1+byy) Myii=—T(1+2by,) o
=~ ()"
andrf=7"=1 Besides, from Eqs(26), (26'), and (27), we can develop
Therefore, the expression foM,,,,
1 -
Myxy:Mxyyzﬁx(dn‘fuswe flux of the propertyC,C, on the x direction
T dC,C,) B
= \/Z(l+bxx)[T(|§+_|§ )|=
|
C. Boundary conditions and the comparison those of Azanza, Chevoir, and Moucherp®6] and those of
with the experimental data Drake[67]; the reason of this choice is that they present the

The equation systert84)—(39), once the expressions for
the collisional sourcg;; , My;;, andM,, previously calcu-
lated have been introduced, is a system of ordinary differen-
tial equations in the unknown functiopgy), u.(y), T(y), Side wall Side wall
b,y(Y), and two independents coefficients amonglihéy). \\ ‘//
In these equations, the first derivativespolu, , by, and the
first and second derivatives dfand the two coefficientb;;
are involved. Therefore, we have to specify the boundary y
conditions for all the unknown functions and for the first
derivatives ofT and of two coefficient®;; .

Since the model applies to the translational regime, which
is typical of the uppermost layer of a granular flow, it is not —
so easy to provide “natural” boundary conditions for the Bottorn
unknown functions or for some of their first derivatives. One
possibility is taking values from experimental measurements. FIG. 8. Sketch of the bidimensional configuration used in Refs.
Particularly, we used two sets of experimental data, i.e.[66] and[67] in their chutes; section at constant
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TABLE |. Boundary conditions for the chute flow. Values used in the comparison with the data of Ref.
[66] are reported in the third column, while in the fourth column data for the comparison with@¥¢fre

listed.
Boundary conditions
Comparison Comparison
with data with data

Units of Ref.[66] of Ref.[67]
Solid volumetric fraction ¢) 0.027 0.034
Granular temperaturer) mAs? 0.145 0.265
X component of the mean velocity,) m/s 1.432 3.210
byy —0.026 —0.058
by 0.052 0.116
by —0.337 —0.525
aT m/s 0 0
EY
Doy I/m 0 0
oy
dby, I/m 0 0
o

more detailed series of measurements on the chute flow, o=y, or an interpolation of the neighboring experimental
the best of our knowledge. data.

However, a problem is represented by the fact that both However, further discussion is needed about the boundary
used chutes with sidewalls so close to allow for only oneconditions for the solid volumetric fraction, the two coeffi-
layer of particlegbidimensional channelswhile our model  cientsb;;, and the coefficienb,,. For the solid fraction,
is for three-dimensional channels, so the comparison beexperimental data are expressed as bidimensional solid frac-
tween the experimental measures and theoretical results céion v, (particles surface on total surfgcand they have
be only approximate. Particularly, one of the differences isheen converted in the tridimensional volumetric solid frac-
that the geometry chosen by Reff§6], [67] constraints the tion v; we made the conversion through the approximate
particles to collide among each other only in a limited rangeexpression of Campbell and Brenngf2)],
of relative directions. In fact ik, the unit vector connecting
the centres of two colliding particleg-ig. 8), is written in an 4
spherical coordinated) is the angle betweek andy, and¢ v= Vzoﬁ-
is the angle between the projectionkobn thex-z plane and
X. Because of the constraints given by the sidewalls in th(?_
experimentsp approaches zero, while in a three-dimensional
geometry the particles can collide each other for any value
¢. Maybe this lower possibility of collision makes the flow
in the bidimensional configuration fast@reater gradients of

the mean velocity than the flow in the three-dimensional : ; S .
C%quwalent to the assumption of negligible velocity fluctua-

geometry. Besides, other differences are the imperfe ions in thez direction, a condition definitely not verified in a
smoothness of the particles experimentally used and the in; ' y

fluence of the walls, which tends to slow down the flow. hr?l_f]ﬁr'gggrnes'\?vr;a(l:;r?:g?:j;?'\gLjes obtained from the experi-
The assumed boundary conditions are listed in Table I, ' P

The basic criterion takes one experimental value at a give :352 r?;izsg;isn ?ﬂr“ceads tt())OiL:\rt]r%adrgcgo;dItlr?niisnfgtreﬂ\gll.Jes as
bed depth, from either Azanza, Chevoir, and Moucheron pp

: dary conditions for thb;; , from an approximate solu-
[66] (results with the chute angle equal to 28f Drake[67] oun L . )
(dilute flow). In both cases, values have been taken at thé'onI of Egs.(34—(39). In the T(ypo_thess that onlyr':he mtle-
boundary,y=yy, defined as the depth where the bidimen—g[.aSE’fFa' FEb' FC?;SFiJ;E;e;a en into account in the evalu-
sional solid fraction(surface fractiohis around 0.1, so that ation of x;; , Eqgs.(38), (39) become
we are sure to fall within the translational regif@s]: in the

ess obvious is the identification of appropriate boundary
?onditions for the two independent coefficients among the
ob” . Because of the bidimensional geometry, the experimen-
tal data forM,, turns out to be zerpand, according to Eq.
(8), the correspondingdp,, would be always—1/2]. This is

case of Azanza, Chevoir, and Moucherf#®] the chosety, - 5(e_—1) (40)
corresponds toy(,/D)=10.5, in the case of Draki67] it oo 6(e—3)’

corresponds toy,/D)=12. The values of the quantities

used for the boundary conditions are the values measured at bux=—2byy. (47
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This result is obtained introducing in E¢898), (39) the val- TABLE II. Values of the parameters and of the physical proper-
ues of Table | for the other functions, particularly the deriva-ties in the experimental studies as reported by the authors. The third
tives of T and of the two coefficientb;; . Also the collision ~ column refers to the data of R¢66] with the chute angle equal to
interval 7 has to be evaluated to derive E¢40) and (41): 23°, while the fourth column refers to those of Ré&7] in the case

the small values db,, (see point D allow to simplify 7[Eq. ~ ©f the dilute flow.

(31)] by the following:

Values of parameters

= L =— L 0% Units Ref. [66] Ref.[67]
2 051_ 1p21 DZnd(aT)0%
DEnd(aT)* 1= 5y Restitution coefficient 0.950.03  0.84:0.01
The coefficienth,,, is proportional toM,, [Eq. (8)]. To our ~ Chute angle rad 0.401 0.746
knowledge, no experimental data of such a quantity can bgarticle diameter mm 3 6
found in literature, so that some estimate of a boundary valugarticle density kgm?) 7800 1319

for b,, must be obtained theoretically. An approximate de-
termination of the boundary condition fdr,, can be con-
structed from Eqs.34) and(35), consideringl constant with
respect toy, as it is shown by the experimental d@€5,67.
With this approximation, we obtained

layer. The relative difference between this value and the es-
timate with the previous Eq43) has been always less than
25%.

v{tand{1+2by,|+ by} =const, (42 D. Results

To carry out the simulationsy;; must be evaluated
through the integrals in Eq&23) and(24)—(24'"") , therefore
2N expression fogg [Eq. (3)] is required. We used the Verlet

@nd Levesque formulg73],

which provides an equation relatitg, to by, and v through
an unknown constant.

The constant can be evaluated using the experimental v
ues at the top of the flowing material where the gradient o
the mean velocity goes to zero. Since, according to the “el- (16— 7v,p)
ementary kinetic theory[Eq. (27)], b, vanishes when the go=m,
gradient of the mean velocity approaches zero, we can evalu- V2D
ate the constant of Eq42) at the surface of the flowing
material,

(44)

however, the correction introduced by thg is small in the
translational regime. The system of ordinary differential Egs.
(34)—(39) have been numerically integrated with the bound-
ary conditions specified in Sec. VIIIC. The values of the
Since Eq(42) holds throughout the whole flowing layer, we physical and geometrical properties and parameters used in

can use it to provide a value df,, at the bottom of the the simulations are reported in the Table Il. The results, in
translational regime Y terms of profiles along, have been plotted and, when avail-

able, compared with the experimental measurements.
(const The variation of the solid volumetric fraction measured by
byy(Yp) = —tand{ 1+ 2by(y,) ]+ AR (43)  Azanza, Chevoir, and Moucherof86] and Drake[67] is
Yo reported in Fig. 9, together with the corresponding prediction

where by, aty, and at the surface was calculated as deOf our model. The agreement is quite good considering the
scribed abovéEq. (40)]. From the experimental values, we absence of adaptive parameters in the model and the use of

const={v tand| 1+ 2by |} surtace

can calculate two distinct values of the constant, some approximation. Particularly, the exponential increase of
the void ratio towards the surface is correctly reproduced.
(consdp ., Note that only the uppermost layer is reportgd, where _the
TMQSX 1077, regime can be assumed to be purely transnational. The inte-
gration of Eqs(34)—(39) is done fromy, onwards, this be-
in the case of Drakg67]. ing the depth from which clear transnational regime is ob-
served[66]. It is also evident that the model overestimates
consh/v(yp)~2x10 2, the experimental solid fraction.
Mean velocity profiles are compared in Fig. 10. The mea-
in the case of Azanza, Chevoir, and Moucheri@8]. sured parabolic profile is nicely reproduced by the model in

When we solve the system of ordinary differential equa-both cases, though the measurements of Azanza, Chevoir,
tions (34)—(39) using for b,, at y, the approximate value and Moucheronf66] are fairly noisy close to the surface of
calculated by Eq(43), we obtain a value o, at the top of the flowing bed. Theoretical mean velocities are always
the flowing layer different from zero, in contrast with the smaller than measured. Note that, as far as the profiles of the
argument above. So we search in the surrounding of theolid volumetric fraction and the mean velocity are con-
value given by the Eq43) a new boundary condition fdr,,  cerned, only their values at the boundagyare fixed(Table
such that the solution of the system of ordinary differentiall), while their derivatives are alwaysglso at the boundayy
Egs.(34)—(39) givesb,, vanishing at the top of the flowing calculated by the model and not imposed. The granular tem-

041304-15



MATTEO STRUMENDO AND PAOLO CANU

FIG. 9. Solid volumetric fraction profile in the translational
layer of a granular flow down an inclined chute: theoretical results
vs experimental data of Rdf66] (circles and Ref.[67] (squares
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FIG. 11. Granular temperature profile in the translational layer
of a granular flow down an inclined chute: theoretical results vs
experimental data of Ref66] (circleg and of Ref.[67] (squares

The bars indicate the experimental errors in R67).

perature calculated by our model is compared with the mea-

sured ones in Fig. 11. Interestingly, the model predlct§ ath Sec. Vil C. There, we discussed some discrepancies be-
almost constant value throughout the whole transnanonat

layer, even though is solved as a function of. Since also ween the system simulated by the theoretical model, i.e., the

the measurements show a constant behavior and we used an
experimental datum as boundary conditiéor T and its de-
rivative) the agreement is quite good. Some discrepancy ca
be seen with respect to the average results of Df&Kgin

the higher region of the considered layer but in any case th
theoretical results fall inside the experimental uncertainty re-

ported in Ref[67].

In Fig. 12 the theoretical profile foM,,/M,, is pre-
sented. Results of the simulation, corresponding to the e
periments of Azanza, Chevoir, and Moucherf®#], are la-
beled by A in Fig. 12 and show an almost constant trend, a
in the experimental work66]. The values predicted by the
model, around 0.83-0.86, are different with respect to th
measurements, that range between 0.55 and 0.6. The rea:
of this difference has to be sought in the observations mad

o
20 o 20
18 ° 18f
o
=]
(o]
16 16} D
(o]
2 ° k)
> 14t . = 4l \
A
121 1ol
=]
1?.4 1j6 1.8 3. 3j2 3:4 3.6 10O 0'2 0'4 0'6 OI8 1
mean velocity (m/s) : : . .

FIG. 10. X component of the mean velocity profile in the trans-
lational layer of a granular flow down an inclined chute: theoretical
results vs experimental data of RES6] at the left and those of Ref.
[67] at the right.

tridimensional chute flow with negligible walls influen¢e
n(aependent fluxand the bidimensionalonly one layer of
Harticles) experimental chutg66,67]. Particularly, in the ex-
perimental configuratioM ,,= 0, while in the tridimensional
8hute flow M., is clearly different from zero. So, for the
Same value of the particle internal enelfgyne measure of
which is (3/2)Tm], i.e., for the same value of the granular
temperatureT, the way in which the total internal energy
Xs_plits into its componentsM,,Myy,M,,) in the bidimen-
sional experiments and in the tridimensional model are ex-
ected to be similar only in a qualitative manner. According
o this, we purposely rejecte@ec. VIII C) the experimental
oundary conditions fob,, and forb,, (i.e., for M, and
r’fx) as measured in a bidimensional configuration. Also
rake [67] reports for the ratidVl,,/M,, a nearly constant
value comprised between 0.39 and 0.51, while our model

Ratio M,,/M,,

FIG. 12. M, /My, profile in the translational layer of a granular
flow down an inclined chute: model predictions of the experiments
of Ref.[67] (line D) and of Ref[66] (line A).
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FIG. 13. M,, and M, profiles in the translational layer of a FIG. 14. Profile of the coefficier,, in the translational layer
granular flow down an inclined chute: model predictions of theof g granular flow down an inclined chute. Referring to the experi-
experiments of Ref.66]. ments of Ref[66], line A are the model predictions and circles are

the predictions of Eq(45); referring to the experiments of Ref.
predicts values between 0.69 and 0.79, as shown by line D if§7], line D are the model predictions and squares are the predic-
Fig. 12. tions of Eq.(45).
In Fig. 13 we reported the theoretical profiles for both

Myy and M, obtained using parameters and boundary conestimateb}, , once more validating the detailed model devel-

ditions corresponding to the experiments of Azanza, Chevoifgped. In this work the model has been compared with experi-
and Moucheron{66]. Like in the experimental work, both - mental data from Ref§66], [67], having dissimilar values of
show a constant behavior. Moreovat,, (and alsoM_,) is  the operating condition&chute angle and physical proper-
always smaller thaif, while M,y is always greater, i.e., the tjes (particle diameter and density, restitution coefficient
degree of the fluctuations along thecoordinate is greater different values of the parameters should be considered as
than the degree of the fluctuations along any other directionyell, above all lower restitution coefficients. Also the ap-
In other words, the translational pressures in the three diregyroximation used for thef™ should be tested for highly
tions predicted by the model are not equal and the granulgjjssipative particles. Besides, the consistency of the model
matter is not in an hydrostatic state. Similar results have beeghould be verified with experimental measures freeefar as

obtained in the comparison with R¢67]. possiblé from the limitations of the bidimensional geometry.
Finally, the theoretical profiles of the coefficidny,, pro-

portional to the diffusive momentum flyxM,, according to
Eq. (8), are shown in Fig. 14; unfortunately there are no IX. CONCLUSIONS

experimental determinations available to compare with. In 1o present work is devoted to modeling the rapid granu-
Fig. 14 line D refers to the simulation of the experiments of|5; fo\ys of smooth, identical spheres by means of the kinetic
Drake[67], line A to those of Ref[66]. In both casesh, is  gproacHgranular temperatuyeln this field, while the basic

negative, i.e.pMy, is correctly opposite to thg direction.  concepts of the theory have been definitely explained, further
Besides, the absolute value bf, decreases monotonically forts are needed in two directions.

from the boundary condition fixed at, (Table ) down to The first is a departure from hypotheses valid only for
zero at the free surface. The behaviobgf can be compared jgeg) situations. In this sense, after having approximated the
with the evaluation of the coefficieint,, obtained by means  particle velocity distribution functiofi® by an expansion in

of the “elementary kinetic theory,” that we namig,. In Hermite polynomials around the Maxwellian truncated to the
fact, calculating the diffusive flux along of the x momen-  second order, we developed the collisional source term com-
tum (mc,) by Egs.(27")—(30) and dividing it byp and byT  pletely (not only in the integrals corresponding to the nearly

[Eq. (8)], one obtains, elastic limib; moreover, the variation of the mean velocity
between the two colliding particles has been taken into ac-
b* — — %T(l—FZb ) (45) count. Besides, together with the mass and momentum bal-
Xy ay vy ances, all the second-order moment balances have been con-

sidered [59]: these equations require the introduction of
with 7" =7"=7 and KJ"=K}~=1. The profiles ofb;,  closure equations for the third-order momefzad their de-
can be calculated introducing the simulation results of theivatives. Closure equations have been developed for the
derivative ofuy, v, T, by, andby, in Eq. (45). They are (N+1)th-order moment&nd their derivativesto be used if
also reported in Fig. 14 where circles refer to the simulationghe Nth-order moment balances are considered, by a gener-
of the experiments of Ref66], squares to those of R¢67].  alization of the “elementary kinetic theory” and specifically
In any case there is a good agreement betwggrand the  with a f(1) described by the Hermite expansion and with
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nonzero components of the mean velocity. A(CiC))={(1+e)(g-k)kik;—|ki(gj—usj+uy)]
The second direction is to test the theoretical profiles with
experimental data. We applied the model to the translational —|kj(gi—ugi+uy)}3(1+e)(g-k). (A7)

flow on an inclined chute and the simulations yielded the
profiles of the solid volumetric fraction, the mean velocity,

and all the second-order moments, expressed as granularraylor expansion truncated to the first term has been used

temperature and coefficients of the approxir_‘na‘t@d in the evaluation ofy(mCC;) to express the difference in
The experimental data of Azanza, Chevoir, and Moucherie mean velocity components, namely

ont [66] and of Drake[67] have been considered, although

they were obtained with a flow of just one layer of particles

constrained by the wallgbidimensional geometjy so the U

comparison is only approximate. All the qualitative features Uy; _ulj:(_Jkk) D,

of the flow are represented by the model: the decreasing ary

(exponential profile of the solid volumetric fraction, the

parabolic shape of the mean velocity, the constancy of the o _

granular temperature and of its three componésC;).  and similarly fori component.

Moreover, the model predicts nonequal normal pressures in Besides, the following results have been used for the ex-
the three spatial direction$9], which are connected with pressions of the closure equatioriSec. VI). With Y

the anisotropy of the velocity distribution function. =(c;/\2T—u;/\/2T),
APPENDIX
+ oo + oo
In this appendix some results useful for the resolution of f e (UG V2T e — \/ﬁf e Yy,
the integrals of the terny(mGC;) [74] and to express the 0 —ui 2T
closure equationgSec. VI are reported. First, let us con-
sider two spherical particles of diameferand massn (Fig.
1) among which an impact is happeninggif andc, are the +°°C_e,(,ui,\ﬁ+ci NETg
actual velocities of the particles 1 and 2 before the impgct, o !
andc; the actual velocities of the particles 1 and 2 after the
impact andg=c,—c,, g'=c;—c5;, k the unit vector di- —u ZTJW e’deY+2Tf+w 4y
rected from the center of the particle 1 to the center of the '\/_ u; IV2T —u; IN2T '
particle 2, some basic relations 4]
c=c—3(1+e)(g-kk, (A1) o
j cize_(_“i”ﬁ”i/"ﬁ)zdci
=ct3(1+e)(g-kk, (A2) 0
. . . : +o0 +o0
which can be written in terms of the fluctuant velociti@s, —u2\2T e Y dvy+ 4TUiJ ve Ydy
C, (before the impagt C;, C, (after impac}, —u; N2T —u N2T
C:;_:Cl_ %(1+e)(g Kk, (A3) _’_('|'2)3/2J1+c>c YzeszdY
—Ui /\ﬁ
C,=Cy+3(1+e)(g-k)k. (A4)
From these equations one can obtain that and, ifu;=0,
C1iCyj—CaiCyy=3(1+e)(g-k)[z(1+e)
+ o
X (9-K)kikj = (kiCq1j+kiCyi) ], f e’(’”i”ﬁ”iNﬁ)deiZ%(ZWT)UZ,
0
(A5)
C5iCo—CaiCy=3(1+e)(g-k)[3(1+e) +oo
f cie (Ul T+ci/\£ﬁ)2dci:-|—,
(A6)

The variation during an impact of the product of the fluctuant +o “ 2 T
velocities of the two particled (C;C;) is given by the sum jo cPe (TulZTHE 2D g = \/772T§-
of Egs.(A5) and (A6),
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