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A quasiparticle description of various condensed media is a very popular tool in the study of their transport
and thermodynamic properties. | present here a microscopic theory for the description of diffusion processes in
a two-component gas of quasiparticles with arbitrary dispersion law and statistics. In particular, | analyze the
role of interaction within each subsystefine., between identical quasiparticiaa relaxation of the whole
system. The approach for solving such kinetic problems allows one to study the most important limiting cases
and to clarify their physical sense. Classical results for diffusion coefficients of light particles in a massive gas
(Lorentz model and of massive particles in a light gd®ayleigh modelare obtained directly from the general
solution without using artificial approaches, as was done earlier. This provides a possibility to generalize these
popular models on quasiparticle systems.
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[. INTRODUCTION ets. For the past 130 years these researches have led to sig-
nificant achievements both in the new areas, and in old ones
It is well known that a variety of properties of some con- [4].
densed media can be described by interaction processes in Generally, a kinetic equation of the Boltzmann ty(pee
guasiparticle gases. These are, say, transverse and longitudguation describing the evolution of a single-particle distri-
nal phonons in solids, phonons and magnons in magneticallyution function in an phase spaceepresents the integro-
ordered materials, phonons and rotons in superfluid heliundifferential equation, where remarkable property is the non-
conduction electrons and holes in semiconductors, etc. As linearity of the collision term. Just this fact makes an
rule, to study the dissipative properties of such systems inebstacle in the construction of methods for solving the ki-
vestigators use either the classical kinetic theory in its simnetic equation. The monographigx5] are devoted to a de-
plest form or some semi-intuitive models, which lead some+tailed exposition of such methods in the case of classical gas
times to quite ambiguous results in the case of quasiparticlsystems.
systems. Here | present a theory of diffusion processes in In the majority of experimental problems there is no ne-
two-component quasiparticle systems, which, in general, isessity to use the detailed microscopic description of gas
independent of particular quasiparticles statistics and dispesystems at the level of distribution functions. As a rule, in-
sion law. Let me first briefly review the present state of thevestigation of physical processes in macroscopic systems is
classical kinetic theory and analyze its limitations in the de-carried out at the less detailed level of hydrodynamic vari-
scription of quantum quasiparticle systems of condensedbles. Since these variables are determined through the mo-
media. ments of a distribution function, then, as a rule, a detailed
The kinetic theory of gases in modern understanding istudy of the main moments of the distribution function ap-
attributed to the pioneering work by Maxwéll], in which  propriate to collisions invariants is required, but not the dis-
he has proved the law for distribution of velocities of mol- tribution function itself. Thus, the connection between the
ecules in a homogeneous equilibrium gébke so-called kinetic theory and hydrodynamics appears to be one of the
Maxwell velocity distribution and the law of equidistribu- main problems. In particular, one of the main aspects of this
tion of average energy of molecules in a mixture of gasesproblem is the determination of transport coefficients, such
His results were updated and improved in further works deas the diffusion coefficient and viscositfirst and second
voted to the theory of inhomogeneous gadesa history of  thermal conductivity appeared in equations of hydrodynam-
the problem see Ref2]). However, as a basis of all math- ics of a viscous liquid6].
ematical methods of the modern kinetic theory it is necessary In spite of the long history of physical kinetics, today we
to consider the basic works by Boltzmaf8l, in which the  have a rather small number of approaches to a solution of the
H theorem was proved and the classical Boltzmann equatiokinetic equations. All these approaches and methods these
was introduced. were formed depending on concrete problems, on which
The Boltzmann equation is an integro-differential equa-were directed. Most general methods of research of nonequi-
tion describing the collisional behavior of a rarefied gas. Undibrium state of classical and quantum gases were directed in
til now it remains a basis of the kinetic theory of gases andlemonstrating a mathematical resolvabilityr insolubility)
appears to be very fruitful not only for a research of classicabf certain basic problems in principle, rather than on con-
gases, which Boltzmann himself kept in mind, but—with anstruction of serviceable theories, suitable for deriving a solu-
appropriate generalization—for the study of electron transtion of concrete physical problems.
port in solids and plasma, transport of neutrons in nuclear The classical methods of deriving a solution of the kinetic
reactors, phonon and roton transport in superfluid liquidsgquations allow one to derive the kinetic coefficients as se-
and transport of a radiation in atmospheres of stars and plamies expansions on an infinite set of orthogonal polynomials.
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However, it appeared to be very difficult to use these classigives us several relaxation mechanisms in the system, and,
cal results for numerical calculation and analysis of physicatherefore several characteristic times depending on momenta
processes in real systems. This is caused by impossibility gir energies of quasiparticles. The final observed quantities
selection of the contribution from different types of interac- should be obtained by averaging this these in some manner.
tions to various kinetic coefficients, while many physical In particular problems the following question frequently ap-
systems behave qualitatively differently for different ratio Pears: what must be averaged, i.e., the time or the(iate
between the speed of a relaxation inside each subsystem aM@rse timg? and how to obtain the real relaxation time, i.e.,
between subsystems. by summation of the times or by summation of the rates?
In classical gases with pointlike interaction, this problemThis uncertainty led to many confusing situations. For ex-
is less important because the speed of relaxation inside supmple, for more than 15 years there were two different theo-
systems is unambiguously determined by their mass and cofies for the mobility of two-dimensional electron gas local-
centration. In the quantum case, when we talk about quasized over the free surface of liquid heliud0]. The first
particles, the situation becomes more complicated. Théheory[11] assumes the mobility to depend on the averaged
mechanism of interaction between quasiparticles is indepergharacteristic time of electron-ripplon interactidripplons
dent of simple macroscopic parameters. For example, i@re the quantized surface waves of liquid heljuriihis
some cases such notation as mass cannot be well definedtBgory well describes the experimental data for small elec-
all (say, what is the mass of a phongn? tron density[12]. Another theory[13] assumes the mobility
The mathematical theory of transport processes is modp be determined by the inverse averaged rate of the same
advanced for mixtures of classical gases, the evolution ofnteraction. These theoretical results fit well experimé¢ntg
which is described by a set of Boltzmann equations. A basi¥Vith large electron density. The problem of relationship be-
of classical methods for solution of the Boltzmann equatiorfween these two results has naturally appeared. There was a
in the case of a one-component gas is the formal expansicsimilar confusion in the theory of dissipative processes in
of distribution function in power series of some parameter Superfluidg15]. The analogous situation took place for some
in the form f=f©+ ¢fM+ ¢2f@)+ ... so that function time in the theory of thermal conductivity in soli$6].
£() corresponds to statistical equilibrium. In this case param- The aim of this paper is to present an alternative approach

etero is some scale factor for density, the physical sense ofor solution of the system of linearized kinetic equations for
which can be different depending on a particular problem. A& tWo-component gas of quasiparticles with arbitrary statis-
a rule, this parameter is formally considered to be small, s§¢S and dispersion law. The theory explicitly accounts for all
that the solution of the kinetic equation represents a problerfyP€s of interactions in the system. This allows one to ana-
of singular perturbatiofi7]. The most successful methods of Iyze the contrlbuthn of interaction between identical par-
solution of the kinetic equation, such as the Hilbert methodicles to the relaxation of the whole system. | do not restrict
and the Chapman-Enskog methf|5], are based on this mysglf to the frame of a partlcular system. So, the results
principle. In spite of the success of the Chapman-Ensko@Ptained here can be applied to any quantum system, whose
method in the description of connection between the kinetidiSSipative properties are determined by the processes in a
theory and the equations of hydrodynamithe Navier- WO-component gas of quasiparticles.

Stokes equations appear already in the first order in param- '€ paper is organized as follows. In Sec. Il | formulate
etera), the explicit expressions for kinetic coefficients have the Problem mathematically and carry out the linearization

a rather complicated form. The main defect of these expred2rocedure. Section lil is devoted to the procedure of inver-
sions is that already in the first order in parametetheir son of the collision operator by the use of projection operator

analysis becomes practically impossible. The situation be_r_’nethod. In Sec. IV | derive the exact solution for character-

comes more problematic in the case of a two-component ga§tic diffusion time and analyze all Iimiting cases. The _clas—
The infinite series of integral brackets containing Sonin poly-SICal Systems of Lorentz and Rayleigh gases and their gen-

nomials does not allow one to select explicitly the contribu-€ralization to the quagiparticle systems are considered_in Sec.
tions from different types of interactions in a system to vari-¥- N S€c. VI | consider the generalization of the Kihara
ous dissipative coefficients. This frequently leads to theAPProximation to the quasiparticle quantum systems. The
necessity to use various ungrounded approximations, such Q4tlines and conclusions are given in Sec. VII.
the Chapman-Cowling approximatids] or the Kihara ap-
proximation[2]. . Il. GENERAL EXPRESSIONS

At the same time, in spite of some succeg$dsthere is
yet no consistent mathematical theory for deriving the dissi- Consider the stationary nonequilibrium state of a gaseous
pative coefficients in gases of quasiparticles. And, naturallymixture of quasiparticles of two species. The most interest-
the problem of distinguishability of contribution from inter- ing relaxation process in such a system is a diffu$iof], so
actions between identical quasiparticles and between diffed-will concentrate on the diffusive processes.
ent subsystems has not been solved yet. This problem has its One of the most essential advantages of the offered theory
own history. In practice, when analyzing particular physicalis the fact that it is correct for quantum gases with any sta-
systems, many physicists use some model approximatiortsstics and any dispersion of quasiparticles. All main out-
for collision integrals. The most popular one is the so-calledccomes remain valid for both systems with nonzero chemical
BGK approximation[9]. In its simple form the BGK ap- potential, and with chemical potential equal to zéwhen
proximation leads sometimes to quite confusing results. Ithe number of quasiparticles is not consepvethe con-
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structed theory does not meet principal difficulties in genercoefficient. Thus, one can use the ordinary gas-dynamic defi-
alization to multicomponent systentse., on systems with nition of current density of thé&th component of a mixture

number of active components exceeding kwo

The evolution of distribution function$, (subscriptk
=1,2 numbers the components of the mixjucan be de-
scribed by the following set of kinetic equations:

vk7=j:zl’2 Ci(fo ) (k=12 @

wherev,=de,/dpy is the velocity of a quasiparticle of the

kth type, ¢, and p, are its energy and momentum, respec-

tively; r is the coordinate; an@;(fy,f;) is the collision
integral, which is a functional of the distribution functions of

mixture components 1 and 2. The particular form of these

collision integrals depends on the concrete physical proble

To find the diffusion coefficient let us consider the stationary

nonequilibrium state of the two components 1 and 2 of the ;
getermmed.

mixture, in which the quasiparticles’ number densities are th
functions of coordinate. In particular, for the gas of thermal
excitations such situation can be realized by creation of
constant temperature gradient.

Under the considered conditions there are stationary g

r -
dients of partial pressure of components, which result in floﬂr

of quasiparticles. This flow is determined by momentum cur

m

(see, e.g., Rel5]),

J'sz pifidly . (5

It appears that for various quantum and classical physical
systems, the diffusion coefficient can be written in the most
general form 15,18,

(6)

DZU%TD,

whereup, is the characteristic velocity, whose analytic form
depends on the particular dispersion law and statistics of
guasiparticles;/p is the characteristic diffusion time to be

According to the relationg2) and (5), for deriving the
iffusion coefficient(6) it is necessary to solve the system of
inetic equationgl). Below, for definiteness, the diffusion in

a system with conserved number of quasipartidlesd,
herefore nonzero chemical potentialill be considered.
he calculation for the case with nonconserved number of
quasiparticles can be carried out within a similar framework.

rent density, Since we are interested in the theory within linear re-

sponse approximation, let us assume the deviation of distri-
bution functionsf from their local equilibrium values(ko) to
be small. So, put as usual,

IP;
kj[?_rj (k=1,2),

. Pk
-3 Py 2
Jk o 2

wherep, is the normal density of thkth component of the
system,p=p;+ p, is the total density, and,; is the matrix
of diffusion times. The partial pressure of quasiparticles is

determined in the standard maniby, The small deviationsf, can be conveniently rewritten in the
form

f =fO+8f, |of<f. 7

1

()

wheredT’; is the measure in phase space. The densiktiof
component can be written in the universal fofib,

with unknown functionsg,. Linearizing the system of ki-
netic equationgl) we come to the system of linear integro-
differential equations for unknown quantitigg, which de-
termine the degree of system perturbation,

where f,=df /Je,. Relations(2)—(4) are suitable for the
quasiparticles with arbitrary dispersion law, statistics, and
chemical potentia(l mean both for zero chemical potential
and for nonzero onjeNote that the definition of normal den-
sity (4) does not depend explicitly on such notations as mass
or number density. Heren, is the number density of theth component, an@y;

To exclude convective transport in a quasiparticle systemare the linearized collision operators for the collisions within
i.e., to investigate only dissipative processes, here after ¢ach componentkEj) and for the collisions between dif-
shall consider the sum of partial pressures of different comferent quasiparticlesk@ j). The acting of these operators on
ponents of a mixture to be a constant, so patP;+P,  an arbitrary function of momentum, sa(p ;), is deter-
=const. The analytical relation between the matrix elementsnined by the particular form of collision integrals appeared
of a matrix of diffusion timesdy; and the usual diffusion in EqQ. (1). If we deal with the ordinary binary collision inte-
coefficie_ntD of a binary_ mixtu_re can be _ot_)'gained b_y a _direct gral with probability density functioiV;(py- p]-|p{<~ pj’) then
comparison of expressidi2) with the definition of diffusion  we obtain[19]

1 2¢1
p= 5 pifiar, @

Vi O’IPk

N or (k,j=1,2;k#]).

= Cidk+ Cyj (gt 9j) 9
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’ 7y £(0) ~ C11 0
Crié(Prj)= | Wij(Pk-PjlPk-Pj) 1~ (p)) S= (17)
0 Cy
(0) -1 (0)(p’ ®)(p’
XLEHE(P)) {1 F (P HIE 7Ry} corresponds to the relaxation inside each subsystem. To de-
roN _ AT AT fine completely the Hilbert space | am working in, let us
X - dr,dr dr 10
[£(Px ;) — &(py,j) 1dT'jdTy dT; (10 introduce the scalar product of two-dimensional bra vector
for k#j, and (¢1=(Z1(p1) . £2(P2)| and ket Vec;to'i)(>:(<)(|)Jr in the fol-
lowing manner:
Cud(P) = f Wi pi- plpi- P FO({ 1= £ (p} s
o ‘ @h0=3 @ho=- 3 [ dxSedr., as

X {12 FO (P HL= FO (P EpR)
, A where ¢,] and|x,) are the corresponding one-component
+&(p)—&(p) — &(p)1dldTy dI” (1D bra vector and ket vector, respectively. It is easy to verify

that with such a choice of scalar produya) the collision
for k=j. The plus and minus signs in Eq&.0) and (11) produge)

correspond to bosons and fermions, respectively. operatorC beco_mes Hermitian. . . .
Note that, in fact, our general approach allows us to ac- Sy§tem(13) IS t_he system of nonuniform Im_ear integral
count in such a manner not only for binary collisions, but forequations. According to the general theory of integral equa-

a variety of more specific types of interaction, such as deca2Ons the sough_t solutioj) of syst_em(13)_ must be or_thogo-
al to the solution of corresponding uniform equations,

or conversion processg20], creation or annihilation of qua-

siparticles, interaction with boundaries and point defects, etc. A
P P & ¢1)=0. (19

Il INVERSON OF THE COLLISION OPERATOR The normalized solution of Eq19) can be written in the
following form:
P1
>. (20

P2

According to relation(3), the gradient of partial pressure
for quasiparticles with nonzero chemical potential can be

written as 1

|¢1>:\/Tp

' 12 This vector|¢,) corresponds to the total momentum of our
two-component quasiparticle system. In general,(E§). has
other solutions, corresponding to conservation of energy, par-
ticle number, etc. | account here only for the momentum

nfonservation law because the sought solution can depend
only on the quasiparticle momen{see initial equations
(13)]. It is convenient to write the formal solution of EG.3)
so that the orthogonality condition

IPy (ﬁﬂk

—— =N, —
ar K\ ar

)T=const
wherepu, is the chemical potential of theh subsystem, and
T is the mixture temperature.

For further calculations it is convenient to present syste
(9) in the compact matrix form,

Py,
2, |5 =Clo), (13 (aldp =0 21

where is contained explicitly in the solution. For this purpose let us
define the projection operat@t, onto the subspace orthogo-
ving ! 0
o /| |4o) = vony i/ lg)=

gl> nal to the vectot ¢, ),
, (14)
g Pa=1="Pc, Pe=|d1)(4l. (22
are the two-component ket vectors, defined in an infinitia Hil-As a result, the formal solution of E¢L3) can be written in
bert space to be specified. The collisional operator matrix the form

can be conveniently written as a sum

|¢1>:

=P P Sl (23)
0=3+8, (15 9= InlE &, 10
where the operator matrix Further, we must insert the solutig@3) into the expression
for current density5), keeping in mind the relationd) and
. [Cy Cyqp (8). Comparing the obtained result with definiti¢®) for a
J= Coi Co (16)  matrix of diffusion times, we come to

contains only the quantities corresponding to interactions be- dllngD , dyp=dy=1p, dzzzﬂTD . (29
tween quasiparticles from different subsystems, and P1 P2
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where To obtain the formal resul9) | have used the relatior{49)
and(27).
o= —<¢2|&—1|¢2> (25) The matrices(30) and (31) are infinite dimensional and
nondiagonal. Therefore, the exact soluti@9) does not al-
is the characteristic diffusion time, and low one to obtain a closed analytical expression for the char-
acteristic diffusion time. However, it is necessary to empha-
1 poP1 size that the resul(29) contains explicitly not only the
| o) = —= > (26) quantities responsible for interaction between quasiparticles
V3pp1p2| ~ P1P2 of different types, but also the matrix elements appropriate to

_ o o collisions between the quasiparticles within each subsystem.
is the characteristic diffusion vector, which is orthogonal to; gllows one to investigate various limiting cases, to find
|pa)- . ) ~ minimum and maximum values of diffusion time, to con-
Now the problem is reduced to calculation of the matriXstryct correct interpolation formulas and useful analytical
element(25), which contains the inverse matrix operator de-models, and to make calculations on computers for concrete

termined by integral collision operators. physical systems.
To carry out the detailed analysis of the formal solution
IV. EXACT AND LIMITING EXPRESSIONS (29), it is make explocit the vector bas|g,) for n>2.
FOR THE DIFFUSION TIME Namely, let us choose the remaining vectors in the following
To derive an exact, analytical expression for the unknowr}corm'
guantity (25) it is necessary to introduce a full system of 1 |F@(py)
orthonormal two-dimensional vectors¢,) (here n |honir)= @ > (32
=1,2,3...) belonging to the infinite-dimensional Hilbert Ni 0
space with a scalar produ¢i8). The concrete choice of a
system of basis vectors in many respects depends on conve- 1
nience of calculations within the framework of a concrete |¢2a+2>:W F(a)(p2)>’ (33
physical problem(see, e.g., Refg§5] and[8]). In our prob- 2
lem it is convenient to take vect@R0) as the first of them, wherea=1,2,3..., F(@(p,) is the system of properly cho-

and Eq.(26) as the second. The remaining vectors can been orthogonal polynomials with the norm\V{®
arbitrary (for example, such vectors can be built on the basis:[F(a)(pk)“:(a)(pk)]l/{ such that{ F()(p,)|p]=0 (it is

of Sonin polynomials in the classical cagd, or Akhiezer-  clear that such polynomials cannot contain first degree of
Aleksin-Khodusov polynomialf8] in quantum systemsbut  momentum. Such a choic32), (33) provides a possibility
should satisfy the completeness and orthogonality condigy “separate” in some manner the components of the mix-

tions, ture. The matrix7+ S takes now the form
11 11 12
S

11 11 12
0480 42

m; | b ml=1, (bl bn)=Smn- 27

JHS==| en ey e
In a constructed full system of vectors an exact expression V1 V12 1
for the diffusion time
A a (11) (12
p=—{(3+9) Y (28) eit 0 ey
0 W 0 ...
can be reduced to the visual analytical form allowing simple - @) g (22) ) (34
physical interpretation and providing a possibility to carry @1 @1 T
out the in-depth qualitative analysis of the obtained result in
various limiting cases, corresponding to different mecha- ) L )
nisms of equilibration in the system of quasiparticles, where | have introduced the following “higher” interaction
rates:
o0 _1
To=—1{ lyp— 23 Lol (Z+S) Tomdmat - (29 o)~ [F(pp|Ci F P (py)] @5
n,m= J a
./\/J( )N(kﬂ)
Here the square matricésandS contain the following ma- 4
trix elements:
FE(pp) | Ci F P (py)]
A (aB) — _ [ i71=jk i
I Zlam=Tam={&nlI| dm), (30) T (@) \/(A) (36)
nm nm n m NJ NJ
ISl nm= 1 am={ &n|S| b (31) for collisions of different quasiparticles, and
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[F(“)(pj)|C”|F(ﬁ)(pj)] Comparing the main limiting resuli89) and (45 we come
wj(“’g)= - INCING (37 to the following important conclusion: The main qualitative
i j difference between expressions for diffusion time in case of a

corresponding to relaxation within each subsvstem. The re fast and slow relaxation inside each subsystem of a mixture
ponaing xation with uosy ' Peonsists in the method of averaging of operator matrices cor-

resentation(34) helps us to understand the explicit structureresponding to interaction betweeiifferentsubsystems.

of the formal sqlution(29). _Thi_s provides a possibility to . Avery interesting situation can be realized when one, say
study the most important limiting cases and to reveal the"first subsystem equilibrates very slowy;;—0, but relax-

physical significance. T )
So, in case of infinitely fast establishment of an equilib—atlon in another one is extremely, faSg,—, so that

rium between quasiparticles of identical tyftee so-called
complete control regimgl4,21]), when the strong inequali- R - R N 15
ties

In this case the result®9) and (34) can be converted as

(aB)s, ,(aB) (ap) P le—
S (J.k=12 (38 follows:

take place, the second term in the brackets of general result . .
(29) vanishes and diffusion time8) is given by the follow- 75~ —=(C12)1=(Cap)y - (47)
ing simple formulg19]:

Let us pay attention to the principal difference between the

7SO)= 7(min)— _ T = (AP 1 AD- 11 (39 firstand second terms in relati¢#7). Again, in the first term
22 we average the time, while in the second one we average the
rate of interaction between quasiparticles of different species.
where According to the Cauchy-Bunyakovsky inequality the char-

acteristic time(C) ' is always less than the tim(ei:;,f}
for any momentum dependence ©fy . If the collision op-
erator C;, does not depend on the quasiparticles momenta,
then rp=17J"". If C;, depends on momenta, then speed of
equilibration of a system depends on how fast the equilibra-
1 tion between identical quasiparticles[i5,19. Such a situ-
(A)k=3—(pk|Alpk) (k=1,2). (42 ation manifests itself in a phonon-impuriton system of super-
Pk fluid mixtures of helium isotopeqg22], in which the
impuriton is the®He atom in superfluidHe, and in phonon
systems in solid$16]. There is a two-stage mechanism of
relaxation in these systems. At the first stage quasiparticles
of the second type interact only with those quasiparticles of
the first type, whose momenta correspond to maximum of
T(lg)—lzﬁr(zg)—l_ (42)  collision operatoiC;,. At the second stage establishment of
P1 an equilibrium in a system is determined by the interaction
. of quasiparticles of first type with each other. This occurs
Proceeding from Hermiticity and negativity of operat®s pecause the quasiparticles of the first type with minin@ys
andJ with the help of the well-known Cauchy-Bunyakovsky prefer to interact with such quasiparticles within their sub-
inequality it is possible to shoWl9] that the following in-  system, which are already at equilibrium with the second

0= —(Cid b (Kj=1,2k#]). (40)

Here and thereafter the brackéts - ) stand for a normalized
average defined by the relation

According to the momentum conservation Ia®k1-|pk)
= —Cj«|p;) the relation between “basic” interaction rates in
Eq. (39) can be found as follows:

equality is always valid: subsystem.
_ The significance of the manner of averaging of collision
D= T‘Dm'”), (43 operators can be illustrated in the simple example of lattice
_ thermal conductivity in solids. The interaction rate between
Whererg“'”) is determined by Eq(39). phonon and scattering centeg,i=C,p,; (say, a point defect

In the opposite limiting case of extremely slow establish-or an impurity is proportional topgh (the so-called Rayleigh

ment of equilibrium between identical quasiparticles, i.€..scattering. So, the integrakC, %),y diverges at zero mo-

when mentum and the corresponding relaxation time tends to zero.
(@B) . (aB) (aB) (i L_ This means that the nonequilibrium long wavelength phonon

I (1,k=1,2), (44) simply “does not see” an impurity. At the same time the

quantity (Cpni)pn is finite and leads to a finite thermal cur-
rent. So, the mechanism of equilibration of such system can
be drawn as follows: at first all phonons come to quasiequi-
librium in their own subsystems, which corresponds to some
(max) - stationary flux of phonons, then they begin to scatter on the
o == (oI po). (45) impurities and point defects. As can be seen from the results

the second matrix in Eq34) can be neglected and the whole
formula (29) can be converted so that the diffusion timg
runs up to its maximum value,
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(29, (34), (39, (45, and (47), analogous competition m; /m,<1, (49)
mechanisms can occur in any two-component quasiparticle
system. ensured an elasticity of scattering of particles of a light com-

Calculation of(Cjy); for particular physical systems does ponent on massive particles and a large difference in thermal
not meet any difficulties. However, to calculat€;,'); we  velocities of particles of different types. Thus, particles of the
must inverse the collision operatdt;,, which is not a massive component can be treated as fixed and described by
straightforward operation. As a rule, it can be done by retheir equilibrium distribution function. With the purpose of
placing C; with some characteristic rate of interaction be- calculating a diffusion coefficient in such a system the strong
tween quasiparticles;, = vj(py), and then by straightfor- inequalities(48) and(49) are usually used for simplification
ward averaging of the value;(py) *, which is simply a  of the initial kinetic equation, which can be reduced to the
multiplying operator. In the followingt section | consider the so-called Boltzmann-Lorentz equatid®,23|. The conse-
most popular models in various problems associated witlluent solution of this equation gives an explicit expression
two-component classical gases or with condensed medi@r a diffusion coefficient.
whose transport properties are determined by the processesLeét us show that the classical results for diffusion in a

in two-component quasiparticle systems. Lorentz gas can be directly obtained from the general results
given by Egs(29) and(34). The operations below have cer-

V. THE RAYLEIGH AND LORENTZ MODELS EOR tain value themselves as generalizations of Rayleigh and

TWO-COMPONENT GASEOUS MIXTURES Lorentz models on quantum gases of quasiparticles. Such a

generalization is not trivial because of the impossibility to
Any theory claiming for a solution of some complicated introduce the mass and conserved number density for some
special problems, should first of all agree necessarily witlquasiparticles. So, we will formulate the problem in terms of
some fundamental results in the most simple limiting casesaormal densities. In this regard, for a Lorentz gas we replace
In the kinetic theory of classical gases the diffusion in atwo strong inequalities with the following:
Lorentz gagdiffusion of a light, very rarefied component in

a gas of massive, slow particjeand a Rayleigh ga&iffu- p1lpr<l. (50)
sion of massive particles with small concentration in a light
gag traditionally is considered. Then we can rewrite the vectpes,),

Both classical models, i.e., the Rayleigh and Lorentz
gases correspond, in fact, to the limiting c#46), but are 1 |p; Y1
more restricted in particle characteristics. Let us start with |po)=— >E > (51)
the Lorentz model. This is the mixture of a light component \/3_111 0 0

in very small concentration and a gas of massive, slow par-

ticles (buffer component Let the light component be the An equilibrium in the massive component leads to the fol-
first one. Let me briefly review the classical approach to dowing simple expression for operator matri given, in
problem of diffusion in such a mixturgs,23. The strong general, by Eq(16):

inequality

ny/np<1 (48) 3= 2 © 2
< J= . 5

1/n; 0 o (52)

was required for light particles to interact only with a mas-

sive component, but not with one another. A large differencelhen, using the explicit expressidB4) we can reduce the

in the masses of particles, general result29) to the following form:

o0 71
75 =1 (x1|Cad x1) — 21 [X1|C12|F(a)(pl)][”(¢2a+l|C12|¢2ﬁ+l)||_1]aB[F(B)(p1)|C12|Xl]] . (53

1
N(la)N(lﬁ) a.B=

The vectord¢,,. 1) represent a complete set of orthonormal v=|vy—Vy| =|vy]. (55)
vector functions in the momentum space of the first compo-
nent. This allows us to rewrite relatigb3) as follows: This means that the differential cross section depends on the

momenta of light particles only. Moreover, the momentum of
L=~ ~ (p,[CiHpy) =7 (54) a light particle can change only its direction but not an ab-
773, Poltz1P) =712 solute value. With these assumptions we can write the colli-

T ) , , sion operatorC,, as
Further simplification can be achieved if we believe the mas-

sive particles to be fixed during a collision, so that C1o= —|Vi|ayny, (56)
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which is simply a multiplication operator and, therefore, it Expression62) leads to the well-known relation for the dif-
can be inversed without any difficulty. Here | introduced thefusion coefficient of massive particles in an equilibrium light

transport cross sectidib| classical ga$2,5]. Let me remark that in Ref5] this result
was obtained by an indirect method with the use of the Ein-
_ _ stein relation between the diffusion coefficient and mobility.
7t j (1=cos6y,)do, 7 The use of the method developed here has allowed to obtain

) ) . . the formula(62) without engaging artificial approaches, i.e.,
where 0y, is the scattering angle ando is the ordinary  jmmediately from a general solutiof29),(34). The devel-
differential cross section. As a result, using the relation%ped approach allows to generalize the re€ig), as well as
(59)—(57) and defining the diffusion coefficient in a binary gq_ (5g), to quasiparticle systems with arbitrary dispersion
gas in the usual manngb,23), we come to the classical |5 and statistics, in particular, to such systems, in which it
result is impossible to define notation of a mass in its classical
sense.

1 U1
Dg?:mf f{O—=dr,. (58)

Tt
VI. KIHARA APPROXIMATION

The obtained expressiafd8) coincides with analogous for- ) . ) )
mulas obtained in Ref$5] and[23] by simplification of the In the previous sections | considered only the most physi-
initial kinetic equation. cally interesting limiting cases. However, in practice, the fol-

Note that for deriving the formulés8) in the frame of the  lowing problem can appear: how to calculate some dissipa-
approach developed here it is enough to require the fulfilfive coefficient more precisely in the intermediate case, i.e.,
ment of strong inequality50) for normal densities of com- when the considered limiting situations do not take occur. Of
ponents of a mixture, absence of equilibrium in the first com-course, the most straightforward way is to compute it nu-
ponent, equilibrium in the second component, and elasticitynerically using the formulag29)—(34). In that case we are
of quasiparticle scattering. forced to restrict ourselves with some finite matrices in Eq.

Now | shall consider one more classical example, namely{29). This is an analog of the Chapman-Cowling approxima-
a diffusion in the so-called Rayleigh gé24], that is, the tion in classical gaseous mixtures. In 1949 Kihp2&] pro-
diffusion of a very rarefied, massive gas in the light bufferPosed another approximation, which is, in fact, simpler than
component with large concentration. In other words, we, a§hapman-Cowling approximation. He simply proposed to
in the previous case, have a mixture of light and massivéeglect the nondiagonal integral bracketee Ref.[2]),
Components’ but under Opposite conditions. So we assun’yéhﬂ.:h is exact for Maxwell molecules. Unfortunately, this

the concentration of a massive component to be so small thaPProximation is unproven until now and it can be partially
justified only by experience in numerical calculations for

polp<<1. (59 classical gases. In our theory such an approximation can be
introduced by neglecting all the nondiagonal matrix elements

Now | assume that the light component of a mixture is al-i, Eq. (34). After this procedure the inverse matrix (
ready in equilibrium, while the particles of the massive com- )~1 takes the form

ponent almost do not interact with one another. In this lim-
iting case we can again use the reg&B) with a replacement

of subscripts 3-2. In this case, however, the relative veloc- o0 0
ity of particles from different components again is deter- ot o ...
mined by the velocity of light particle. Therefore, the appro- (I+S8) t=— (22) , (63
priate collision operator does not depend on momenta, so 0 0 ty
that in view of an orthogonality of vectors of selected basis
its nongiagonal elements vanish, i.e.,
[x2lCol FP(py)]1=0 (B=1.2,...). (600  where | introduced the diagonal characteristic times
Thus, proceeding from the relatiqgs3) with a replacement tf“ﬁ)=[v}“m+w}“ﬁ)]*l. (64

of subscripts of components, we come to the relation

In view of Egs.(63) and(64) we can rewrite the resu(29)

1 -1
(R-1__ " (n1C,lny) =70 " 61
> 3p2(p2| 21P2) =721 61 in the following form:

which determines the diffusion time in a weak solution of a

massive component in an equilibrium light gas. Further, pro- . . (|Clp3){ B3| C| b)
ceeding from a momentum conservation law, we obtain 7o~ —($2|Clp2) + (balClba)
3 3
A== o (plClpn = gt [ 1R (b2l da)(alCl 52)
D 3,02 11™~12 M1 3np2T 1 Mi1v1tt 1 + _ +... (65)
(62 (balClda)
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The series expansidig5) gives the correction to the limiting cases. So, if the relaxation inside each component of a sys-
result (39). In practice, we should estimate numerically antem is instantaneous, the diffusion time is determined by an
appropriate radius of convergence in seri65) and keep inverse average of collision operator, describing interaction
necessary number of terms. between quasiparticles of different types. In the opposite lim-
In general, it is clear that the Kihara approximation worksiting case, when the equilibrium in a system occurs over an
well when the momentum dependence of collision operatorifinite period of time, the diffusion time is equal to an av-
is weak enough. But sometimes series such ag@).have erage of the inverse collision operator. The principal differ-
infinite radius of convergence. This indicates simply that it isence between these two limiting results can be easily under-
better to start with the opposite limiting formu(d5) as a  stood using an example of phonon thermal conductivity of

zero order approximation. solids. The thermal conductivity in this case is simply a dif-
fusion of phonons in a system of fixed “scatterefghpuri-
VII. CONCLUSIONS ties, boundaries, defects, etdf the phonons did not come

~yet to equilibrium with one another, the thermal conductivity

In the present work | present a general theory providing gs determined by average of the inverse frequency of scatter-
possibility to investigate diffusion processes in a two-ing of phonons on scatterers. In case of a long wavelength
component gas of quasiparticles with arbitrary statistics an%honon, such frequency is proportional to the fourth degree
dispersion. The obtained main equations of the theory args momentum(Rayleigh scattering Therefore, while aver-
correct for systems both with conserved and nonconservegging' the integral simply diverges at zero momentum. That
number of quasiparticles, which is mathematically expresseg, the long wavelength phonon simply “does not feel” the
in nonequality or in equality of a chemical potential with gcatterer. On the contrary, in the case when the phonons
zero, accordingly. The proposed theory can be generalized me in equilibrium with one another, the magnitude of the
the.cases of classical and quantum gaseous mixtures Withlfusion time appears to be finite, because now the fre-
arbitrary number of components. _ quency is averaged, instead of time. This corresponds to the

To solve the formulated problem | start with the system ofgq_¢alied two-stage mechanism of relaxation. At first, an
kinetic equationg1) driving the evolution of corresponding  equilibrium in a phonon gas appropriate to some stationary
distribution functions of components of a mixture. After a phonon flux is established. Then phonons scatter on scatter-
standard procedure of a linearizati¢d),(9) of a kinetic  grs. Just this process results in a finite heat flux.
problem, | have chosen the basis in infinite-dimensional two- Tpe general results, obtained in the work, give correct
parameter Hilbert space with a scalar prodUd) selected  expressions for diffusion coefficients of a light gas in a mas-
so that the operator matrix of collision integrds5)—(17)  sjve one(Lorentz gas (58) and a massive gas in a light one
becomes Hermitian. As is known, the inverse matrix of col-(Rayleigh gak (62). Earlier, these classical results were ob-
lision integrals does not exist because of the moments Ohined only with use of artificial methods based on simplifi-
collision integrals. However, by projecting on the nucleus ofcation of the initial kinetic equation. Furthermore, these two
an integral operator of collisions it is possible to definemqgst popular model systems can be easily generalized to

somewhat inverse matrix. In the present work this procedurgescribe quasiparticle systems as well as classical gases.
has been made by introducing the projection operé&2ay

corresponding to conservation of total momentum of a qua-

siparticle system. As an outcome it allowed me to obtain the ACKNOWLEDGMENTS
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