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Constraint method for deriving nonequilibrium molecular dynamics equations of motion
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A procedure for developing non-Hamiltonian equations of motion for constrained systems is given. It is
shown that such constraints can be used to mimic common statistical systems, both equibgiyconstant
temperaturg and nonequilibrium(e.g., shear flow, heat flowand the procedure is suited for molecular
dynamics computer simulations. The method is demonstrated with isokinetic shear flow, in bulk and slit
geometries, which illustrates its flexibility. Results for the shear viscosity are in agreement with previously
published results.

DOI: 10.1103/PhysRevE.66.041207 PACS nuni)er66.20+d, 02.70.Ns, 61.20.Ja, 61.20.Lc

I. INTRODUCTION that the shear viscosity obtained with the method is in agree-
ment with literature values.
Molecular dynamics computer simulations are being used

to describe increasingly complex systefig Originally re- IIl. PRINCIPLE OF LEAST CONSTRAINT

stricted to a constant energy isolated systemtrocanonical ) )

system molecular dynamics has since been used for constant A. Equations of motion

temperaturg 2] and constant pressuf&] equilibrium sys- Denote the position of théth particle byg; and its mo-

tems, as well as in a variety of nonequilibrium applicationsmentum byp;, so that a point in Bl-dimensional phase
[4]. Such embellishments necessarily invoke non-space isF:(qN,pN), and the trajectory of the system is

Hamiltonian equations of motion, and this raises fundameny'(t). Suppose that the system is subject to a constraint, the
tal questions about the status of the approaches and the ngeneral form of which is

ture of the statistical distribution generated by the

consequent trajectory. Further, the equations of motion tend g(q¥,pN,t)=G, (1)

to bead hocin the sense that they are developed specifically

for the problem at hand, and there appears no fundamentalhereG is a constant. The equations of motion for the con-
principle that can be used to judge between alternative equ&trained system may be written as

tions of motion or any systematic procedure that can be used

to develop equations for new systems. : 0

This paper treats a generic class of systems that are con- qiza_pi“L}‘tigzqi +AVgi,
strained in some sense, and develops appropriate equations
of motion by invoking a geometrical principle of least con- _ IH _
straint. The utility of this class is that many thermodynamic pi=—-—+AV,0= pi°+ AV, 2
systems, both equilibrium and nonequilibrium, may be mim- 0
icked by invoking constraints on macroscopic variables. For ) o ] )
example, a constant temperature system can be modeled Wgere#(T') is the Hamiltonian. The first terms on the right
one with fixed kinetic energy, which leads to the isokinetichand side represent the natural or unconstrained motion of
thermostaf4—6]. Poiseuille flow can be represented by athe system, and the second term represents a generalized
system with constant total momentum for the confined fluigforce of constraint. The constraint force is directed along the
and zero momentum for the walls. Couette flow can be opdradient to the hypersurface and as such is minimal in a least
tained by constraining the momentum in two halves of theSquares metrical sense. The multiplieis determined by the
system to be constant and equal and opposite. There is‘&nishing of the time derivative of the constraint,
wide variety of systems that can be cast as constrained, and
the present principle for developing non-Hamiltonian equa- : _3_9
tions of motion for such systems provides a systematic and 9= at
unified approach to the problem.

The paper is divided into two parts. Section | derives the |mplicit in the above equations is the metric of phase
equations of motion for an arbitrary constraint and for a genspace. One can define constant length elemgptand I,
eral phase space metric. The equivalence of the so-calleslich that scalar products have the form
projected metric with Gauss’s principle of least constraint is
shown, and the implementation of the method for a discrete 1 1
time step is also discussed. Section Il gives equations of rO.r@=3 | —q@q@+-pp2|, (4
motion for shear flow by invoking a constraint on the mo- fa | 1gi i
menta in the two halves of the system. Results are given for
bulk and for confined Lennard-Jones fluids and it is shownwherea=x, y, or z, and gradients have the form

+I'-Vg=0. 3)
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of ~ of B. Gauss’s principle
g+

_ 2 74 2~ O
Vf(F)—Z Lo aq; i &pip' ' ® The equations of motion that have the least force of con-

straint in the projected metric may also be derived from
The product of the lengths has no physical consequence, ar@auss’s principle of least constraint. This is based upon
without loss of generality it can be set equal to unityl minimization of the Hertzian curvatufé]
=1. (Alternatively, the product could be set equal to

Planck’s constant.It is the ratio of the two lengths that is ot D L, 91 ? 11
crucial (this determines the relative importance of position 2% m Pia 90 o
and momentumny and this must have the dimensions of mass
divided by time,l /I 3;=m; /7. Accordingly one has with respect to acceleration, subject to the constrét
" Introducing a Lagrange multiplier, one has
r _
lG=r = (6) _

m T 0 d(C—-N'g) 1. 1 oH N ag 12

The time scaler affects the direction in phase space of the &bia m My 9, IPia

gradient to the hypersurface, but there does not appear to be
any general argument to fix its value. However, it does apThis is identical to the projected metric result, £8).
pear that the physical value corresponds-te0; this limit
will be taken Shortly. C. Discrete time step

With these expressions for the length scales in phase

space, the equations of motion explicitly are Molecular dynamics computer simulations necessarily in-

voke a discrete time step of non-zero length. Whilst there

OH T 9 exist methods to solve the equations of motion to high accu-
Z[?p_ + m ERT racy, some numerical error is inevitable. Unfortunately, be-
e P cause the constraint enters as a time derivative, there is no

qia

_ OH m dg means to correct for system drift away from the hypersurface
Pia=— — , (7)  of constraint. For example, the Gaussian thermostat based
ia 7 Pia upon the isokinetic constraint is usually supplemented with
and the distance moved along the gradient is periodic rescaling of velocities to correct for the drift in the
kinetic temperaturgl]. This rescaling is bottad hocand
a9 dH dg dH dg artificial and it is preferable to avoid it.
)\:[ T & i 90, - ErETS ” / Simplectic integrators have proven efficient in minimizing

drift [7]. An alternative approach in the present formalism
r(dg\> m/ ag \? for the discrete case is to allow the system to evolve from the
(aq- ) (ap- ) } (8)  pointI'(t) to the pointl® at timet+ A, . This evolution can

te te be either the pure Hamiltonian natural evolution or the con-

strained evolution, and the equations of motion can be solved

In these general equations of motion, the forces of con ) ) ) Qb wi
straint contribute to the velocities as well as to the acceleral® aS high accuracy as desired. In either ddse will not be

tions, which is arguably unphysical. This can be rectified byeXactly on the constraint hypersurface. However, one can
taking the limit=—0, in which case the equations of motion MCVe the trajectory back to the closest point on the hyper-

ia mi T

e surface by calculating successively
G—aq(r-1
“« &pia Vg . Vg
. JH ., 9 and
Pia= = o TA M~ =, ©)
Qi« Pia F(n):r(“*1)+)\(”)Vg. (14

and the distance factor is now
Here the gradient of the hypersurface can be evaluated at any
Nl 99 [ JH 99 JH d9 } / convenient pointe.g.,T("~Y), and the appropriate metric
[ &pia&qia &qia apia

at lengths should be used. Aftaiiterations, when the trajectory
) is back on the hypersurface within some specified tolerance,
D m((?_9> (10 one simply set®'(t+A,) =T, This method precludes drift
"opi,) away from the hypersurface and avoids the need for periodic
rescaling or othead hocmoves to make the system satisfy
This 7— 0 limit may be called the projected metiisecause the constraints.
it measures the length of a vector from its projection onto the For the case of multiple constraintg,(I)=G,, a
hyperplane of momenta =1,2,..., one has teolve the linear system of equations

ia
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- (n-1) (n-1) wherelL is the height of the simulation celi is the particle
% Ap'VOp-VOy 7=GCGa—0y ', a=12,... (15  mass, andN is the number of particles. The requisite deriva-
tives of the momentum hypersurfaces are

for the A("). Thenth estimate for the trajectory is 99. -
W * Pix¥(iy) ay, . O(=diy) dax, (19
= -1
rm=rn )+§ AVg,. (18 where Kronecker and Dirac delta functions appear. The

Dirac 6 arises from a particle crossing the midplane, and it

only contributes to the time derivatives when a particle is
1. AN EXAMPLE: ISOKINETIC SHEAR FLOW precisely at the midplane. In a finite-sized simulation the
probability that this occurs is negligible, and henceforth this
term will be ignored.

As mentioned in the Introduction, constant temperature The shear causes the system to heat up, and so an isoki-
molecular dynamics have previously been performed usingetic constraint is also imposed to maintain the desired tem-
the so-called Gaussian thermostat, which constrains the kperature. The peculiar kinetic energy is
netic energy[4—6]. Other constant temperature molecular N
dynamics methods include the Neleover thermostat 1 ~ ~
[2,8,9 and stochastic methods that yield the Boltzmann dis- k(T) °m > Pipy
tribution [3,10,11.

The shear viscosity has been obtained by equilibrium mowhere the peculiar momentum is measured with respect to
lecular dynam|c§_ S|mulat|ons using the Grgen—Kubo methoqhe local velocity profilép, = p;— m)’Qiyﬁix- By the equipar-
[12,13. Nonequilibrium methods include driven flow with a yition theorem, the value of the constrained peculiar kinetic
sinusoidal profild 14], trajectory perturbation method&5], energy is
boundary driven flowW16], including sliding brick boundary
conditions[17], and modified equations of motion such as 3NkgT
the DOLLS tensof13] and the SLLOD equationso named k(') = 5 =K, (21
because of its close relationship to the DOLLS tensor algo-
rithm) [18,19. Extensive results for the shear viscosity of awherekj is the Boltzmann’s constant aridis the tempera-
kf;ggfgalog}?s fluid at its triple point exist in the literatureture. The derivatives of the kinetic energy hypersurface are

A. Review

(20)

=1

ok - s ok 1. -
B. Constraints (9qia__7pi>< ay: m_mpia- (22)

Constrained equations of motion will now be developed |, ey of these expressions, the constrained equations of
for shear flowp,= yy, wherey is the shear rate. It remains |, tion are

to specify an appropriate constraint.
One possibility would be to fix the momentum of each . OH 2

particle according to its positiom;, =mya;, . However, this Gia=gp " TN YPixBay (23

is a very strong constraint that does not allow fluctuations he

about the average velocity profile. Nor does it allow nonlin-

) . . ) . —dH
ear profiles to develop. What is required is the least con- Pia= + MmN O(diy) Sax+ N O(—jy) Sux
straint that can be imposed to cause shear flow, an idea that is Iia
consistent with, but distinct from, the idea of the least con- "~
+N'pi/m]. (24

straint force in the equations of motion.

The constraint chosen here is that the total momentum iR js tedious but straightforward to show that the distances
the top half of the system is fixed, and equal and opposite tg,¢
that in the bottom half of the system. That is, two constraint

functions are defined, PO+ \"ps
N N=— TN, (29
9-()=2, pi®(~ay), (17
i=1 and
where® is the Heaviside step function. In order to achieve a , MNyN_K°—N_p/pg" —N.p, py~
shear ratey, one can see that the value of the constrained A= N (B+)2+N+(5_)2—2N+N K (26)
—(Py X -

momenta should be

Here N.. andﬁf are the number of atoms and the peculiar
_= VLNmZ momentum in the respective halves of the system, and the
9:(IN=—7—==GC, (18) L L
8 natural rate of change of momentum and of peculiar kinetic
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v*>0.1, the results are in extremely good agreement with
s Heyes[25]. The larger error at low shear, which is com-
o5 - o monly observed, is due to the low signal to noise ratio at
® such low shear rates. The large viscosity gradient at low
o o shear rates also contributes to this error, because any errors
2 , , , , , or fluctuations in the shear rate will cause a correspondingly
0 0.2 04 06 08 1 large variation in viscosity. The agreement of these results

v with those previously published for the SLLOD case is
romising and indicates that the new equations of motion do
ot effect the flow adversely.

Only the ratio of the coordinate and momentum metric is
significant, and from Eq(6) this ratio isl/I5=7*/m?. The
time constantr for the metric was taken as the time st&p

- 0+ -0 ; ~ -9 used in the computer implementation of the constraint equa-
energoy are py :E_ip”‘@(iqiy) and kOZZi“Pi“[pi“/m tions. That is,r i)0.0015|C:‘ory*<0.4. In practice this natu?
— ¥iydax], respectively. Note that the constraint force act-ra| metric based on molecular parameters is effectively the
ing on the rate of change of position is quadratic in the timeprojected metric mentioned previously because there is vir-
scaler, and that acting on the rate of change of momentumyally no change to the positions due to the constraint force.
is independent of-. To investigate the effect of changing the metric, simulations

In the actual simulations, the discrete equations of motioRyere carried out with* multiplied by a factor of 1&. This

for multiple constraints, Eqél5) and (16), were used. The caused a change in the positions in the fifth decimal place for
explicit formulas can be obtained using an analysis similar tq, shear rate of* =1. Any multiplier larger than this even-
the above. The equations were iterated successively unifljally caused the coordinates to change too greatly and to
convergence. This iteration procedure guarantees that thgoduce an unsatisfactory energy due to particle overlap.
system returns to the constraint hypersurface after each finitenjs shows that a large change in the natural metric is re-

time step, and there was no need for the periodic velocityyired to move away from the projected metric. The viscos-
rescaling that is used with the usual implementation of thety for this nonprojected metric for shear rateg*

i correctly captured by the present method. For shear rates
¢

n*

©

FIG. 1. Shear viscosity curve for a homogeneous system usin
the present geometric techniqugray circle3, compared to the
SLLOD results from Heyegblack diamonds[25]. The standard
error is indicated where the error bars are larger than the symbol

isokinetic method. =0.1,...,0.4 is invery good agreement with the natural
metric results, changing by less than 3% in each case.
C. Simulation details and results The advantage of the constraint technique is that the sys-

tem returns to the constant temperature and momeiftoim
each half hypersurface for every time step. This was ob-
The geometric constraint technique for isokinetic sheaserved in practice, the temperature and the total momentum
flow was implemented in a homogeneous system using Lee# each half remained constant and at the initially chosen
Edwards boundarie$l17]. Argon at the triple point T  value throughout the simulation. Velocity rescaling was
=0.722/kg ,p=0.8442-"3) was chosen because there hasnever required. One may conclude that this constraint tech-
been a large amount of data published for this systenmique for finite time steps is a viable alternative to the con-
[12,16,20—27. Heree is the energy parameter amdis the  tinuum Gaussian thermostat as a temperature control
length parameter that appear in the Lennard-Jones pair poiethod.
tential. The central cell contained 125 atoms. For shear rates
of y*=0.5,...,1, where y*=y(mo?/€)*? simulations
were run for 200 000 steps with an integration time step of The results in Fig. 1 do not provide an unambiguous test
At*=0.0015, where\t* = At(e/mo?)Y2. For shear rates of of the constraint method for shear flow. It is well known that
y*=0.1,...,0.4, simulations were run for 400000 stepsLees-Edwards periodic boundaries alone have the ability to
with a time stepAt* =0.0024. A fifth-order Gear predictor- produce homogeneous shear and the peculiar definition of
corrector scheme was used, and excellent agreement witrelocity required for temperature contrd@iased thermostat
past results was obtained for the shear viscosity. Below theglso influences momentum floj28]. So whilst the new
are compared with the results of Hey&5], who used the equations cause no evident damage, because of these addi-
SLLOD equations of motion with Lees-Edwards boundariegional effects it cannot be concluded that the new equations
and a Gaussian isokinetic thermostat. The viscosity was dehemselves are producing the shear flow.
termined in the usual manner from the ratio of the stress To determine whether the geometric method has the abil-
tensor to the shear rate. The dimensionless viscosity*is ity to produce shear flow independently of Lees-Edwards
= no?l(me)*2. boundaries, these boundaries were removed and replaced
The momentum constraints, in combination with thewith uniform walls in thexz plane. The wall potential was
Lees-Edwards boundary conditions and the isokinetic thers (y) =4¢(a/)*?, where( is the distance of the center of the
mostat on the peculiar momentum, were found to produce atom from the wall. This is the repulsive part of the Lennard-
linear velocity profile with the desired shear rate. It can beJones potential, and it prevents atoms from leaving the simu-
seen from Fig. 1 that the shear thinning at high shear rates lation cell. The wall position was located at a distapcé’®

1. Homogeneous system

2. Inhomogeneous system
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e than the geometric equations of motion. The present poten-
I os tial wall corresponds to a completely nonwetting interface,
and so complete slip could be expected. This is likely to be
T * the cause of the vanishing of the velocity gradient at the
| 0.7 boundary, due to the absence of any interaction with wall
atoms. Such a lack of atomic interactions prevents the shear-
ing of the fluid atoms near the boundary.
‘ ‘ ‘ 06 Interestingly the temperature profile is parabolic, being
0 0 -l . g G 3 higher in the center by around 10%. This can be explained by
y/L, larger heat production caused by the higher shear rate in the

FIG. 2. Schematic of the potential wall system for a shear rate opentral regior(the larger velocity gradient shown_ in Fig).2
0.2, showing nonlinear densitisolid diamonds velocity (solid The heat is removed at an equal rate over the simulation cell

circles, idealized velocity(straight ling, and the local temperature BY Using a single Lagrange multiplier throughout, and so the

0.75

+ 0.65

(open diamonds central region is too hot, and the perimeter is too cold, as
compared to the nominal temperatureTdf=0.722.
beyond the two boundaries at = L/2. This value was cho- The slip behavior between the wall and the fluid atoms is

sen so that the density of atoms in the simulation cell wast natural phenomenon observed in confined systems, both
close to the triple point density of argon. The periodic bound-experimentally[30—-32 and in computer simulationg33—
aries in thex andz direction remain unchanged. A cubic cell 35]. The present nonlinear velocity profile is an extreme ex-
was used. Simulations were run for 200 000 steps, with ample of such slippage, and it is a strength of the method that
time step ofAt* =0.0024, for 1000 particles. the geometric equations allow such a nonlinear profile to
To remove the effect of the profile-biased thermostat, thelevelop in this system. It would be difficult to realize this
peculiar momentum of particles was based on the measuresituation physicallybecause ordinarily shear flow is driven
velocity profile in the shear directidunbiased local thermo- by the boundaries, and it would require a spatially inhomo-
stab [28]. This also allows the effects of inhomogeneity andgeneous body force acting on the fluid to cause the present
confinement on nonlinear velocity profiles to be explored. flow). Nevertheless, given shear flow and the noninteracting
As Fig. 2 shows, the resulting density profile is oscillat- boundaries, such a nonlinear profile is realistic. The present
ing, which indicates a degree of ordering of the liquid into approach shows the behavior of the fluid and the form of the
layers parallel to the plane of the potential boundary. This isslippage for this model flow.
a property of liquids confined between molecularly smooth A linear region was observed in the center of the cell for
solid boundarie$29], as was confirmed here by comparison shear rategy* <0.5. Using the stress tensor, the shear rate
with the prominent ordering observed in an equilibriumand viscosity were calculated in this linear region, and the
simulation that was also conducted. The velocity profile inresults are shown in Table I. The value of the shear viscosity
Fig. 2 in the direction of the velocity gradient was nonlinear,deduced for the inhomogeneous system agrees well with that
with the gradient vanishing at the walls. The homogeneousbtained for the homogeneous system discussed afoge
velocity gradient for the same shear is also shown. The cont). This confirms that the fluid is behaving as expected and
straint guarantees that the area between the two velocithat the equations of motion are producing the correct fluid
curves above the linear curve must equal that below the linresponse under the present conditions.
ear curve. This along with the vanishing of the gradient of The flexibility of the constraint technique allows alterna-
the velocity profile at the walls results in a sharper gradientive implementations of the isokinetic shear flow equations.
in the center. There was no correlation of the local velocityOne possibility is to constrain the momentum of the fluid in
with the oscillating density profile. a region at the outer edges of the simulation cell only,
It is expected that the nonuniformity in the velocity gra- thereby shearing the intervening fluid. Each of the two con-
dient is a phenomenon of the stationary smooth wall rathestrained fluid regions was set at approximately one molecular

TABLE I. Viscosity given by SLLOD[25], compared with that obtained here for the homogeneous
system with the natural and the exaggerated metric, and with the results from the two inhomogeneous
systems, the potential wall, and the constrained fluid boundary. #teie the nominal shear rate and, is
the measured shear rate in the center. The error in the last digit is given in the parentheses.

SLLOD [25] Homogeneous Wall Constrained boundary
T=At = 1078t

v v n* 7" Ym 7" Ym 7

0.1 2.938) 3.0827) 3.179) 0.10 3.3%3)
0.2 2.849) 2.8611) 2.91(7) 0.20 3.070)
0.3 2.712) 2.617) 2.673) 0.28 2.860) 0.30 2.800)
0.4 2.562) 2.548) 2.543) 0.44 2.400) 0.40 2.640)
0.5 2.421) 2.437) 2.442) 0.51 2.461)
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projected onto the momentum hyperplane, as one would ex-
pect for real forces. In this case the geometrical principle
became equivalent to Gauss’s principle of least constraint.
Using the molecular measure of time was found to be prac-
tically equivalent to the projected metric.

Second, the constraints that were imposed were also mini-
mal. In the case of shear flow, two constraints were imposed.
These fixed the total momentum in each half of the system to
be equal and opposite, which is obviously much less restric-
tive than, for example, fixing the momentum everywhere. It
Was shown that a variety of flow patterns could develop,

idealized velocity profildstraight line, obscurgdand the tempera- ConS|stent. W'th these two F:onstralnts. The ,genera,ll approach

ture (open diamonds Dashed vertical lines represent the boundary®f €ONStraining macroscopic conserved variables in different

of the constrained fluid region. regions appears to offer the minimal solution to a variety of
different nonequilibrium flows.

diameter, or 10% of the cell. This is similar to the fluid-wall ~ Specific results for shear flow were obtained to illustrate
method of Ashurst and Hoovét6]. However in the present the present approach. The homogeneous results indicate that
case, fluid atoms are allowed to mix with the constrainedhe supplementary forces from the geometric technique are
fluid, in contrast to the method of Ashurst and Hoover wherenot disturbing the system. The inhomogeneous methods
continuity is broken with an elastically reflecting boundary atshow that the technique alone is capable of producing shear
the interface of the fluid and the fluid wall. An oscillating flow within the system. This technique also allows nonlinear
density profile is apparent again, as Fig. 3 shoiMate that ~ Vvelocity profiles to develop when they might not have been
the uniform wall potential discussed in conjunction with the anticipated beforehan@.g., the present results for the fluid
preceding figure was also presgrithe velocity profile is confined by a potential wall Advantages of the present
nonlinear only in the constrained boundary region, with themethod over other techniques are the following.
velocity gradient vanishing at the wall once again. The ve- (1) The velocity profile is not assumed.
locity profile in the nonconstrained region is quite linear, and  (2) The constraints are satisfied exactly at every time step
the actual shear rate is close to the ideal shear rate set by tagd hence there is no need for velocity rescaling.
boundaries. The viscosity obtained for boundary shear rates (3) There is minimal perturbation of the natural motion of
of 0.1-0.5 are shown in Table I. It can be seen that théhe system.
results are again in close agreement with the homogeneous (4) The technique is flexible, since it allows choice in the
results, which confirms the reliability of the equations of constraining factors, and the constraints may be applied to all
motion that result from the geometric principle of least con-or part of the fluid.
straint, and the flexibility of the constrained macroscopic (5) The methods gives a well-defined and unambiguous
variable approach. recipe for developing equations of motion for different situ-
ations.

For the problem of homogeneous shear flow, the present
method is of similar computational efficiency to the SLLOD

In developing non-Hamiltonian equations of motion to equations and to the other nonequilibrium approaches to
describe different thermodynamic systems, it is desirable tshear flow that are already in the literat{it8—19. The real
perturb the natural motion of the system as little as possibleadvantage of the present approach is that it provides a first
This requirement was implemented in the present paper iprinciples method for deriving equations of motion for gen-
two ways. First a geometric principle of least constraint waseral classes of flow. For example, momentum constraints
analyzed. This gave the minimal additional force necessargould be used for Couette flow of complex fluids and for
to restrict the motion in phase space to a given constrainPoiseuille flow of confined fluids, and energy constraints
hypersurface. Results were given for both a general metricould be used to simulate heat flow. The fact that the algo-
and a projected metric. The latter, it was argued, was theithm works in the present simple case of shear flow indi-
physically relevant case because the forces of constraint werates that it can likely be applied more broadly.

FIG. 3. Results for the boundary driven system for a shear rat
of 0.2, showing densitysolid diamonds velocity (solid circles,
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