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Surface instability of icicles
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Quantitatively unexplained stationary waves or ridges often encircle icicles. Such waves form when roughly
0.1-mm-thick layers of water flow down an icicle. These waves typically have a wavelength of about 1 cm,
which is independent of external temperature, icicle thickness, and the volumetric rate of water flow. In this
paper, we show that these waves cannot be obtained by a naive Mullins-Sekerka instability but are caused by
a quite different type of surface instability related to thermal diffusion and the hydrodynamic effect of a thin

water flow.
DOI: 10.1103/PhysReVvE.66.041202 PACS nuner47.20.Hw, 81.30.Fb
I. INTRODUCTION If a molecule attaches itself to the surface near a convex

point, the surface area increases, resulting in an increase in

Interesting wave patterns often form on growing iciclesenergy. On the other hand, if a molecule becomes attached to

that are covered with a thin layer of flowing waieee Fig. the surface near a concave point, absorption of the molecule
1) [1]. For many of these patterns, the wavelength has &akes the surface area smaller. Therefore, absorption of a
Gaussian distribution centered-ai8 mm; however, despite molecule at a concave point is more energy efficient than is
their common occurrence, there is no quantitative explanaabsorption at a convex point. For this reason, the melting
tion for this wavelength distributiofil,2]. These waves are point depends on the curvature of an object, i.e., the shape of
associated with the growth of the icicles and flow of fluid the surface area. The melting point is lower at a convex
along the icicle. Hence, there are several processes occurriggrface(easy to melt and is higher at a concave surface
that should be considered. These include crystallization fronthard to melt. Such an effect suppresses the fluctuation and
the melt, latent heating at the ice-melt interface, laminar flowmakes the surface flat. This is called the GT effect, which is
with two interfaces(ice-melt and melt-ajr evaporation of Opposite to that of the Laplace instability. The Laplace insta-
liquid, and transport of heat through the surrounding air. Theility enhances shorter wavelength fluctuation, and the GT
fact that waves tend to encircle the icicle clearly indicates theffect suppresses shorter wavelength fluctuation. From these
importance of gravity-induced flow, although the specific in-two effects, we have fluctuation of specific wavelength
teractions between flow, ice growth, and heat flow througtmainly. These two effects are incorporated in Mullins-
both interfaces must be considered. Sekerka’s theory3,4]. However, a simple application of this

In studies on crystal growth, such a surface instability istheory is not possible in the case of icicles for the following
usually explained by the Mullins-Sekerk&lS) theory. The reasons. First, the water layers on icicles are too thin to cause
MS theory is based on two observations: Laplace instabilitj-aplace instability, because the instability requires that the
and the Gibbs-Thomso(GT) effect. (For detailed explana-
tion, refer to textbooks and the original paper by Mullins and
Sekerka cited in Ref.3].)

To a good approximation, the ice in an icicle has a uni-
form temperature of 273 K; thus, temperature gradients into
the ice are insignificant, and the external temperature field is
time independent and satisfies Laplace’s equation. We further
assume that the external temperature is below 273 K, i.e., the
ice is not melting on average. At a convex point, the tem-
perature gradient is higher. Because the heat flow is propor-
tional to the gradient of temperature, the larger heat flow at a
convex point rapidly removes latent heat from the ice sur-
face, thus allowing the convex points to increase in size rap-
idly. Conversely, concave regions grow relatively slowly.
This phenomenon suggests that short-wavelength fluctua-
tions increase in amplitude more rapidly than do long wave-
length fluctuations. We refer to this as the Laplace instability.

Next, we explain the GT effect. The surface of a solid
object has its own energy per area called surface free energy.
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/'_“ H AL surface
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{r Water Layer ————p
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SL surace Water Flow
y= 8 sin kx
Ice (Solid)

. FIG. 3. Two boundaries: SL and AL.
FIG. 2. Flow on a ramp inclined at deg.
. average depth iBy,. There are two material boundaries: the
water thickness be larger than the wavelength of the fluctuasolid-liquid boundary(SL) and the air-liquid boundargAL ).
tion. Second, the curvature is too sméWavelength of 1 cm  The x axis is along the ramp and increases in the downhill

is much larger than 1@m, which is required for the GT direction, whereas thg axis is the outward normal to the
effect) Therefore, the nature of wave patterns along iciclesamp. The SL surface is not flat and is given by

cannot be explained by the naive MS theory.

We neglect the fluid instabilities that require turbulence y=¢(Xx), ¢(x)=75sinkx. 1)
because there should be no turbulence in these water films
[6]. This is because the layers are only about L0 thick The AL surface is given by

and the flow speeds are about 2—4 cm/s; the resulting Rey- )

nolds numbers are only about 1 and the flow is laminar. The y=£X)=¢(x)+h(x)  with (h(x))=ho, (2)
hydrodynamics of a thin water layer is also discussed by . .
Wettlauferet al. to explain the premelting dynamics, but the where(h) means average over the wavelength in xteis

discussion here is essentially differ¢s. d|r<_arc;]t|on. Its of . . | h d
For our analysis, we assume water flow on a raisee e results of a previous experimental sty@y showe

Fig. 2) because it is simpler to treat and results of relevanfh"’_lt the surface velocity Qf the ﬂl.“d IS about 3 cs, and by
experiments for this geometry have been repofgidMuch  USing the Nusselt equation, which is shown |4}, the

of the same processes and relative length scales occur in bofiferage water-layer thicknesg was calculateq to be around
systems because the water-layer thicknessl@ *m) is 0.1 mm. The wavelength =27/k was experimentally de-
much smaller than the radius of the icicle {0 2m). Fur- termined to be about 1 cm. We use the parameter
thermore, Matsudf2] observed wave patterns on such an ice
ramp; for example, ab= m/2, the wavelength was about 8
mm.

w=kh, (©)

L . , which is 6x 102, for the typical experimental values above.
. Liquid flow of a thin water layer on a flat rami@enney’s |, general, u<1 defines the long-wavelength approxima-
liquid film) produces wavef] (see also Ref.8]); however, o,

these waves travel down the ramp and are thus unlike the o, key assumptions are as followél) steady-state

case on icicles. Due to the explicit calculation, the Wave'(time-independeblt flow, (2) u<1 (long-wavelength ap-
length of these traveling surface waves is about 1 cm, simil roximation), and (3) inéompressible fluid.

to the wavelength along icicles, but they move at about 4-8 \ye prefer to use the following dimensionless variables.
cm/s, which is twice the speed of the fluid. Benney's wave iszq, length
caused by gravity and surface tension, but it is unclear how it '

applies to the standing waves on ice unless the traveling X— X, =KX, (4)
waves can become pinned to a fixed location; such a pinning
mechanism has not yet been proposed. y—y, =y/h. (5)

Our approach is to assume static flow with small ripples
on the ramp surface and then calculate the growth rate for th€he thickness of the water layer is thus
ripples by solving the thermal diffusion equation in the back-
ground fluid. In Sec. I, we discuss the fluid dynamics of a h(x)—h* (x)=h(x)/hy=1+h(x), (6)
thin layer of water flowing along a ramp, and then in Sec. lIl,
we couple the thermal diffusion process to the flow. Theand the respective heights of the SL and AL surfaces are
thermal diffusion in air is solved in Sec. IV. In Sec. V, we

discuss the growth rate of fluctuation on icicles by combin- ¢ (X)=(8/hg)sinx, =g sinx, , 0
ing the solutions for thermal diffusion equations in two re- B
gions: air and water. &, (X)=h, (X)+ ¢, (X)=1+h(x)+ nsinx, . 8

The characteristic flow velocity in thedirection is
Il. HYDRODYNAMICS OF A THIN LAYER OF WATER

2 .
We consider the fluid mechanics of a thin water layer with Une ghgsing )
depthh(x) as sketched in Fig. 3. Over each wavelength, the 0 2v
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whereg is the gravitational acceleration and the viscosity VP

=1.8x10 ® m?/s at 0 °C. This is a Nusselt equation, the (V-V)v=——+g+rvAv. 17
theoretically predicted velocity at the AL surface whén P

=0, i.e., for a flat SL surface with uniform thicknef3]. The incompressibility condition is

This unperturbative solution is obtained by equating the

gravitational force to the viscous force. The velocity distri- V-v=0. (18

bution is parabolic iry,
The mass conservation law at the water-air interface requires

2
vX=UO(2hl—[l ) (10) dé_ v(x,&(x)
0 dx  u(x, &))"

(19

We consider perturbations of this solution. By using the " .
above formula for speed, we relate the experimentally deterThe boundary conditions at the SL surface are zero fluid

mined flowQ to hy and surface velocity. The flow quan- velocity,

tity is defined by Q=2wRUh,, where U=1ho/ov,dy Uxy=d(x)=0, vXxy=¢(x)=0.  (20)
=2U,/3, the mean speed, aRis the radius of the icicle. In _ - |

an experimenf2], Matsuda used the flo@=160 ml/hr and The stress balancing condition on AL surface, that is, the

width of gutterl =3 cm (| corresponds to 2R) because this free surface condition is
produced the clearest waves. This givéshy=1.48

X 1078 m?/s. FromU=2U,/3 andU0=ghS/2_v (by setting Pami=Pni+pv
6=ml2), we get Uy=2.4x102m/s with hy=0.93

X104 m. On the other hand, his measurement of the sur-

. l_ 2_ . .
face mean velocity by observing the motion of fine grain was! "€ index meang™=x andx“=y, andn; is the normal unit
Uo=4x10"2 m/s atd=m/2. Hence, we assumédy= (2.4 vector to the AL surfaceP ) is the pressure just under the

~4)x 10 2 m/s withhg=(0.93~1.21)x 10" % m as the ex- AL surface, and® is the atmospheric pressure. For the above

d?&(x)

an Fh)k ey n (21)
k dX2 [

—_—t —
axk  gx

perimental surface speed and water-layer thickness. equations, we approximated the surface tension termgas
In they direction, characteristic velocity is by neglecting the second-order termn
Now we rewrite the equations in dimensionless form.
Vo=puUyg. (11  The incompressible fluid condition is
We denote speed in thedirection aqy, that in they direction IUy N Iy 0
asv, and pressure a. Dimensionless speeds and pressure Xy Yy
are given by
For this condition to hold automatically, we introduce the
u, =u/Ug, (12 dimensionless stream function by
= J J
v, =v/Vo, (13 ", v b, —— v (22)
Y, OXy
P P 14 i ion i
* = hghosing’ (14) In the following, we use the stream function instead of

velocity. Also, we drop the * mark on the dimensionless
gjslantities. All of the quantities in the remainder of this sec-
tion are dimensionless.

Now the Navier-Stokes equation becomes

Other dimensionless constant parameters are the Reynol
number Re and the Weber numBbar

hoUo

Re= L (15) ’//yyyy: M Rq: ‘/’ylpxyy_ ’pxlpyyy] - 2/Jvzlpxxyy
- /-L3 Re ‘/’x‘/’xxy_ (//y‘//xxx] - :“4llfxxxxa (23
W= L, (16)  Where the indices indicate derivatives with respect amdy.
g hﬁ The fourth-order derivatives appearing on the left-hand side

come from the viscous term by taking the derivative to can-
where y~7.6x10 2 N/m is the surface tension of liquid cel the pressure term in E€L7). The pressure is determined
water. Approximate values of these quantitiddyg~3 from the Navier-Stokes equation by using the stream func-
X102 m/s, hy~10"% m, and v~1.8x10"° m?/s predict tion as follows:
Re~1.5 andW~10°. This value of the Reynolds number

indicates a laminar flow. The flow componentandv sat- b :£+i¢ _E?(w b )+
isfy the steady-state Navier-Stokes equation for incompress- X 2u YV 2 NTYTXY TXTYYE S Xy
ible fluids, (29
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or IIl. THERMAL DIFFUSION PROCESS IN THE WATER
5 ) LAYER
P =—cot0—ﬁz,// _’u_l/, _’M—Re(_,p Uit Uy yy) A. Basic equation
y 2 FXyy o FXxx 2 y #xx x¥xy/ -
(25) Now we consider the thermal diffusion process in the

fluid that was obtained in the preceding section. We make the
For the stream function, we include only the zeroth andfollowing assumptions(1) long-wavelength approximation
first-orders inu, and for pressure, only the zeroth-orderis used up to the first order ip (u=khy~6x10"2?); (2)

terms are kept. thermal expansion of the water is ignored, and incompress-
The Navier-Stokes equation for the stream function andble fluid is thus retained; antB) heat transport is through
the pressure equations become steady-state thermal diffusion with flow.
Note that the steady state is valid because the time scale
yyyy= 1 Ry gy hxihyyyls (260 for temperature change is much longer than the time scale for
ice crystal growth. The heat flow is given 9= —«VT
P — 1 + 1 o Re(w Yoy — Pty (27 +(pcT)v, wherex is the thermal conductivity of wateT, is
oo 2u VY 2 TRy TR the temperature, and is the specific heat of water. The
steady-state continuity condition is given by dropping the
Py=—cot#. (28)  time derivative,
Next we consider the boundary conditions upéu). —_—
AT—B-VTzo, (36
l//x(X,y:¢):¢y(X,y= $)=0, (29

W whereD=«/pc is the thermal diffusivity of water, and the
P(x,y=£&)=P— ——(R— 7sinx)— ik, (30 incompressibility condition was used. Furthermore, we

sing dropped the term for the thermal energy coming from energy
dissipation of fluid[8],
‘/fyy(xyy: g):O! (31) 2
_pv ovj +(?vk 3
~ l/lx 2K (9Xk aXi ’ ( 7)
h,+ 7 cosx=— —(x,y=§), (32

Yy because this term is much smaller than the other terms. Be-
where we defin@V,= x2W~10° as order one, becauyéis 10w we use dimensionless parametexs (y,) again. From

7.6X 102 in our case. the preceding section,
When »=h=0, a flat laminar flow occurs with the solu-
tion u=Ug, hd , v=—ulUg (w,
Yy X,
y=—31y3+y% P=P+(1-y)cots, (33

wherey is the dimensionless stream function. Equati86)

which is easily shown to satisfy the Navier-Stokes equatior?c0MeS

and all boundary conditions.
Therefore, we consider the perturbations from this solu- (92_T:a ﬂﬂ_ﬂ ﬂ (39)
tion. The precise perturbative calculations are given in the ay? Wy OXy Xy Yy
Appendix, and as a result, we obtain the height of the AL
surface, where we have dropped the? term. From experimental
results, D~1.3x10 /, u~6x10"2, Uy~3%x10 2, and
§(X)=1+ 7 sinx, (34  hy~10* This gives

and the stream function given by hoUgq
a=p—h ~1.4.

y=—3(y— nsinx)3+ (y— 7 sinx)2. (35
In the following sections, we drop the * mark on the dimen-

In our approximation, we have only the zeroth-ordersiomess quantities again.

terms inw. This is because the first-order termsurare also
proportional to the small quantity, the amplitude of a small
ripple, which makes them effectively second-order quanti-
ties. The form of the stream function is intuitively under-  We start from Eq(38) with the stream functioi35). The
stood easily, because it is just a modification of the unperturtemperature at the SL boundary will be nearly equal to the
bative solution for the velocity to vanish at a nonflat SL melting temperaturd,, =273.15 K at atmospheric pressure.
boundary. The surface tension for the curvatures in the experiment

B. Expansion in powers ofy

041202-4
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(Gibbs-Thomson effetttan alter the melting temperature by Becausex~O(1), weconsider only these second-derivative
at most 10° K, which can be neglected. Hence, we expandterms.

the solution in powers of =y— 7 sinx.
T(XY)=Tyt+ai(x)Y+a,(x)Y?+---. (39
The left and right sides of E438) become

oo

Tyy=Tyy= kzz k(k—1)a(x) Y2, (40)
oy aT oy T gy aT| gyl aT
dy ax  ox dy Y ox|, dx|,aY
“ day(x
=(2Y-Y?)> dadx) i (42)
k=1 dx

Making the left and right sides of E438) equal gives

> k(k—1)a(x) YK 2=aY(2-Y) a )Yk.
k=2 =1 dx
(42)
The coefficients are found recursively,
B a d )
an+4—m&{ 8nt1~an},
a dal(x)
a,=az=0, U=F ~dx (43

All of the coefficients are determined when(x)=a(x) is

On the SL surface,

T(SL)=T, =const (44)
JT
Q(SL):—K(?— =—ka(x). (45
y y= 7 sinx

On the AL surface,

T(AL) =Ty+|1 76 13 52 46
(AL)=Ty+ + 5P *3386¢ a(x), (46)
AL)= | 1+ 2+ 52 4

where @ is the heating resulting from the temperature gradi-
ents. We have omitted thé)(I53) terms. The additional
terms are (6.810°°)D3% in Eg. (46) and —«(5.2

X 10"%)D%a in Eq. (47). To be comparable with the(D?)
term, & needs to be about #0Therefore, this approximation
is valid whena<10?. To determinea(x), we must consider
the temperature and heat flow at the AL surface.

IV. THERMAL DIFFUSION IN AIR

We consider the thermal diffusion in air to consider the
temperature and heat flow at the AL surface. We note two
points here. First, we cannot approximate the icicle system as
a ramp. The ramp picture is a good approximation when we
consider the inside of the thin water layer but not good for

known. The first nine coefficients are as follows by using thehe qutside. Therefore, we treat the icicle as a cylindrical

definition D= ad/dx:
a.]_: a,

azzo,

object and consider the thermal diffusion outside. Second,
we cannot use the same dimensionless variable as before
since our physical space is the outside. Therefore, we use
different-dimensional coordinates in this section. The diffu-
sion equation in air is given by

AT=0. (48
Let us write down in cylindrical coordinate,

a+1 a2+ 9?
I r290% ox®

? 1
gz T

T(r,0,x)=0. (49

We assume axial symmetry, and so we havidd0=0.
Therefore, we work with

(92

ar?

# 14
- —+
r oar (9)(2

T(r,x)=0. (50

Because the surface oscillates in thdirection, we assume
that the solution has the form

T(r,x)=1f(r)+g(r)sin(kx+ ¢), (51

where we have assumed that the icicle is an infinitely long
column with small surface fluctuationf(r) satisfies

041202-5
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d2
ﬁ‘f’ra f(r):O, (52)
andg(r) satisfies
il + Ld k2 =0 53
a2 Trar g(r)=0. (53
The solution is
T(r,x)=A+BIn(r/R)+ CKgy(kr)sin(kx+ ¢), (54

whereK, is the zeroth-modified Bessel function, aAdB,
and C are constantsR is the mean radius of the icicle, in-
cluding the thickness of the water layhg. Note that the
constant C is of the ordef, because it is introduced from the
fluctuation on an icicle. We define the local coordingtiey

r=R+y.
The solution is

T(X,y)=A+BIn(1+y/R)+ CKy(k(R+y))sin(kx+ ¢).
(55

Note that the ramp system is retained by taking the limit
—oo with fixing B/R and C exp(—kR) finite:

T(x,y)=A+B’y+C’exp( —ky)sin(kx+ ¢),

PHYSICAL REVIEW E 66, 041202 (2002

whereK’ andK” indicate derivatives oK with respect to its
argument. We define the mean growth rate of an icicley

KoB 5
=, (57)

where kg is the thermal conductivity of air, an(h means
spatial average ovet. So we obtain

LRV

KOI

(58)

At y= §sinkx (AL surface, the temperature and heat flow
are

TAL: [A+ CKo(kR)SWKkX‘i‘ d))]

LV
+ —K—+CkK6(kR)sin(kx+¢) S sinkx
0
LV ]
=A+ CKO(kR)cos¢>—K—5 sinkx
0
+ CKy(kR)sin ¢ coskx, (59
A2
O =LV-— KOCkK(’)(kR)COS¢+T sinkx
— koCkK{(kR)sin ¢ coskx. (60

where B’ and C’ are other constants. Hereafter we work Because the constaftis of the orders, we have dropped
with the case of finiteR, because the ramp case is alwaysdC terms, and we keep terms up to the first ordesin

retained by taking the limit as above. The reader might con-
sider the appearance of a logarithmic term to be strange,
since it diverges at large But the appearance of such a term
is natural for an infinitely long axially symmetric source. As  Two boundary conditions apply to the AL surface: con-
real icicles have finite lengths, this solution is valid only tinuous temperature and continuous heat flow across the
close to the icicle; far from the icicle, the icicle acts like a water-air boundary. Comparing these two sets of equations,
point source of heat and we must match the near-icicle anBds. (46) and (59) and Egs.(47) and (60), the solution re-
far-icicle solutions atr~L, wherelL is the length of the quires thata(x)=E+F sinkx+G coskx, whereE,F, andG
icicle. This matching includes that of temperature at infinityare constants with dimension of temperature.

V. GROWTH RATE

and partly determines the coefficiemts B, and C; in addi-

Then, in-dimensional units, Eq&6) and (47) are

tion, the mean growth rate of the icicle radius also deter-

mines coefficienB, which includes information on the tem- T =T +E+|F 7aG 13&2F ink
perature at infinity. ALT M ~ 0~ 3360 |0
Near the AL surfacey<R, we have ; 1322
5 + e+ 6—gF— 3568 |coskx (61)
T(x,y)=A+ RVt +C[Ko(kR) + Ky(kKR)ky+ - - -]
K K 5a 23%?
X sin(kx+ ¢)~[ A+ CKy(kR)sin(kx+ ¢)] Oy =—i—E——|F—-=G— ———=F|sinkx
. AL™ hy~ hg 12~ 10080
+| = + CkK,(KR)sin(kx+ ¢) |y K 5a¢ _ 23%72
R 0 - —|G+ -5 F————G|coskx. 62
hg 12 10 080 (62)
1 B o . )
T35~ =2 + CkKo(KR)sin(kx+ ¢) |y=+ - -, By comparing with Eqs(59) and(60), we have six equations

with six unknowns(i.e., A, C, ¢, E, F, andG). A andE can

(56) be calculated beforehand,

041202-6
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A=T,— N0 63 f=— —F, g=—0G 71
=Tu=— (63 =T hy 9T (71)
LVh, The steady-state condition means
E=— . (64)
Kk dyS(Xlt)
" . . US(X)E dt ’
The other four quantities are determined by the following t=0

equations: _ . .
wherey, is the height of the SL surface in the reference
1302 Ta frame. From the steady-state condition, the time scale for the
1- - == growth of the fluctuation is very long compared to our ob-
3360 60 F e ) :
serving time scale. By solving the equation
Ta L 1322 | |G
) T 22460 dys(x,t
60 3360 v(X)= ys(;t ) =f sinkx—g coskx (72
CKp(kR LYo o
= o(kRycos¢ Ko |, (65  with
CKo(kR)sing y<(X,t=0)= §sinkx, (73
1 23%” _ 5_“ we obtain
10080 12 F )
5 23002 G y<(X,1) = 8(t)sin(kx— wt) (74
12 1= 70080 with relations
K LVhyé 5= =
70/.LK6(|(R)C cos¢+ RKO o=f,  w=glé (75

= . (66) The essential point is that the fluctuation is not only growing
ﬁ,uK(’)(kR)Csimﬁ up, but also traveling downwardg$ %0, g>0). Therefore,
K the amplification factor is determined from

. . . By using the relation-Ky;=K;>0, we have
Solving the above equations, we obtain y d o

K, (kR) 239
1o 239 e 5 Ko(kR) |~ 10 080"
_ K
LVSKY 10 080" —=— F=Vk—\ —. (76)
F=pu —, (67 1) Lhyé 1272 239
kKo 1. 1272 2, 239 \* 1+75 080a2+ 1508 at
10080" " |10080 ¢
Note thatK;(kR)/Ky(kR)~1+1/2kR. In the case okR
S >1/2, meaning a thick icicle, we obtain
. LVSK, 2% o6
T RTRK, R 1272, ( 2390)2 . ©€8) 5 1—%&
(44 o
10080 1008 =
5 VK73 , [ 239)% 7
where we have neglected second-order termg iand we 1+10 080" * 10080 ¢
have neglected a term proportionalhig/R(~ 10" 3).
At the SL surface, the growth rate of ice is given by Becausexk, this form is similar to that of the amplifi-
cation factor given by the Mullins-Sekerka theory. The am-
Qs K . plification factor increases in proportion to wave number by
v(X)=——=V- L_hO(F sinkx+G coskx). (69 thermal diffusion in air as expected for a Laplace instability,

and it decays by interaction with fluidx(terms. The ther-
The form of the growth rate is different from that in the mal diffusion in thin water flow works just like the Gibbs-
usual MS theory. In the MS theony(x) =V +f sinkxfor the ~ Thomson effect, since the fluid makes the temperature distri-
surfacey = §sinkx. But now we have another term, dos bution uniform and inhibits the Laplace instability. From
To understand its physical meaning, we write the relativethese two effects, we obtain the maximum value §66.
growth ratev as the growth rate in a reference frame mov-  The maximum amplification factor occurs wher=2.2
ing with velocity V (vs=v —V). (Fig. 4), which determines a preferred wavelength,

v¢(X)=f sinkx—g coskx, (70 Amax~2.2.

041202-7
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ol
E 1
a 2.2
£ o4
E 2 ! 3 8 0
< Wave number o
-0.5 {dimensionless)

FIG. 4. The dimensionless amplification factiu 6/DV 8 ver-
sus the dimensionless wave numberLaplace instability in air and

a GT-like effect due to hydrodynamics amplify perturbations that.

have a wavelength given by a value @fclose to 2.2.

By usingD=1.3x10 7 m?/s with experimental data,

Uo=(2.4~4)x10"2 m/s, hy=(0.93~1.2)x10 % m,

we have

2T

hsUo
N max= K

a
D amax

=2

max

=5~13 mm, (78

which agrees well with the experimental value of 8 rf@h
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0.5
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0.3
0.2
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FIG. 5. The dimensionless speedV that the ripples travel
down an icicle versu&fvugl)\, whereV is the growth rate of an
icicle.

—8 °C, the experimentally determined speed is about 1 mm
per hour. Because water flow carries heat flow downwards,
this kind of motion seems to be natural. Actually the speed

is zero wherlJ;=0 (a«=0). Then we can imagine that such
speed is an increasing function of fluid velocitl. But this

is not true. For(solid) surface fluctuation to change its form,

it is necessary to emit latent heat nonuniformly. Like the
maximization of the amplificatiofgrowing) factor at a spe-
cific value of «, the traveling speed may have such depen-
dence onw. Qualitatively, this is due to the fact that the fluid

Also, in agreement with observations, this value does nof,,; only carries heat downwardsmall & region in Fig. 5

depend directly on external temperature.
Using the constraints betwedlhy,, hy, and flow quantity

Qas

ghasine A
U2y 0 T3

3 RUoho.
ThenQ is related to\ ,,,x as

Bl

where it is assumed thdt= 7/2. Therefore, ifQ is propor-
tional toR for usual icicles, its wavelength is uniquely deter-
mined. But for thin icicles witlR<\/(4), we should in-
clude the 1/RR term that we have neglected.

Next we consider the travel of fluctuations along the
icicle. The traveling phase velocity is the following func-
tion of a:

(79

1

D amax

14

3Q
2R

N max™ g_7T

o kG KV v 80
where 8(a) is defined by
5
= 12 81
,8(a)=1 1272 , [ 239 \2 ) (8D
* 10080 " 10080 ¢

and its form is given in Fig. 5.
At the 8 mm wavelength, fluctuation travels downwards
very slowly with speedw~0.5V, whereV is the mean

growth rate ¥=R). For the ambient air temperature of

but also makes the temperature field uniform and thus sup-
presses the heat diffusidtarge « region in Fig. 5.

VI. CONCLUSIONS

We have shown that an icicle covered with a thin layer of
water flow makes wavelike undulations on the ice during
solidification and that the preferred wavelength is determined
by a MS-like theory. Thermal diffusion in air makes the
wavelength shorter, i.e., the amplification factor becomes
larger for shorter wavelengths. On the other hand, thermal
diffusion in a thin layer of water flow makes the wavelength
larger, i.e., the amplification factor becomes smaller for
shorter wavelengths. From these two effects, a specific wave-
length emerges with a maximum amplification factor of fluc-
tuation. The thermal diffusion in the thin layer of water flow
works just like the Gibbs-Thomson effect because the water
flow makes the temperature distribution more uniform and
thus inhibits the Laplace instability. This is one of our main
results.

Oour A max depends or and flow quantityQEZTrRhOU

=1lhgU. (6 dependence was observed for flow in an inclined
gutter experiment: Fig. 2. For an iciclé= w/2 should be

el

1

D a@max

14

gmsing

3Q

R (82

N max™=

where we have used the relative Nusselt equdi@in

1/3

vQ

gmRsiné 83

hO:
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The 6 dependence of the wavelength for the ramp case is - 1. Re ) o
given by Matsudd2] experimentally as Px:ﬂ‘pyyy_ S L=y +2y+ )iy
8.2 —(=2y+2+ 3y ], (A4)

(mm), (84)
P,=0. (A5)

with y=0.6~1. However, the num_bgr of data for pI(_)tting IS The boundary conditions are
few, and thus we cannot get a definite result experimentally.
v is 0.3 in our theory. A difference exists, but it is not a large P s=0 (AB)
disagreement qualitatively.
In nature, all icicles have their own flow rat€3 but
almost all have ripples with the same wavelength. This is
explained by our analysis because the wavelength depends
on the ratio ofQ to R, not only onQ itself. It is then natural Pa=—
to assume tha is proportional toR in nature. The selected
wavelength of our analysis does not depend explicitly on
external temperature. Although the mean growth Katend - ~ )
also the amplification factor increase with decrease in tem- Pyy a=2(h+ 7 sinx), (A9)
perature, the selected wavelength with the maximum ampli- - B _
fication factor is independent of icicle growth rdf&?). U aL=(hy+ 7 cosx)[(1+ nsinx+h)?
We have also shown that surface ripples are expected to -~
travel downwards during icicle growth with a speed of 0.5 —2(1+ psinx+h) =iy ALl (A10)
times the average normal growth rate of the ice. This should
be checked by experiments. Our theory can be used to majhere the AL surface is determined py- 1+ 7 sinx+h, and
the waves around mineral stalagmite by changing the diffuthe SL surface is determined lyy= 5 sinx.
sion equation from temperature field to a solute density field. To solve the above equations, we assume the solutions
Furthermore, our diffusion equation in the fluid is math-have the form
ematically similar to the Schdinger equation for a har-

~z,/fy5L= 7% sir? x— 27 sinx, (A7)

0 ~ . ~ .
sne a(hxx— 7 sinx) + (h+ n sinx)coté,
(A8)

monic oscillator having a complex valued potential. There- =90+ u Py D+ (Al11)

fore, it may be possible to use the algebraic method for

analysis. This issue will be discussed elsewhere. P=PO+..., (A12)
ACKNOWLEDGMENTS Yy =0, (A13)

The authors are grateful to Professor R. Takaki and Drand we neglect higher orders jm. The solutions for the
P.L. Olivier for the valuable discussions. One of the aUthOFSZeroth_ordered stream function and pressure are
N.O., thanks Professor K. Fujii for his continuous encour-
agement. The authors would like to thank Professor E. (0= (h+ 5 sinx)y?—[72siréx+2(1+h) 75 sinx]y
Yokoyama, Dr. Nishimura, and Professor R. Kobayashi for

the helpful discussions and encouragement and K. Norisue ~ o . 1,
for her help. | (14h) ? sinf x+ 2 7° sinf x|, (A14)
W ~
APPENDIX PO=— m(hxx 7 sinx) + (h+ 7 sinx)cot 6.
We define the fluctuation fieldg andP by the following (A15)
relation:
To obtain the first-order stream function, we put the above
W= —1y3+y2+ (x,y) (A1) solution into the following equation:
- 3 [ [}
" g - 2oy 2(h R
P=(1-y)coto+P+P. (A2) Yy T ging (M m€oSX) +2(ht 7 cosx)cotd+ Re
Then for the fluctuation fields, we have the following X[(—y?+2y+ PO s — (= 2y + 2+ g ],
equations: (A16)
Z’fyyyy:,u Re (—y2+ 2y+20y)~ilfxyy—(—2+~llfyyy)l~/fx], which is obtained by Eq(A4) with the help of Eq.(A15).

This expression is consistent with E#3). After some in-
(A3) tegrations with the boundary conditions, we obtain
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~ Re ~ Re ~ Re
¢<1>=%(1+ h)h, y°— 5 1+ h)h, sinxy*+ ?7,2

o 1 ~
X (1+h)hy sir? xy>+ 3 (hyxx— 7 COSX)

9
sing

+(h,+ 7 cosx)cot 8

3 1 2
y 5 i)y + Cax)y

+Cy(X). (A7)

C,,C,,C5 are determined by the boundary conditions. The

results are

C,=—2(1+h+ ysinx)

Re(1+h)h,

1 - .
31+ h+ 5 sinx)?

~ ) Wy ~
—(1+h)ysinx; — m(hxxx_ 7) COSX)

+(hy+ 5 cosx)cotd|, (A18)

1 . ~
Co=—SRe(1+ h)h, 7* sin* x+ ?ﬂﬁ(hxxx_ 7 COSX)
— (hy+ 5 cosx)cot 8| 52 sir? x— C4(X) 7 sinx,
(A19)
dCsg Re — - Re ~
W_ - F[(l‘f' h)h,],7n SiP x— 7(14‘ h)

3

(Nyyxxxt 7 SINX)

~ . n
X hy7° sin x cosx+ —

0
3 |sing

7
Sie x— 7¢5¢,(C1(x)sin2 X

—(hy,— m sinx)cot 6

— 79,Co(X)SsinX. (A20)

Now we put =949+ ui V) into Eq. (A10). We now
have

2(1+0) %y u[ 4D a+ (het 7 COSX)A%I)AL] =0.
(A21)
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We expand the fluctuation of water-layer thickness as
h=h©+ ,h(), (A22)

and by putting it into the above equation, we h&a®=0,
and so we can use

h©=0. (A23)

This can be done by redefinirg, after subtracting a con-
stant. Therh® is determined by
AP = =3[P A+ COSX:%/:L)AL]F]:O- (A24)

From the fact thah starts fromO(w) in its expansion, we
can determing/) as

WD =

WO 1 3_ ; 2
—Sin0+cot0 [ 5 mcosxy®— ncosx(1+ 5 sSinx)y

+{7®sir? x cosx+ 2 7? sinx cosx}y]+Cs, (A25)

W,
9xCz=1° sinx( ﬁ + cota) [ 47 sin®x— 5 sinx

+3sirt x—2]. (A26)

From the above expression and E424), we obtain the
following simple relation:

W,
— g(—o+cot0> sinx.

T
hx sing

(A27)

Furthermore,

7

hH=
h 3

siné (A28)

Wo
—— +coté | cosx.

The height of the AL surface is

&(x)=1+ g sinx, (A29)

whereas the stream function is

g=—3y>+y*+ POh) + uyt

—(y—nsinx)3+ (y— 7 sinx)2.

(A30)
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The amplification rate of a wavéluctuation depends on its
wavelength. Only the wave with the largest amplification rate
can survive during the development of the fluctuations, and
other modes will be observed as lower-amplitude noise. The
constant rate of/8 means that the growth is exponential in
time; hence, small differences in this constant result in large
differences in the fluctuation amplitude at long times. In this
sense, a mode distribution like that in Fig. 4 will be hidden in
the external noise and thus not observed in experiments. This
situation is the same as that in the original MS theory.



