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Propagating hydrodynamic modes in confined fluids
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In molecular dynamics simulations in the microcanonical enseif\WEMD) we calculate the intermediate
scattering functiorf(k,t) for a “simple” fluid confined to nanoscopic slit pores with chemically homoge-
neous, planar substrate surfaces. Since system properties are translationally invariaxiyimpkaee, we focus
on the propagation of density modparallel with the confining substrates by choosing a two-dimensional
wave vectorik”| =k =(ky,ky) for our analysis. Within the framework of classical hydrodynamics, we develop
conservation laws for-averaged fluxes of heat and momentum. Using in-plane versions of the macroscopic
stress tensor and internal-energy current as constitutive equations we derive an expredsiap, fprin the
hydrodynamic limit depending on the thermal diffusividy , the sound attenuation coefficidnf the in-plane
adiabatic velocity of sound;, and the ratio of heat capacities at constant transverse stress and vplume
Through a fit ofF(k; ,t) in the hydrodynamic limit and its associated memory functib(k,t) to MEMD
data, reliable values for the s¢Dt NI ,y} of material coefficients can be obtained. Variations in
{D1.I',vy, v} with s, may be correlated with variations in the solvation pressure,— P, with s, (7, is the
stress exerted by the fluid along the surface normal Bpds the bulk pressujeand therefore linked to
stratification of the confined fluid.
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[. INTRODUCTION cal average density moddlADM ) to describe fluid flow in
directions parallel to the substrates. The LADM takes into
In a fluid (i.e., gas or liquid equilibrium properties can be account the inhomogeneity of the confined fluid along the
linked to the typical range of intermolecular correlations. If substrate normal by introducing a viscosity that depends on
such a fluid is confined to spaces of nanoscopic dimefsion the local average density at positinbetween the substrates.
by solid substrates, say, confineméng., the separatios,  The local average density is obtained by averaging the local
of the solid surfacesadds a new relevant length scale and, adensity over a spherical volume centeredzawith a diam-
a consequence, fluid properties are altered markedly frorster equal to the “diameters of a (“simple”) fluid mol-
those of a corresponding bulk fluid at the same temper&ture ecule. Traviset al. [16], and later on Travis and Gubbins
and chemical potentiak.. For example, in such a fluid, [17], simulated Poiseuille flow in nanoscopic slits and ob-
confinement-induced phase transitions may arise, which dserved velocity profiles in the direction normal to the sub-
not have a bulk counterpdrt]. Moreover, diffusion in con- strate surfaces that cannot be accounted for by the constitu-
fined monolayer films may be anomalous in that the timetive equations of classical hydrodynamics. Based upon their
dependence of the mean-square displacement in a directi@bservations Travis and Gubbins propose a modified consti-
parallel with the confiningplanay substrates may be fractal tutive equation for momentum flux by assuming that the
[2]. These and other unique features of confined fluids makehear viscosity depends on the positiorelative to the sub-
them fascinating both from an experimental and from a thestrates in the sense of a convolution integral involving also
oretical perspective. However, to date, most of the work dethe local strain rat¢see Eq(5) in Ref.[17]].
voted to confined fluids is still concerned with equilibrium  To develop a better understanding of the viscous behavior
propertieq 3]. of confined fluids is of interest in a number of contexts. Take
Comparatively few studies are therefore devoted to timeas an example experiments employing the surface force ap-
dependent phenomena in confined flu[dg and most of paratusSFA), which permits one to measure the shear stress
these focus on diffusiof,5,6], with particular emphasis on in response to an externally applied strain. A reproducible
zeolites[7-9]. This interest is largely stimulated by impor- but still puzzling observation is that below a film thickness
tant technical applications of these materials, such as masf about six molecular layers, a dramatic increase of the
lecular sieved10] and catalysi§11]. Diffusion is also the shear viscosity is reported, regardless of the molecular struc-
rate-determining factor in the separation of binary gas mixture of the confined pha$20,2]] that would normally signal
tures in porous medigl2-14. solidification. However, the mismatch between the crystallo-
Besides diffusion, viscous flow through microporous me-graphic structure of the confiningnica) substrates and solid
dia has been the other focal point in recent ydas—19. structures that the confined phase would possibly form in the
For example, Bitsanist al.[15] developed the so-called lo- bulk renders solidification to be a rather unlikely cause of the
experimentally observed increase in shear viscosity.
From a broader perspective, the viscous nature of a fluid
*Electronic address: fabien@terra.chem.tu-berlin.de is generally responsible for the damping of density modes,
Electronic address: martin@terra.chem.tu-berlin.de which canin principle be measured through the dynamic
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structure factorS(k,») by the scattering of lighi22,23 or  t, ands[r—r;(t)] is the Diracé function. In Eq.(2.1), g(t)
thermal neutrong24]. On account of their difference in is a physical property of moleculéand thereforea(r,t) is
wavelength by about three orders of magnitude, light scatteithe local dynamical variable associated with it. For example,
ing provides information about slow w(—0), long- if &(t) were the momentunp;(t) of moleculei, a(r,t)
wavelength k| —0) modes (i.e., hydrodynamic modgs =p(r,t) would be the associated time-dependent local mo-
whereas thermal neutrons permit insight into the dynamics ofientum density.
a fluid at the molecular scale due to their much shorter wave- Following standard reasonin@8] it can be shown that
lengths corresponding roughly toas far as “simple” fluids ~ a(r,t) satisfies the continuity equation
are concerned. a
Theoretically,S(k,w) can be determined in molecular dy- da(r,t) +V-J4(r,1)=0 (22
namics (MD) computer simulations. However, in MD,
S(k, ) is not directly accessible because the simulations ar
performed in the timdt) and not in the frequency«() do-
main. Hence, the intermediate scattering functiegk,t),
which is related t&(k, w) through a Laplace transformation, a _ _
is the more suitable quantity. At the microscopic level, ap(HD =3OV, @, f=xy.2, 23
F(k,t) represents the time-dependent autocorrelation funcynerey (r,t) is the B component of the velocity field at
tion of the Fourier components of the local density. Experi-gnqi. P
mentally, F(k,t) can be determinedirectly in neutron spin We now wish to apply these considerations to a slit pore
echo measuremen(&5,26. with chemically homogeneous substrate surfaces located at
In the hydrodynamic limit [k|=k—0, «—0), F(kit)  ;=+g/2 If s, is of the order of the typical range of inter-
for bulk fluids can be expressed in terms of a set of material tions between the fluid molecules, the pore fluid will be
constants, such as the thermal diffusivily: and the kine-  hignly innomogeneous, that is, molecules arrange their cen-
matic viscosityb. However, if the hydrodynami€ (k,t) is  ters of mass such that the fluid consists of individual strata
fitted to MD data over & range typically accessible in MD parallel with the confining substrate surfaces. This is re-
without having to take recourse to anything but standargjected by the fluid’s local density that is a damped oscilla-
simulation techniques, t_he_se materials constants turn out ®ry function of z [29]. Since we shall be concerned later
depend ork, thereby pointing to the fact that the hydrody- onjy with a hydrodynamic analysis @f-planefluxes, that is,
namic form ofF(k,t) is inadequaté¢27]. Since we are inter-  fyxesparallel with the substrate planes, it is sensible to turn
ested in properties liké+ andb for confined fluids, we to “reduced” conservation laws. The latter are obtained by

develop here an approach based upon the memory functiqftiplying both sides of Eq(2.2) by s, *dz and integrating
M(k;,t) associated witlr (k; ,t) where we focus exclusively he resulting expression ovewhich gives

on the density modes propagating in thg plane(i.e., par-

in the absence of sources and sinks, thai(ist) is assumed
0 be conserved. In Eq2.2), 9,=4/dt, and(Cartesiahcom-
ponents of the flux tensal?(r,t) are given by

allel with the com_‘mmg substratgs by choos!ng K| g, (R t)= —ﬁxJia(R,t)—r?nga,a(R,t)—J?a(R,Sz/Z,t)

= (Kkx,ky). In developing the relevant hydrodynamic expres-

sions we take advantage of the fact that across eagh +32 (R, —S,/2t), a=X,Y,z, (2.9
plane(located at different), properties of the confined fluid

are translationally invariant in our model. whereRe R? is a point in thex-y plane and

The remainder of the paper is organized as follows. Sec-

tion Il A'is devoted to a derivation of hydrodynamic conser- - _ 1 (s

vation laws for slit pores. In Sec. Il B, we are concerned with aC’(R’t)=s_z ,Sz,zdz &(Rz.Y), (2.59
deriving a hydrodynamic equation for the evolution of den-

sity modes in slit pores. Starting from a microscopic defini- _ 1 (s,2

tion of F(kj,t) in Sec. A, we derive its hydrodynamic Jaﬁ(R:t)ES_Z 73/2d23a5(R,Z,t)- (2.5b

counterpart in Sec. Il B. Section Ill C is devoted to an in-

troduction of the memory-function formalism used below in In Eq. (2.4)
Sec. IV. Applications to bulk and confined fluids are then
discussed in Secs. IV B and IV C, respectively. We finally J2 (R E8,/21)=a,(R, =5,/2)v 4(R +5,/21), (2.6)
summarize our findings in Sec. V.

where
Il. HYDRODYNAMIC MODES IN CONFINED FLUIDS
A. Conservation laws for slit pores N
Consider a time-dependent vector field vp(R,x5./2,t)= > vpi(t) IR—R,(1) 16 £5..2—2,(1)]=0

=0

(2.7)

expresses the fact that fluid molecules cannot reach the sub-
wherer e R, r,(t) is the position of fluid moleculeat time  strate surfaces located at +s,/2 on account of diverging

N
""(”)221 a()r—r(v]l, (2.1
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fluid-substrate repulsion. From Ed2.4) and(2.7), it is then  tenf in the x andy directions. Moreover, since the substrate
clear that the last two terms on the right side of E2}4) is chemically homogeneous and plasee Sec. IV A fluid
vanish identically. It is now convenient to introduce the properties are translationally invariant acrossthe planes.
“transverse” tenso,[Jﬁ(Rt)]aﬁzJ—zﬁ(R,t) (a, B=x,y) and C_onsequently, if averaged OvErwe are ess_entially dealing
the “normal” vector[ 3 (R,t)] =72 (Rit) (a=x,y) and re- ywth a Iaterallyhomogeneogand|sotrop|cflg|d. Hence, 'Fhe
cast Eq.(2.4) compacﬁy as @« Tz inadequacy of hydrodynamics to descrifwiseuille flow in
T narrow slits observed by Travist al. [16] and later on by

da(R)+V JA(RH)=0 (2.89 Travis and Gubbingl7] need not be of concern here. This is
R I ' because this inadequacy was observed only if an expression

da R+ V|- JA(R)=0 (2.8 similar to Eq.(2.10a was employed to analyze the velocity
tAz ’ 1 1 — Y .

profile along the surfaceormal where, in fact, the confined
wherea=(a,,a,), V|=(dy,dy) (9,=0dlda). In Eqs.(2.8), fluid is highly inhomogeneous. However, _it_is interesting to
it should be understood thatyhenceforth(aklactor or scalgr note that as a cure of the apparent deficiency of classical
fields depending only oR andt have been averaged over hydrodynamics, Travis and Gubbins propose to replace the

in the above sense. We have therefore already dropped tfg@nstant shear viscosity in their constitutive equation by a
— — . L . local one, averaged over{17]. This concept, which has not
overbar ongy anda, in Egs.(2.8) to simplify the notation.

. been fully tested to date, seems similar in spirit to the
If, at the outset, we were concerned with a scalar rathe y P

: N E—averaged conservation laws introduced in Sec. Il A.
tha_n a vector field replacing in E(Q'l).’ g(r,t) andq-(t) .by Inserting the constitutive equati@@.104 into the conser-
their scalar analoga(r,t) anda;(t), similar considerations

\ ) ation law for the momentum densip(R,t) [see Eq(2.8
apply and the resulting-averaged conservation law can be ;lorlaE p]v;nd using . RO [ a(2.83
cast as

ﬁta(R,t)-l-VHJﬁ(R,t):O, (2.9 p(R,t)=mpuv(R,t)=mJ’(R,t), (2.11

where the g-averagedl vector J”E(Jj,fy‘) has only two wherem is the mass of a fluid moleculel’(R,t) is the

components. number-density flux, and=N/As, is the mean number den-
Moreover, sinces, is comparable to the range of intermo- sity at equilibrium, permits us to write

lecular interactions, an analysis of propagating modes in

terms of hydrodynamic equations makes only sense in the 1 7 _,

x-y plane. Thus, Eq2.8b will not be employed henceforth. f9tJP(R,t)_EV7’II(R*t)_IﬁV J(R,1)
To reduce the notational burden even further, it then seems

sensible to drop the subscript on the operalgras well as Ip+e

on the fluxesJf(R,t) andJf(R,t) from now on. - V[V-J(R1)]=0, (2.12

pm
B. Density correlations which is the z-averaged, in-plane analog of the linearized
At this stage we introduce the constitutive equations  three-dimensional Navier-Stokes equatif80]. Similarly,

starting from the conservation law for the lodgahternal)
[PR)]ap=—7(RV) Sup— 7l dpv o(RY) + v p(R )] energy densityu(R,t) [a=u, see Eq.2.9] and using the
constitutive equatiori2.10b we have

2
+0ap gn—é)V-v(R,t), a,B=XY,
U—
(2.103 o U(R,t)—TT”p(R,t) —\V2T(R,)

for (z-averagedlin-plane momentunisee Eq.(2.103] and  whereq(Rt) is the local heat density following the line of
energy flux[see Eq.(2.100]. In Egs.(2.10, 7(R,t) is the  arguments presented in RER1L]. To arrive at Eq(2.13, we
lateral local stressy(R;t) is the velocity field,» and{ are,  ysed Eqgs(2.11) and(2.9) for a=p.

respectively, shear and bulk viscosities afg; is the Kro- Perceiving nowr|(R,t) andq(R,t) as functions of aver-
necker symbol. In Eq(2.10h, h=u— 7 andu are, respec- age density and temperature of the confined fluid, we expand
tively, enthalpy and internal-energy density of a confinedphoth quantities in terms of deviationsp(R,t)=p(R,t)—p

fluid in thermodynamic equilibrium) is the thermal con-  and §T(R,t)=T(R,t)—T of p(R,t) and T(R,t) from their
ductivity, andT(R,t) is the (z-averagefilocal temperature. equilibrium valuesp and T to first order and get

That is, we explicitlyassumeéhe same constitutive equations

for the z-averaged lateral fluxe§.e., fluxes parallel to the | o1

substrate surfacgsnormally employed for homogeneous, or(R )= —) Op(R,1)+ —) ST(R),
isotropic bulk fluidg28,30. This seems justified because the P N,T.s, T N.AS,

confined fluid is assumed macroscopi®., of infinite ex- (2.14a
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T(97 T (o7
5q<R,t>=—(—) 5p(R)+pCag ST(RY). 5 w2 | TR + (—) 5u5p(RO=0.
p &T N,A,SZ S, t pCAsZ ( ) pZCASZ (9T N’AYSZI P( )

(2.14bh (2.1

Here we notice that at fixedN and s,, As,dq(A,T)
=TdS(A,T) (S is the entropy through the second law of Moreover, we have from Ed2.9)
thermodynamics, define the isochoric heat capacity per mol-

=TN"! o i
eculecASZ—TN ((?S/(?T)N,A,Szv and utilize the Maxwell re 2p(RO+V - J(R1) = 2:5p(RD)+ V- (R 1) =0,

lation [32]
(2.18
JS 197'H
RETN - =S, aT A ' (2.19 so that Eq(2.17) can be written in final form as
! 'SZ ' ’SZ
To proceed, we notice that in EQ.12, 7j(R,t) can be or
replaced by é7j(R,t)=r7(R,t)— 7, since V7, vanishes (at— Vz)éT(R,t)— 5 (—|> V.-J’(R,t)=0.
identically. Employing then Eq(2.143 we may replace PCas, P“Cas, a7 N,A,S,
Vér(R,t) in Eg. (2.12) to obtain (2.19
1 aT) . . . .
atJP(R,t)—a o Vép(R,t) To solve the resulting coupled partial differential equa-
PInNTs tions in Egs.(2.16 and (2.19, we introduce the two-
109 dimensional Fourier-Laplace transformation through Ref.
T| —
——(—) VT(RY) — —=V2J(Ryt) [31] k= (kx ky) 1,
m\ JT NAS pm
1 * .
snt{ ak,s:j dtex —stdeéaR,t exp —ikj-R).
—3pm V[V.J(R1)]=0. (2.16 (k8= | dtexp(=st (ROexp(—1k-R)

(2.20

By similar arguments we may substitute in .13,
oq(R.,t) and 6T(Rt) for q(R,t) and T(R.t), respectively. Applying it to Egs.(2.16), (2.18), and(2.19, we obtain a set
Dividing both sides of the resulting expression y,s We  of coupled linear equations for the unknown quantities

get p(Kj,s), T(kj,s), andJ’(k,s) expressed conveniently as
|
s 0 ikH
ikfT [dm ki, k
0 s+ak? _ 2H a_T> p(kj,s) p(k))
P Cas, "o T(kH »$) | = T(kH) (2.22)
ikH a7 ikH 7| Jp(kH’S) Jﬁ](ku)
-—|= == s+bit
m\dp /. m \ JdT ,
. v v
H(k)| ,s)

wherek = k|| andJ’=[J"| because of the translational in- [see Egs(2.83 and(2.9)], H(k,s) is a 3x 3 rather than a
variance of system properties in tkey plane. In the hydro- 5% 5 matrix such a#i,(k,s), where one is also dealing with
dynamic matrix H(kj,s), a=\/pcCas, and b=(37  modes propagating in a directiperpendicularto k [see, for
+¢)/pm is the lateral kinematic viscosity. In ER.21), we  example, Eq(8.3.29 in Ref.[31]].

have again simplified the notation by dropping the argument However, the modes parallel and perpendiculak tare
t=0 of the vector elements on the right side. We note thatincoupled. Therefore, the analysis of Ef.21) is identical
H(k,s) is formally equivalent to that part dfi,(k,s) for  to that of the submatrix ofi,(k,s) for modes parallel td.
bulk fluids describing the propagation of hydrodynamicFor example, Eq(2.21) reveals that the desired solution
modes in the directioparallel with k= (ky .k ,k,). How-  p(kj,s) depends in general op(k)), T(k)), and J’(k).
ever, on account of averaging the conservation laws aver However, as pointed out by Hansen and McDonald for the
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bulk counterpart of Eq(2.21), p(kj,s) cannot depend on 1 /NN

T(k)) since the latter ang(k)) are uncorrelatef81]. More- ~ G(RR",z.z".t)= 2’1 2’1 JR"+R=Ry(1)]
over, one may choodg so that initially(i.e., fort=0), k; is me

perpendicular to the mass flux. Thus, when solving Egs. XSO(R'—=R) 8z +z—z4(1)]
(2.2 for p(k|,s), J7(kj) may be set to zero without the loss

of generality. Therefore, one has
X8(z'—z) ). (3.2
L LT 22
Pk ’s)_deIH(kH )p( P (2.22 At equilibrium, system properties are translationally invari-
ant in thex and y directions, so that we may integrate
where G(R,R’,z,2',t) over the originR’" to get
a N N
detH(ky )= s(s+akf) (s+bk?) + sofkf +vfk G(RzZ )= <E 2, O[R+R = Rr(1)]
(2.23
and the algebraic complement is given by xoz' = zn(1)]6(z _Z')> : @3

where z’=z+2' has also been introduced. For the subse-
quent analysis in Sec. Il B, it is convenient definea “re-
duced” van Hove function that we obtain by integrating

To arrive at Eqs(2.23 and(2.24), the definitions G(R,z,Zz',t) in Eq. (3.3 overz' andZz”. Two-dimensional
Fourier transformation of the resultirg(R,t) then gives the

11('(” S)= (S"‘aku)(S‘f'bk”)'f' Y U”kH (224)

2 intermediate scattering function of a classical system
i moj NN
. =— , (2.253 ~ 1 .
ap N.T.s, 04 F(k),t)= N > > f exp(—ik|-R)
I=1 m=1
&T” vﬁmp2
| = - X R+R—R,(t)]dR ), 3.4

wherek = (k,ky) is a two-dimensional vector in reciprocal
space as beforsee Eq.(2.20]. Thus,l~:(k|| ,t) accounts for
lateral correlations between molecules regardless of their

separation along theaxis. By making use of an elementary
property of thes function, the last expression may be con-

have also been employed. In E@8.25), v is the adiabatic,
in-plane velocity of sound defined analogously to its bulk
counterparf30], and yEcTH/cASZ, WherecTH and cps, are,
respectively, the heat capacitiéper particle at constant
transverse stress and volufrg2].

verted into
lll. THE INTERMEDIATE SCATTERING FUNCTION ~ 118 2 .
F(kH,t)— f f exp(—lk” R)
A. Microscopic definition =
At a microscopic level, the temporal evolution of the local
density is related to the so-called van Hove function defined X R+R—R'J R —R,(t)JdRdR" ).
as[31,33
NN (3.5
G(r,r’ t)_ 2 2:1 or'+r—rn(H](r'=n) |, TransformingR—R’=R—R’ in Eq. (3.5, we arrive at
3.9 1/
F(ky,t)== exp—ikj-R")[R"+ R ]dR"
whose physical significance is that of the probabiliten- (ky.t) N<|21 f 3 I-ROel 2
sity) of finding moleculem at a pointr’ +r and timet, given
that moleculel was located at point’ att=0. Note that . , L ,
G(r,r',t) accounts for self-correlationsm(=1) and cross sz;’l expliky-R") J[R"=Rm(t)JdR >
correlations (n#1) (usually referred to as “distinct’ In Eq.
(3.1) and below, we omit the argument 0 of r; and related ot
quantities to ease the notational burden. The angular brackets =N {p(=kpplk,), (3.9
in Eq. (3.1 denote an ensemble average. Considering the
symmetry of our system we rewrite E.1) as where
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N
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(3.12 agree formally with the results presented by Mcintyre
and Senger$35] for the bulk. With Egs.(3.12 we obtain
from Eq.(3.10

-1 1 1

+
Y S+D-|—kﬁ 27[s—iv||k+Fk|2

F(k )=~ [1—id(kp]

In Eqg. (3.6), we again exploit the fact that system properties

are translationally invariant in the-y plane and therefore

I~:(k” ,t) must depend only on thmagnitudeand not on the
direction of k. Fort=0, (p(—k))p(k)))=NS(k), where

S(kj) is the static structure factor. Thus, we introduce the

normalizedintermediate scattering function

F(ki,t)  (p(—kpp(ky,h)

F(ky,t)= = , 3.8
(k.0 Stk (p(—kpp(kp) (9
whose Laplace transform is given by
(p(—kpp(Kk,9))
F(kj,s)=—/———F7———- 3.9
(q.9) (p(=Kkpp(k)) 39
B. The hydrodynamic limit
Inserting now Eq(2.22), into Eq.(3.9) we obtain
Fks) (s+akf)(s+bkf)+(y— v fkf/y
,S)= .
” s(s+akf)(s+bkf) +svfkf + (a/ y)v k|
(3.10

To transformF to the time domain, we follow the procedure

P [1+id(k|)]], (3.13

s+ivk+Tkf

where d(kj)=[T'kf+(y—1)Drk{l/vjkj [27]. Equation
(3.13 may then be transformed back into the time domain
yielding

_r71 2, L 2
F(K ,t)—TeXF(— Drkjt) + ;exp(—Fk”t)

X[COQU”k”t)+d(k||)Sin(UHkHt)]. (3.19

Equation(3.14) for the in-plane intermediate scattering func-
tion in the hydrodynamic limit is formally equivalent to its
bulk counterpart first presented by Befi36] and later on by
Schoeret al. [27]. It differs, however, from the correspond-
ing expression of Mcintyre and Sengdi35] in the addi-
tional sin term(see also discussion in R¢R7]).

C. Memory function

In principle, Eq.(3.14 may be employed to interpret re-

described by Mountaifid4] and later by McIntyre and Sen- sults obtained in MD simulation®27]. However, one has to

gers[35] and split the far right side of Eq3.10 into partial

be aware of several crucial approximations made during its

fractions. This requires knowledge of the roots of the dederivation. First, Eq(3.14) applies only to situations where

nominator. The roots may be approximated as follows. First?| IS sufficiently large. It is therefore not applicable as one
we transform variables in the denominator accordingsto @PProaches a spinodal or a critical point, since there

—z=slvjk| and introducex=akf/v|k andy=bkf/vk;.
Assuming bothx andy to be sufficiently small35], we
expand the solution of the transformed cubic polynomial

X
z3+22(x+y)+z(1+xy)+;=0 (3.11

into a power serieg=ay+a;x+a,y+--- cut off after the
linear terms. Inserting this into Eq3.11) permits one to
determine the unknown coefficients, a;, anda, by re-
quiring terms of equal power ix andy to vanish separately.

—p_1(&p/(97'”)N’-|-’SZ°<vH_1—>OO (i.e., [see Eq.
(2.253]. However, we have explicitly assumed in Sec. Il B
thatx,yoch_1<1 [see Egs(3.11) and(3.12)]. Moreover, the
form of the expression in Eq3.14) is only correct to order
O(kﬁ). Hence, ifk; is not small enough, one expects Eq.
(3.14 to hold only if all material constant§i.e., the set
{D+1.T',v,v)}) becomek; dependent. An extrapolation to the
infinite-system limitkj—0 may then become prohibitively
difficult and is not free of arbitrarinessee, for example,
Fig. 12 of Ref.[27]).

A determination oD+, T', ¥, andy not plagued by this

v||—>0)

Thus, after transforming back to the original variables, zerosleficiency is, however, possible by considering the memory

of the denominator are approximately given [13¢#,35,28

so=—Dkf+O(k}), (3.123
s =ivk—Tkf+O(k}), (3.12h
s_=—ivjk—Tkf+O(k}), (3.129

whereDr=aly is the thermal diffusivity and”=%[D(y

function M (k; ,t) associated withF(k;,t). SinceF(k,t) is
a time-dependent autocorrelation functieee Eq.(3.6)], it
satisfies the Volterra integrodifferential equation
dF(kH 1) t
——ZJ dt’M(k”,t)F(kH t—t), V kH
dt 0

(3.195

which, after Laplace transformation, may be solved for the

—1)+b] is the sound attenuation coefficient. Equationsmemory kernel
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Mk g L (D7kfy—x")?
svfkfly+(al y)vfk] is satisfied so that” e R [see Eqs(3.17), (3.18]. We may

~(s+akd)(s+bk)+(y—Lvikdy'

then rewrite Eq(3.20 as

(3.1 M(Kj,t) =Mgo(kpexp —x"t)[cogx"t) +y"sin(x"t)],
where we also used E(3.10. Equation(3.16) can be trans- _ (3_'23
formed back to the time domain utilizing the zeros, since for x"eR, cosh{x"t)=cosk’t) and sinhix"t)
=isin(x"t).
D
- _ 2, “T2
5= (Fk 3 k) IV. RESULTS

A. Technical details

We consider a fluid composed Nfspherically symmetric
molecules without internal degrees of freedofne.,
“simple” molecules squeezed between plane parallel solid

o ) . Substrates separated Isy. Solid atoms forming the sub-
of the polynomial in the denominator. We may then rewritegyates interact with the fluid moleculeia the pairwise ad-

Eq.(3.16 as ditive potential
10 4
5 E o 3 o
5\z*xs,/2 z+s,/2) |

D-vk!
+ — : Rl P— where+ «— k=1 and— < k=2 refer to lower and upper sub-
(s+x'+ix")(s+x"—ix") strates, respectively. In Ed4.1), the areal density of the
v2K2 solid substrate is set to;o?=1.
=”—H[M’(ku,S)+DT7kﬁM"(kH,S)] _The fluid-fluid ir!teract?on is described by a so-called
Y shifted-force potential defined by

202
~ Juik 1
+ij \/_”y ” (y— 1)—2[DTkﬁ(27_ 1)_2ka2

- X =i, (3.17

Svﬁkﬁ/y
M(kH’S): P [
(s+x"+ix")(s+x'—ix")

eM(z)=2mepsor

4.1

=Mo(k)[M’(kj,s)+DrykfM"(kj,s)].

Uel(r) = uLy(r) —upy(ro) +uly(ra)(re—r),  rsr
(3.18 of 0, r>re,
, " . (4.2
FromM’(k;,s) andM"(k;,s), we obtain
L whereu, 5(r) is given by
M’ (k1) =——{(x" +ix")exp — (X" +ix")t] o\ 2[5\
2ix U =4e (?) —(?) , 4.3

—(x'—ix")exd —(x' —ix")t]}, (3.193
and u/y(r¢) =du y(r)/drf,—, . In the actual simulations,

=2.50, so that we are dealing with short-range interactions
only. Since the shifted-force potential and its first derivative
go to zero continuously at=r ., corrections due to the finite
cutoff radiusr; are not required for any of the quantities of
interest.

To follow the time evolution of our system, we solve
) o Newton’s equation numerically using the so-called velocity
M(ky,t)=Mo(kj)exp(—x"t)[coshix"t) —iy”sinh(ix"t)] Verlet algorithm[37]. To integrate the equation of motion by

(3.20 this finite-difference scheme a time step &if=4.63< 103

in the customary dimensionlesse., “reduced”) units (see
Table |) is used. Energy is then conserved to about 2
X 10~ for a typical run of 16 time steps. Reduced units are

for the memory function in the hydrodynamic regime, where
(3.21) also used for all other quantities of interest, which we sum-
marize for convenience in Table I.

Mo(y—1
[Mof ?,:2 ) 1
X
Throughout this work we considd@r=1.0 and a bulk den-

In the context of this work we shall assume that the inequalsity p,=0.7 corresponding to a liquid off any phase coexist-
ity ence. For this state we determine the chemical potential

1
M (k) t)=— W{exp{—(x’ +ix"t]

—exd — (x' —ix")t]}, (3.19h

so that from Eqs(3.18 and(3.19 one has

yH
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TABLE |. Dimensionless(i.e., “reduced”) units for various

PHYSICAL REVIEW 6, 041205 (2002

physical quantities; reduced units may be converted to Sl units us- (@)
ingm=4.0x10"2 kgmol ™!, ¢=3.4x10 ¥ m, e/kg=120 K, and
kg=1.3806x 107 2 J K1,
Quantity In units of

Length o

Wave vector ot

Volume ol

Energy €

Temperature elkgT

Time Jma?le 16

Velocity Jelm

Sound attenuation coefficient o“e/m t

Thermal diffusivity oelm

m=—9.11 in a canonical ensemble Monte Ca(leEMC)
simulation by means of Widom’s test-particle metH&¥]. =
In subsequent Monte Carlo simulations in the grand canoni- <
cal ensemblgGCEMC) we thenfix u=—-9.11 and deter- =
mine theaveragefluid density p(s,) =(N)/As, for a range
of substrate separations %8,<5.0. For each value o,
we takep(s,) as input in microcanonical ensemble molecu-
lar dynamics(MEMD) simulations. Thus, in MEMD the
thermodynamic state of the confined fluid corresponds$ to
~1.0 andu~—9.11 (due to slight deviation& T==*1.25
X102 of the mean temperature of the fluid in a given
MEMD run from its desired valu@ = 1.0) assuming equiva-
lence of statistical-physical ensemb[&8]. tion of timet for bulk fluid; (O) k;=0.22, (O) k;=0.38 and solid

For each value o, andk;, ten MEMD runs were per- line is a fit of Eq.(3.14) to MEMD data.(b) is similar to(a), but for
formed. Results presented below were averaged over thesg(k;,t); solid line is fit of Eq.(3.23 (y"=0) to discrete data
runs. Since properties of the confined fluid are translationallyoints.
invariant in thex andy directions, we chose four equivalent
vectors kj=(ky,0), (—k40), (0ky), and (0-k,) corre- time. The larger the period of oscillations, the smallerkhe
sponding to the same magnitukleand averagé€ (k;,t) over ~ Damping, on the other hand, becomes weaker with decreas-
these vectors to further enhance the statistical accuracy afig k. Also shown in Fig. 1) is a fit of Eq.(3.14) to the
our data. The typical range df covered in this study is MEMD data taking the sefD+,I',y,v|} as fit parameters.
0.075<k;<0.300. Note that due to periodic boundary con-The plots show that Eq3.14) is capable of representing the
ditions applied ak=*s,/2, y=*s,/2, ks, andk,s, must ~MEMD-generated data quite nicely over the whole time
be integer multiples of z. Throughout this works,=s, . range plotted and regardless kf. However, Fig. 1a) re-

The first of the ten MEMD runs is started from a randomveals that over the accessible time rangék ,t) does not
configuration of fluid molecules. This configuration is equili- decay to zero. This effect is more pronounced with decreas-
brated in a CEMC simulation usingX310* cycles(i.e., dis- ing k;, and reflects the increasingly collective nature of
placement attempts per fluid molecuf6]. At the end of this  propagating density modes ks—0.
equilibration period, velocities are assigned to the fluid mol- It is also instructive to comparg(k;,t) with the associ-
ecules. They are taken at random from a Maxwell-ated memory functioM (kj,t) plotted in Fig. 1b). The lat-
Boltzmann distribution foif = 1.0. This configuration is then ter is obtained by solving Eq3.15. As pointed out by
equilibrated further in another f0MEMD steps before we Berne and Harp39], rather than solving Eq3.15 directly,
begin accumulating data. Runs 2—10 are started from thiis numerically advantageous to first differentiate E3j15
final configuration of the immediately preceding one. with respect ta and then solve the resulting expression,

0 2 4 6 8 10 12 14 16

FIG. 1. (@ Intermediate scattering functidh(k),t) as a func-

.. t .
M(kH,t)Z—F(kH,t)—fodt'M(k” ,t')F(k” -1, V kH’
(4.9

B. Bulk fluid

We now turn to a discussion &f(k| ,t) for the bulk fluid.
Two representative curves fé=0.22 and 0.38 are plotted
in Fig. 1(a). In both casesF(k,t) calculated in MEMD in an iterative fashion which requires first and second deriva-
from Egs.(3.7) and(3.8) is a damped, oscillatory function of tives of F(k|,t). These are calculated analytically from Eq.
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5 - - - - - , - From Eg.(3.2]), this impliesy”=0, so that only the cos
a term in Eqg.(3.23 survives. Letm; and m, be slopes of
4t ] linear least-squares fits to the CurVJéSZ(kH) and Mq(k)),
respectively, where from Eq$3.17) and(3.18 one has
[m]
4 3t g 1 vf(y—1)
g . my= = (4.83
S Y
=27
2
o _ my= L. (4.8
Y
Combining this last expression with E@l.7), we get

0 0 005 01 015 02 025 03 035 04
k2|| my
y=1+ g 4.9
FIG. 2. Scaling laws foMy(k)) (A), x"(k)) (O), andx”z(ku) 2
(®) as functions ofkf obtained by fitting Eq(3.23 (y"=0) to  and therefore from Eq4.8b
memory function. Straight lines are linear least-squares fits to data

points based upon scaling lajsee Eqs(4.5), (4.7)]. = Jm;+m,. (4.10

(3.14 usingD+, I', y, andv) from the previous fit. Berne Unfortunately, a separate determinationldfand D in
and Harp also propose an algorithm by which the sothe spirit of Eqs.(4.9 and (4.10 is precluded since only
calculatedM (k;,t) may be employed to recompulek ,t) x" depends on both quantitigsee Eq.(3.17)]. Thus, a fit
without taking further recourse to an analytic function. Theseof Eg. (3.23 in which expEx't) is replaced by
latter data are essentially indistinguishable from the originabxp(-T'kit)exp(~D-kt/2), taking nowI' and D as inde-
MEMD-generated- (k| ,t). pendent parameters, is not able to discriminate between the
From the plots in Fig. (b), we see thaM (k,t) oscillates  relative contributions of the two functions. To determDe
around thet axis in a damped fashion but vanishes moreand I reliably we notice, however, that, unlike E.23,
quickly than the corresponding(k; ,t) plotted in Fig. 18  terms depending ofi and Dy are decoupled in Eq3.14)
as one would have expected intuitively from E8.15. Like  since one of themI() is solely responsible for damping the
F(kj.t), the largerk; is, the fasterM(kj,t) goes to zero. oscillations whereas the other onB+) describes a mono-
However, unlike F(k;,0), M(k;,0)#1, where this initial tonic decay ofF (K ,t).
value reflects the short-time decorrelation of density modes. This renders possible the following approach. Based upon
Therefore, in agreement with Fig(al, M(k,0) increases the scaling laws stated in Eqgt.5 and(4.7) and the slopes
with k;. Moreover, it is noteworthy that the hydrodynamic of the linear least-squares fitsee Fig. 2, we may calculate
expression given in E¢(3.23 provides a remarkably good x’, x”, andM, for sufficiently low kj—0. For such a value
representation oM (k.t) if we take the se{x’,x",Mo} as  of k;, where the required large system sizes renders MEMD
independent fit parameters. simulations unfeasible, we then calcula#(k;,t) through
The validity of Eq.(3.23 may be tested further by noting Eq. (3.23 (y”=0, see above Inserting thisM (k; ,t) into
from Egs.(3.17) and(3.18 that in the hydrodynamic regime the Volterra equatiofsee Eq(3.15] and using the algorithm

(kj—0) the scaling laws proposed by Berne and Hap9], we compute a “synthetic”
) F(kj,t) (i.e., onenot obtained from MEMD which we ana-
X" (k) ocki, (458 |yze through a fit of Eq(3.14). Applying this procedure for
successively lowek; enables us to determine the range over
Mo(k)) okf , (4.50  which Eq.(3.14 applies, that is, wherB ¢, T', y, andv are
independent ok . In Fig. 3 we plot the ratiavg /@y , where
must hold becausB, I', y, andv| are independent &j.  a=x’, X", M,, or y. SubscriptF refers to a procedure
Forx”, we have from Eq(3.17) a slightly more complicated where we first fit Eq.(3.14 to “synthetic” data points to
form, determineD+, I', v, andy and then use these quantities to
calculatex’, x”, andM, from Eqgs.(3.17) and(3.18. If the
X"2(ky) o<k +O(Kf). (4.6)  subscript ona is M we determinex’, x”, M, from linear

least-squares fits to the scaling lalgse Eqs(4.5) and(4.7)
However, we notice from the plots in Fig. 2 that all three gnd Fig. 2; y is obtained from Eq(4.9). Since the plots in
quantities can be well represented by straight lines througkig. 2 show thaty,, obeys the scaling laws in Eq&t.5) and
the origin fork =0.275. Therefore, we conclude that over (4.7) over the entire range dfj plotted in Fig. 3, any devia-
this range the contribution of ordéf to x"? must be negli- tion of ar/ay from unity must be ascribed to a failure of
gible, that is, Eq(4.6) may be recast gsee also Eq3.17]  Eq.(3.14 that is a dependence 8, T', v, andy onk;.
5 5 Figure 3 shows that such dependences indeed exiskfor
X"“=(y—=1)Mo(kp <k . (47 >0.1, say, but that the departure frdqrindependent values
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1.3 T T T T T 1 o
3! (@)
1.2 0.8
1.1 ¢
= = 0.6 r
S oqt <
5 “ 04l
09 r
0.2t
08 r
0.7 : : : : : 0
0 0.1 0.2 0.3 0.4 0.5 0.6
ki
FIG. 3. Ratioar /ay versusk; for bulk fluid. (W) a=y, (®) 1.4
a=x", (O) a=x’', and (Q) a=M,, wherea is taken from scal- \
ing laws [subscriptM, see Eqgs(4.5), (4.7)] and from “synthetic” 1 H

F(kj,t) (subscriptF, see text

may be quite different depending on the quantity in question. = 0.6 1
For examplex' is nearly independent &€, over the entire 3 '
range plotted in Fig. 3 whereas a slightly larger and positive = g2 |
deviation is observed fox” with increasingk . A much
stronger positive and negative deviation is, on the other
hand, found fory andM,, respectively. A% —0, one ex-
pects Eq(3.14) to become increasingly reliable. This notion
is corroborated by the plots in Fig. 3 showing that fqr 0.6
=<0.1, ag/ay=1. Values for the material constarids, I',
v|, andy obtained by fitting Eq(3.14) to “synthetic” data
in the rangek=<0.1 are listed in Table Il. Entries in that table  FIG. 4. (a) Intermediate scattering functidf(k; ,t) as function
show that indeed all four quantities are nearly independent aff time t for kj=0.3142; () bulk fluid, (A) confined fluid,s,
the particular value ok according to one’s expectation. =4.1; and ©) confined fluid,s,=1.9. (b) is similar to(a), but for
M (k” 1).

0 2 4 6 8 10 12 14 16

C. Confined fluid

Attending now to a discussion of the confined fluid we As for the bulk, one may adopt the numerical procedure
begin by plotting in Fig. 48) F(k,t) from MEMD [see Egs. detailed in Sec. IVB and calculate the corresponding
(3.7) and (3.8)] for s,=1.9 and 4.1 for the same value of memory functionM (k| ,t) by solving Eq.(4.4) in an iterative
kj=0.3142 together with the corresponding bulk curve. Thefashion[39]. Unlike the corresponding plots in Fig.(a},
plots reveal that under confinement the structuré (4 ,t) M(Kkj,t) is somewnhat less sensitivesp. This is particularly
is qualitatively the same as for the bulk. Thus, it is not sur-obvious if one compares the curves in Figs. 4 corresponding
prising that Eq(3.14) provides an excellent representation of to s,= 1.9 and 4.1 with their bulk counterpart.

F(kj,t) for confined fluids as well. However, one expects In order to determind®+(s,), I'(s,), v|(s,), and y(s,),

from the plots in Fig. 4) members of the s¢D+,I",v, v} we intend to apply the procedure described in Sec. IV B. As
to be affected by the degree of confinemérg., the magni- shown in that section the analysis rests upon the scaling laws
tude ofs,, see below for the parameterg’, x”, andM, of the memory function
[see Egs(4.5 and(4.7)]. Thus, it seems sensible to plot in
Fig. 5,x" versusk| for s,=1.9 and 4.1 in comparison with
the corresponding bulk curve. As one can see from the plot
the scaling law{see Eq.(4.53] is obeyed by the confined
fluid as well. We have checked that this holds alsoxfofsee

TABLE II. Material propertiesDr, I', v, andy in the limit
kj—0. Data were obtained by fitting Eq3.14 to “synthetic”
F(kj,t) curves(see text

il P r ol 14 Eq. (4.7)] andM, [see Eq(4.5b]. Thus, we may adopt the
0.02 1.427 2.537 4.451 2.256 procedure applied to the bulk and determidg(s,), I'(s,),
0.03 1.427 2.537 4.451 2.257 v|(s,), andy(s,) through a fit of Eq(3.14 to synthetic data
0.04 1.427 2.537 4.451 2257 for F(kj,t) for kj=<0.1.

0.05 1.427 2.537 4.450 2.258 Results are plotted in Fig. 6 fotg/ ap,k, Where a
0.06 1.427 2.537 4.450 2.259 =Dy, b (see Sec. lIBor v, that is, we normalize each
0.07 1.427 2537 4.450 2.260 quantity to the bulk value listed in Table Il. The plots show

thatD+, b, andv| oscillate with a period of about one mo-
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k2|| S,
FIG. 5. Scaling law fox' as function ok ; (O) confined fluid, FIG. 7. Solvation pressure-7,,— Py, as function of substrate
s,=1.9, (A) confined fluid,s,=4.1, and @) bulk. separations,. Data were obtained in GCEMC foF=1.0, u=

—9.11. Solid line is fit to data point intended to guide the eye.

lecular “diameter” ass, increases. The oscillations are parent that for “simple” fluids the oscillatory dependence of
damped so tha{D+,b,u|} assume their §-independent - on s, reflects stratification(i.e., the arrangement of
bulk values fors,=20 to within 3% as we have checked. (spherical fluid molecules in individual layers parallel with
Maxima and minima are detected at about the same value @he confining substrates, see Sec. IV A 2 of H&P] and
s,. The magnitude of the confinement effect decreases in thgdditional references thergirOscillations in— 7,, are there-
orderDy—b—uyj. fore fingerprints of the formation of a full new layer of fluid
The rather similar periodic structure of the plots in Fig. 6 molecules. Consequently these maxima are separated
prompted us to attempt to correlate them with variations inroughly by one molecular diameter similar to the extrema of
the so-called solvation pressurer,,— Py, (7, is the com- Dy, b, andv| (see Fig. 6. At minima of — 7,,, the fluid is
ponent of the stress tensor aRy is the bulk pressujeof a  under minimum compressional stress and hence fluid mol-
confined fluid in thermodynamic equilibrium with the bulk ecules are most conveniently accommodated between the
which may be calculated as a function &f in GCEMC  substratedi.e., the fluid is more orderedAt maxima of
simulations for fixedT and u [see EQs.(93—(96) in  —r,,, on the other hand, the layered fluid structure is dis-
Ref.[29]]. In the infinite-system limit, that is fos,—x,7,,  rupted maximally(i.e., the fluid is most disordergdCom-
— — Py, according to the definition of,, [29]. As shown in  paring the plots in Figs. 6 and 7 one realizes that in the more
Fig. 7, — 7,,— Py, oscillates around the ordinate as expectedordered states sound waves propagate with a higher velocity
A correlation between- 7,, and structural changes in the but appear to be damped more strongly in comparison with
confined fluid is established most directly by comparisonmore disordered states. Finally, we present plotS(af , »)
with the local densityp(z). From such an analysis it is ap- in Fig. 8, which we calculate from

N
T

Oglit/ Oy
P

FIG. 8. Dynamic structure factd®(k;,») as a function ofw
FIG. 6. Ratio ag/apyk versuss, for thermal diffusivity D+ and for various substrate separatisysand kj=0.20. Results are
(O), lateral kinematic viscosity (®), and adiabatic, in-plane ve- obtained using interpolated data @k, b, v, andy from Fig. 6 in
locity of soundy (OJ). Eq. (4.12).

041205-11



FABIEN PORCHERON AND MARTIN SCHOEN PHYSICAL REVIEW B6, 041205 (2002

S(kj,w)=ReF (k) substrate$see Eq(4.1)]. Because of this lateral homogene-
ity and isotropy, we assume constitutive equations for mo-

Y DTkﬁ N 1 Fkﬁ mentum and energy fluxes identical with those commonly

y—1 w2+(Dka)2 2y (w—v‘|k||)2+(rkﬁ)2 employed for bulk fluids. With these constitutive equations

we derive a set of coupled linear equations that can be solved
for propagating density modes in the hydrodynamic regime.
Using this last expression together with the microscopic defi-
nition of the intermediate scattering function eventually leads

Ak (@—yyk)
(w—vuk”)2+(rkﬁ)2

1 k2 to an expression foF (k,t) in the hydrodynamic regime.
— 2” 5 However, to obtairF (k| ,t) from the more directly acces-
27| (w+uvykp?+(Tkf) sible F(ky,s), the latter needs to be Laplace inverted. This

inversion is onlyapproximatelypossible because of the com-
(4.19) plexity of the hydrodynamid(k,s) [see Eq.(3.10]. As a

result theform of F(k;,t) is correct only to ordeO(kﬁ).

However, if the hydrodynami&(k;,t) is fitted to MEMD

which follows from Eq.(3.13 by replacings by iw. To data for the accessible range kf, the fit parametersi.e.,
obtain Fig. 8 we chosé;=0.20 so that the results pertain the sefD+,I",v),y}) turn out to depend ok . This reflects
roughly to the light scattering in the vacuum ultraviolet re-a deficiency of the hydrodynamig(k,t) caused by the
gime. For such a small value &f one expectsl(k))~0 and  crudeness of the assumptiofgee Eqgs.(3.1) and (3.12]

Eq. (4.11) reduces to a sum of three Lorentzians, one ceninvoked to derive Eq(3.14 from Eq.(3.10.

tered ato=0 (Rayleigh ling and the other two ab=*u| We therefore propose a different approach in this work by
(Brillouin lines). As a consequence of the oscillatory depen-which propagating hydrodynamic modes can be analyzed
dence oD+ ons,, the height of the Rayleigh peak oscillates and interpreted more reliably. Rather than employing directly
with a period of aboutr ass, increases. On account of the F(kj,t), its memory functionM (k| ,t) turns out to be more
oscillatory dependence ofi on's, a periodic shift of the two  useful. The two are related through the Volterra integro-
Brillouin peaks along thes axis is also observed in Fig. 8. differential equation. In the hydrodynamic regime this equa-
Following Mclintyre and Sengers, the first term on the fartion can be solveaxactlyfor M(kj,s) using the hydrody-
right side of Eq.(4.11) can be identified with thénonpropa-  namic form of F(k,s) [see Eq.(3.10]. The advantage of
gating decay of entropy fluctuations such that for=0 the ~ M(k|,t) overF(k;,t) is that its limiting hydrodynamic form
height of the Rayleigh peak is a measure of the entropy ofs not based upon any additional assumptions than those nec-
the fluid (divided by DTkﬁ) [35]. In view of this, it is not essary to derive Eqg$2.22—(2.24). Because of its relative
surprising thasS(k;,0;s,) oscillates withs, (see Fig. 8 such simplicity, M(kj ,s) can be transformed back to the time do-
that the maxima correspond to the states of maximum disomain analytically and expressed in termsxof x”, Mg, and

der of the confined fluid identified through a parallel analysisy [see Eqs(3.17), (3.18), (3.21), and(3.23)].

d(kH)((u—l—v”k”)
(w+vuk”)2+(rkﬁ)2

of the solvation pressui@ee above The Brillouin peaks, on Members of the sefx’,x",Mq,y} obey simple analytic
the other hand, describe propagating transverse-pressusealing lawgsee Eqs(4.5 and(4.7)] that may be employed
modes at constant entrop$5]. to calculateF (kj,t) from M(k,t) by solving numerically

Eg. (3.19 for kj=0.1 where a direct calculation from
MEMD is unfeasible on account of the large system sizes
that would be required. However, by fitting the hydrody-
In this work we are concerned with the propagation ofnamic expression foF (k;,t) [see Eq.(3.14] to these syn-
density modes in a fluid confined to nanoscopic spaces bihetic data, kj-independent results fo{D+,I",v,y} are
unstructuredi.e., laterally smoothsolid substrates. Our fo- eventually obtained. The regime &f, where the form of
cus is on the hydrodynamic regime for which we developF(Kk;,t) becomes approximately correct, is about a factor of
relevant conservation laws in Sec. Il A. The key in deriving2 smaller thanassumedpreviously in the work of Schoen
these expressions is coarse graining the fluid’s structural aret al. for homogeneous bulk fluid27]. The interpolation of
temporal properties. This is achieved by introducing a vol{D,I",v,y} towardsk =0 (i.e., the infinite-system limjt
ume elemenV that is both small on a macroscopic but large carried out by these authors must be regarded as unsafe and
on a molecular scale. Hydrodynamics is then concerned witthe apparent agreement with experimental results is fortu-
fluxes in and out oV through its surface. Assumingto be itous in the light of the present study.
of arbitrary shape and extent in tkey plane but to cover the The analysis of bottM (k;,t) andF(k,t) can be carried
entire space between the substrate surfaces indirection,  out for confined fluids as well. Results for the $Bt; ,b,v}
we derive conservation laws faraveraged lateral fluxes reveal a confinement effect manifested as an oscillatory de-
(i.e., fluxes in directions parallel with the substrate surfaces pendence of all three members of the set on the substrate
This approach seems sensible since the fluidnsaverage separations, (see Fig. 6. Correlating the oscillations in
homogeneous and isotropic in they plane on account of {D+t,b,v} with similar oscillations in the solvation pressure,
the fluid substrate potential that is solely a function of thewhich are well understood for “simple” fluids, permits us to
distance in the direction between a fluid molecule and both conclude that for values o, where an integer number of

V. SUMMARY AND CONCLUSIONS
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fluid layers fits best between the solid substrdtes, states so that x” becomes complex and hencé(k,t)
of a high degree of ordgrare characterized by maxima of =ReM(kj,t)+ImM(k|,t) [see Eq.(3.20], where the real
{Dt,b,v}, whereas in situations where the formation of apart

new layer is in progress, the three quantities become mini-

mum. . Mo(k))
In the near future we intend to employ the approach de- ReM (K ,t):T{exp{—(x’+x”)t]
veloped here to investigate the dynamics of confined fluids
near first-order phase transitions. If, for example, the thermo- +exd — (x’ —x"t]}. (5.9

dynamic state of the fluid approaches its limit of stability
(i.e., a spinodalfrom either the liquid or gas one-phase re-

gion, one expects the isothermal compressibilityto be- However, one has to keep in mind that the present theory is

. based upon linearized hydrodynamic equations like Egs.
come larggsee Sec. lll & Because of E¢(2.253, this im (2.16 and (2.19. Since fluctuations become large as one

p:fesnvtuh:r?ﬁo:jt ?;?T:]Itc Qg{gf?;ihzeviz?nqtce'c\;fagleht;:’g tfgngi_approaches the limit of stability of a fluid, the validity of the
gon W0 in é’ (3.17). Hence Cosﬁe(”t)yand siﬂh(x”t) in present approach in the context of phase equilibria remains
' 9. (520 ' to be tested. This test is possible on the basis of parallel

Eq. (3.20 may be repl_aC(_a(_d by 1 and 0, respectively. oneGCEMC simulations where the location of first-order phase
therefore expects a significant change M{k;,t) from a

! : ; ) transitions can be located precisely through a calculation of
Qamped oscillatory function dfto a simple exponential, that the grand potentid40].

is,
M(ky,t) =Mo(ky)exp(—x"t). (5.1) ACKNOWLEDGMENTS
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Mo(k)) < 1 ,
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