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Surface instability of icicles

Naohisa Ogawa* and Yoshinori Furukawa†

Institute of Low Temperature Sciences, Hokkaido University, Sapporo 060-0819, Japan
~Received 23 October 2001; revised manuscript received 22 April 2002; published 4 October 2002!

Quantitatively unexplained stationary waves or ridges often encircle icicles. Such waves form when roughly
0.1-mm-thick layers of water flow down an icicle. These waves typically have a wavelength of about 1 cm,
which is independent of external temperature, icicle thickness, and the volumetric rate of water flow. In this
paper, we show that these waves cannot be obtained by a naive Mullins-Sekerka instability but are caused by
a quite different type of surface instability related to thermal diffusion and the hydrodynamic effect of a thin
water flow.
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I. INTRODUCTION

Interesting wave patterns often form on growing icicl
that are covered with a thin layer of flowing water~see Fig.
1! @1#. For many of these patterns, the wavelength ha
Gaussian distribution centered at'8 mm; however, despite
their common occurrence, there is no quantitative expla
tion for this wavelength distribution@1,2#. These waves are
associated with the growth of the icicles and flow of flu
along the icicle. Hence, there are several processes occu
that should be considered. These include crystallization fr
the melt, latent heating at the ice-melt interface, laminar fl
with two interfaces~ice-melt and melt-air!, evaporation of
liquid, and transport of heat through the surrounding air. T
fact that waves tend to encircle the icicle clearly indicates
importance of gravity-induced flow, although the specific
teractions between flow, ice growth, and heat flow throu
both interfaces must be considered.

In studies on crystal growth, such a surface instability
usually explained by the Mullins-Sekerka~MS! theory. The
MS theory is based on two observations: Laplace instab
and the Gibbs-Thomson~GT! effect. ~For detailed explana
tion, refer to textbooks and the original paper by Mullins a
Sekerka cited in Ref.@3#.!

To a good approximation, the ice in an icicle has a u
form temperature of 273 K; thus, temperature gradients
the ice are insignificant, and the external temperature fiel
time independent and satisfies Laplace’s equation. We fur
assume that the external temperature is below 273 K, i.e.
ice is not melting on average. At a convex point, the te
perature gradient is higher. Because the heat flow is pro
tional to the gradient of temperature, the larger heat flow
convex point rapidly removes latent heat from the ice s
face, thus allowing the convex points to increase in size r
idly. Conversely, concave regions grow relatively slow
This phenomenon suggests that short-wavelength fluc
tions increase in amplitude more rapidly than do long wa
length fluctuations. We refer to this as the Laplace instabi

Next, we explain the GT effect. The surface of a so
object has its own energy per area called surface free en
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If a molecule attaches itself to the surface near a con
point, the surface area increases, resulting in an increas
energy. On the other hand, if a molecule becomes attache
the surface near a concave point, absorption of the mole
makes the surface area smaller. Therefore, absorption
molecule at a concave point is more energy efficient tha
absorption at a convex point. For this reason, the melt
point depends on the curvature of an object, i.e., the shap
the surface area. The melting point is lower at a conv
surface~easy to melt! and is higher at a concave surfac
~hard to melt!. Such an effect suppresses the fluctuation a
makes the surface flat. This is called the GT effect, which
opposite to that of the Laplace instability. The Laplace ins
bility enhances shorter wavelength fluctuation, and the
effect suppresses shorter wavelength fluctuation. From th
two effects, we have fluctuation of specific waveleng
mainly. These two effects are incorporated in Mullin
Sekerka’s theory@3,4#. However, a simple application of thi
theory is not possible in the case of icicles for the followi
reasons. First, the water layers on icicles are too thin to ca
Laplace instability, because the instability requires that

FIG. 1. Waves on icicles.
©2002 The American Physical Society02-1
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water thickness be larger than the wavelength of the fluc
tion. Second, the curvature is too small.~Wavelength of 1 cm
is much larger than 10mm, which is required for the GT
effect.! Therefore, the nature of wave patterns along icic
cannot be explained by the naive MS theory.

We neglect the fluid instabilities that require turbulen
because there should be no turbulence in these water
@6#. This is because the layers are only about 100mm thick
and the flow speeds are about 2–4 cm/s; the resulting R
nolds numbers are only about 1 and the flow is laminar. T
hydrodynamics of a thin water layer is also discussed
Wettlauferet al. to explain the premelting dynamics, but th
discussion here is essentially different@5#.

For our analysis, we assume water flow on a ramp~see
Fig. 2.! because it is simpler to treat and results of relev
experiments for this geometry have been reported@2#. Much
of the same processes and relative length scales occur in
systems because the water-layer thickness (;1024m) is
much smaller than the radius of the icicle (;1022m). Fur-
thermore, Matsuda@2# observed wave patterns on such an
ramp; for example, atu5p/2, the wavelength was about
mm.

Liquid flow of a thin water layer on a flat ramp~Benney’s
liquid film! produces waves@7# ~see also Ref.@8#!; however,
these waves travel down the ramp and are thus unlike
case on icicles. Due to the explicit calculation, the wa
length of these traveling surface waves is about 1 cm, sim
to the wavelength along icicles, but they move at about 4
cm/s, which is twice the speed of the fluid. Benney’s wave
caused by gravity and surface tension, but it is unclear ho
applies to the standing waves on ice unless the trave
waves can become pinned to a fixed location; such a pinn
mechanism has not yet been proposed.

Our approach is to assume static flow with small ripp
on the ramp surface and then calculate the growth rate for
ripples by solving the thermal diffusion equation in the bac
ground fluid. In Sec. II, we discuss the fluid dynamics o
thin layer of water flowing along a ramp, and then in Sec.
we couple the thermal diffusion process to the flow. T
thermal diffusion in air is solved in Sec. IV. In Sec. V, w
discuss the growth rate of fluctuation on icicles by comb
ing the solutions for thermal diffusion equations in two r
gions: air and water.

II. HYDRODYNAMICS OF A THIN LAYER OF WATER

We consider the fluid mechanics of a thin water layer w
depthh(x) as sketched in Fig. 3. Over each wavelength,

FIG. 2. Flow on a ramp inclined atu deg.
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average depth ish0. There are two material boundaries: th
solid-liquid boundary~SL! and the air-liquid boundary~AL !.
The x axis is along the ramp and increases in the down
direction, whereas they axis is the outward normal to th
ramp. The SL surface is not flat and is given by

y5f~x!, f~x!5d sinkx. ~1!

The AL surface is given by

y5j~x![f~x!1h~x! with ^h~x!&5h0 , ~2!

where^h& means average over the wavelength in thex axis
direction.

The results of a previous experimental study@2# showed
that the surface velocity of the fluid is about 3 cm/s, and
using the Nusselt equation, which is shown later@8#, the
average water-layer thicknessh0 was calculated to be aroun
0.1 mm. The wavelengthl52p/k was experimentally de-
termined to be about 1 cm. We use the parameter

m[kh0 , ~3!

which is 631022, for the typical experimental values abov
In general,m!1 defines the long-wavelength approxim
tion.

Our key assumptions are as follows:~1! steady-state
~time-independent! flow, ~2! m!1 ~long-wavelength ap-
proximation!, and~3! incompressible fluid.

We prefer to use the following dimensionless variabl
For length,

x→x* [kx, ~4!

y→y* [y/h0 . ~5!

The thickness of the water layer is thus

h~x!→h* ~x!5h~x!/h0511h̃~x!, ~6!

and the respective heights of the SL and AL surfaces are

f* ~x!5~d/h0!sinx* [h sinx* , ~7!

j* ~x!5h* ~x!1f* ~x!511h̃~x!1h sinx* . ~8!

The characteristic flow velocity in thex direction is

U05
gh0

2 sinu

2n
, ~9!

FIG. 3. Two boundaries: SL and AL.
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SURFACE INSTABILITY OF ICICLES PHYSICAL REVIEW E66, 041202 ~2002!
whereg is the gravitational acceleration and the viscosityn
51.831026 m2/s at 0 °C. This is a Nusselt equation, th
theoretically predicted velocity at the AL surface whend
50, i.e., for a flat SL surface with uniform thickness@8#.
This unperturbative solution is obtained by equating
gravitational force to the viscous force. The velocity dist
bution is parabolic iny,

vx5U0S 2
y

h0
2F y

h0
G2D . ~10!

We consider perturbations of this solution. By using t
above formula for speed, we relate the experimentally de
mined flowQ to h0 and surface velocityU0. The flow quan-
tity is defined by Q52pRŪh0, where Ū51/h0*0

h0vxdy
52U0/3, the mean speed, andR is the radius of the icicle. In
an experiment@2#, Matsuda used the flowQ5160 ml/hr and
width of gutterl 53 cm (l corresponds to 2pR) because this
produced the clearest waves. This givesŪh051.48
31026 m2/s. FromŪ52U0/3 andU05gh0

2/2n ~by setting
u5p/2), we get U052.431022 m/s with h050.93
31024 m. On the other hand, his measurement of the s
face mean velocity by observing the motion of fine grain w
U05431022 m/s atu5p/2. Hence, we assumeU05(2.4
;4)31022 m/s with h05(0.93;1.21)31024 m as the ex-
perimental surface speed and water-layer thickness.

In the y direction, characteristic velocity is

V05mU0 . ~11!

We denote speed in thex direction asu, that in they direction
asv, and pressure asP. Dimensionless speeds and press
are given by

u* 5u/U0 , ~12!

v* 5v/V0 , ~13!

P* 5
P

rgh0 sinu
. ~14!

Other dimensionless constant parameters are the Reyn
number Re and the Weber numberW.

Re[
h0U0

n
, ~15!

W[
g

rgh0
2

, ~16!

where g;7.631022 N/m is the surface tension of liquid
water. Approximate values of these quantities,U0;3
31022 m/s, h0;1024 m, and n;1.831026 m2/s predict
Re;1.5 andW;103. This value of the Reynolds numbe
indicates a laminar flow. The flow componentsu andv sat-
isfy the steady-state Navier-Stokes equation for incompr
ible fluids,
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“P

r
1g1nDv. ~17!

The incompressibility condition is

“•v50. ~18!

The mass conservation law at the water-air interface requ

dj

dx
5

v„x,j~x!…

u„x,j~x!…
. ~19!

The boundary conditions at the SL surface are zero fl
velocity,

u„x,y5f~x!…50, v„x,y5f~x!…50. ~20!

The stress balancing condition on AL surface, that is,
free surface condition is

P(In)ni5 P̂ni1rnS ]v i

]xk
1

]vk

]xi D nk2g
d2j~x!

dx2
ni . ~21!

The index meansx15x andx25y, andni is the normal unit
vector to the AL surface.P(In) is the pressure just under th
AL surface, andP̂ is the atmospheric pressure. For the abo
equations, we approximated the surface tension term asgj9
by neglecting the second-order term inm.

Now we rewrite the equations in dimensionless form.
The incompressible fluid condition is

]u*
]x*

1
]v*
]y*

50.

For this condition to hold automatically, we introduce th
dimensionless stream function by

u* 5
]c

]y*
, v* 52

]c

]x*
. ~22!

In the following, we use the stream function instead
velocity. Also, we drop the * mark on the dimensionle
quantities. All of the quantities in the remainder of this se
tion are dimensionless.

Now the Navier-Stokes equation becomes

cyyyy5m Re@cycxyy2cxcyyy#22m2cxxyy

2m3 Re@cxcxxy2cycxxx#2m4cxxxx, ~23!

where the indices indicate derivatives with respect tox andy.
The fourth-order derivatives appearing on the left-hand s
come from the viscous term by taking the derivative to ca
cel the pressure term in Eq.~17!. The pressure is determine
from the Navier-Stokes equation by using the stream fu
tion as follows:

Px5
1

m
1

1

2m
cyyy2

Re

2
~cycxy2cxcyy!1

m

2
cxxy ,

~24!
2-3
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or

Py52cotu2
m

2
cxyy2

m3

2
cxxx2

m2 Re

2
~2cycxx1cxcxy!.

~25!

For the stream function, we include only the zeroth a
first-orders inm, and for pressure, only the zeroth-ord
terms are kept.

The Navier-Stokes equation for the stream function a
the pressure equations become

cyyyy5m Re@cycxyy2cxcyyy#, ~26!

Px5
1

m
1

1

2m
cyyy2

Re

2
~cycxy2cxcyy!, ~27!

Py52cotu. ~28!

Next we consider the boundary conditions up toO(m).

cx~x,y5f!5cy~x,y5f!50, ~29!

P~x,y5j!5 P̂2
W0

sinu
~ h̃xx2h sinx!2mcxy , ~30!

cyy~x,y5j!50, ~31!

h̃x1h cosx52
cx

cy
~x,y5j!, ~32!

where we defineW0[m2W;100 as order one, becauseW is
7.63102 in our case.

Whenh5h̃50, a flat laminar flow occurs with the solu
tion

c52 1
3 y31y2, P5 P̂1~12y!cotu, ~33!

which is easily shown to satisfy the Navier-Stokes equat
and all boundary conditions.

Therefore, we consider the perturbations from this so
tion. The precise perturbative calculations are given in
Appendix, and as a result, we obtain the height of the
surface,

j~x!511h sinx, ~34!

and the stream function given by

c52 1
3 ~y2h sinx!31~y2h sinx!2. ~35!

In our approximation, we have only the zeroth-ord
terms inm. This is because the first-order terms inm are also
proportional to the small quantityh, the amplitude of a smal
ripple, which makes them effectively second-order qua
ties. The form of the stream function is intuitively unde
stood easily, because it is just a modification of the unper
bative solution for the velocity to vanish at a nonflat S
boundary.
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III. THERMAL DIFFUSION PROCESS IN THE WATER
LAYER

A. Basic equation

Now we consider the thermal diffusion process in t
fluid that was obtained in the preceding section. We make
following assumptions:~1! long-wavelength approximation
is used up to the first order inm (m[kh0;631022); ~2!
thermal expansion of the water is ignored, and incompre
ible fluid is thus retained; and~3! heat transport is through
steady-state thermal diffusion with flow.

Note that the steady state is valid because the time s
for temperature change is much longer than the time scale
ice crystal growth. The heat flow is given byQW [2k¹W T

1(rcT)vW , wherek is the thermal conductivity of water,T is
the temperature, andc is the specific heat of water. Th
steady-state continuity condition is given by dropping t
time derivative,

nT2
vW

D
•¹W T50, ~36!

whereD[k/rc is the thermal diffusivity of water, and the
incompressibility condition was used. Furthermore,
dropped the term for the thermal energy coming from ene
dissipation of fluid@8#,

2
rn

2k S ]v i

]xk
1

]vk

]xi
D 2

, ~37!

because this term is much smaller than the other terms.
low we use dimensionless parameters (x* ,y* ) again. From
the preceding section,

u5U0

]c

]y*
, v52mU0

]c

]x*
,

wherec is the dimensionless stream function. Equation~36!
becomes

]2T

]y
*
2

5aF ]c

]y*

]T

]x*
2

]c

]x*

]T

]y*
G , ~38!

where we have dropped them2 term. From experimenta
results, D;1.331027, m;631022, U0;331022, and
h0;1024. This gives

a[m
h0U0

D
;1.4.

In the following sections, we drop the * mark on the dime
sionless quantities again.

B. Expansion in powers ofy

We start from Eq.~38! with the stream function~35!. The
temperature at the SL boundary will be nearly equal to
melting temperatureTM5273.15 K at atmospheric pressur
The surface tension for the curvatures in the experim
2-4
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~Gibbs-Thomson effect! can alter the melting temperature b
at most 1026 K, which can be neglected. Hence, we expa
the solution in powers ofY[y2h sinx.

T~x,y!5TM1a1~x!Y1a2~x!Y21•••. ~39!

The left and right sides of Eq.~38! become

Tyy5TYY5 (
k52

`

k~k21!ak~x!Yk22, ~40!

]c

]y

]T

]x
2

]c

]x

]T

]y
5

]c

]Y

]T

]x U
Y

2
]c

]xU
Y

]T

]Y

5~2Y2Y2!(
k51

`
dak~x!

dx
Yk. ~41!

Making the left and right sides of Eq.~38! equal gives

(
k52

`

k~k21!ak~x!Yk225aY~22Y!(
k51

`
dak~x!

dx
Yk.

~42!

The coefficients are found recursively,

an145
a

~n14!~n13!

d

dx
$2an112an%,

a25a350, a45
a

6

da1~x!

dx
. ~43!

All of the coefficients are determined whena1(x)[a(x) is
known. The first nine coefficients are as follows by using
definition D̂[ad/dx:

a15a,

a250,

a350,

a45
D̂

6
a,

a552
D̂

20
a,

a650,

a75
D̂2

126
a,

a852
D̂2

210
a,

a95
D̂2

1440
a.

•••
04120
d
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Becausea;O(1), weconsider only these second-derivativ
terms.

On the SL surface,

T~SL!5TM5const ~44!

Q~SL!52k
]T

]y U
y5h sin x

52ka~x!. ~45!

On the AL surface,

T~AL!5TM1F11
7

60
D̂1

13

3360
D̂2Ga~x!, ~46!

Q~AL!52kF11
5

12
D̂1

239

10 080
D̂2Ga~x!, ~47!

whereQ is the heating resulting from the temperature gra
ents. We have omitted theO(D̂3) terms. The additional
terms are (6.031025)D̂3a in Eq. ~46! and 2k(5.2
31024)D̂3a in Eq. ~47!. To be comparable with theO(D̂2)
term,a needs to be about 102. Therefore, this approximation
is valid whena!102. To determinea(x), we must consider
the temperature and heat flow at the AL surface.

IV. THERMAL DIFFUSION IN AIR

We consider the thermal diffusion in air to consider t
temperature and heat flow at the AL surface. We note t
points here. First, we cannot approximate the icicle system
a ramp. The ramp picture is a good approximation when
consider the inside of the thin water layer but not good
the outside. Therefore, we treat the icicle as a cylindri
object and consider the thermal diffusion outside. Seco
we cannot use the same dimensionless variable as be
since our physical space is the outside. Therefore, we
different-dimensional coordinates in this section. The dif
sion equation in air is given by

DT50. ~48!

Let us write down in cylindrical coordinate,

F ]2

]r 2
1

1

r

]

]r
1

1

r 2

]2

]u2
1

]2

]x2GT~r ,u,x!50. ~49!

We assume axial symmetry, and so we have]T/]u50.
Therefore, we work with

F ]2

]r 2
1

1

r

]

]r
1

]2

]x2GT~r ,x!50. ~50!

Because the surface oscillates in thex direction, we assume
that the solution has the form

T~r ,x!5 f ~r !1g~r !sin~kx1f!, ~51!

where we have assumed that the icicle is an infinitely lo
column with small surface fluctuations.f (r ) satisfies
2-5
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F d2

dr2
1

1

r

d

drG f ~r !50, ~52!

andg(r ) satisfies

F d2

dr2
1

1

r

d

dr
2k2Gg~r !50. ~53!

The solution is

T~r ,x!5A1B ln~r /R!1CK0~kr !sin~kx1f!, ~54!

whereK0 is the zeroth-modified Bessel function, andA, B,
and C are constants.R is the mean radius of the icicle, in
cluding the thickness of the water layerh0. Note that the
constant C is of the orderd, because it is introduced from th
fluctuation on an icicle. We define the local coordinatey by

r 5R1y.

The solution is

T~x,y!5A1B ln~11y/R!1CK0„k~R1y!…sin~kx1f!.
~55!

Note that the ramp system is retained by taking the limiR
→` with fixing B/R andC exp(2kR) finite:

T~x,y!5A1B8y1C8exp~2ky!sin~kx1f!,

where B8 and C8 are other constants. Hereafter we wo
with the case of finiteR, because the ramp case is alwa
retained by taking the limit as above. The reader might c
sider the appearance of a logarithmic term to be stran
since it diverges at larger. But the appearance of such a ter
is natural for an infinitely long axially symmetric source. A
real icicles have finite lengths, this solution is valid on
close to the icicle; far from the icicle, the icicle acts like
point source of heat and we must match the near-icicle
far-icicle solutions atr;L, where L is the length of the
icicle. This matching includes that of temperature at infin
and partly determines the coefficientsA, B, andC; in addi-
tion, the mean growth rate of the icicle radius also de
mines coefficientB, which includes information on the tem
perature at infinity.

Near the AL surface,y!R, we have

T~x,y!5A1
B

R
y1•••1C@K0~kR!1K08~kR!ky1•••#

3sin~kx1f!;@A1CK0~kR!sin~kx1f!#

1FB

R
1CkK08~kR!sin~kx1f!Gy

1
1

2 F2
B

R2
1Ck2K09~kR!sin~kx1f!Gy21•••,

~56!
04120
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whereK8 andK9 indicate derivatives ofK with respect to its
argument. We define the mean growth rate of an icicleV by

V[2
k0

L K ]T

]y L
y50

52
k0B

LR
, ~57!

where k0 is the thermal conductivity of air, and̂& means
spatial average overx. So we obtain

B52
LRV

k0
. ~58!

At y5d sinkx ~AL surface!, the temperature and heat flo
are

TAL5@A1CK0~kR!sin~kx1f!#

1F2
LV

k0
1CkK08~kR!sin~kx1f!Gd sinkx

5A1FCK0~kR!cosf2
LV

k0
dGsinkx

1CK0~kR!sinf coskx, ~59!

QAL5LV2Fk0CkK08~kR!cosf1
LVd

R Gsinkx

2k0CkK08~kR!sinf coskx. ~60!

Because the constantC is of the orderd, we have dropped
dC terms, and we keep terms up to the first order ind.

V. GROWTH RATE

Two boundary conditions apply to the AL surface: co
tinuous temperature and continuous heat flow across
water-air boundary. Comparing these two sets of equatio
Eqs. ~46! and ~59! and Eqs.~47! and ~60!, the solution re-
quires thata(x)5E1F sinkx1Gcoskx, whereE,F, andG
are constants with dimension of temperature.

Then, in-dimensional units, Eqs.~46! and ~47! are

TAL5TM1E1FF2
7a

60
G2

13a2

3360
F Gsinkx

1FG1
7a

60
F2

13a2

3360
GGcoskx, ~61!

QAL52
k

h0
E2

k

h0
FF2

5a

12
G2

239a2

10 080
F Gsinkx

2
k

h0
FG1

5a

12
F2

239a2

10 080
GGcoskx. ~62!

By comparing with Eqs.~59! and~60!, we have six equations
with six unknowns~i.e., A, C, f, E, F, andG). A andE can
be calculated beforehand,
2-6
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A5TM2
LVh0

k
, ~63!

E52
LVh0

k
. ~64!

The other four quantities are determined by the followi
equations:

S 12
13a2

3360
2

7a

60

7a

60
12

13a2

3360

D S F

GD

5S CK0~kR!cosf2
LVd

k0

CK0~kR!sinf
D , ~65!

S 12
239a2

10 080
2

5a

12

5a

12
12

239a2

10 080

D S F

GD

5S k0

k
mK08~kR!C cosf1

LVh0d

Rk

k0

k
mK08~kR!C sinf

D . ~66!

Solving the above equations, we obtain

F5m
LVdK08

kK0

12
239

10 080
a2

11
1272

10 080
a21S 239

10 080D
2

a4

, ~67!

G52m
LVdK08

kK0

5

12
a

11
1272

10 080
a21S 239

10 080D
2

a4

, ~68!

where we have neglected second-order terms inm and we
have neglected a term proportional toh0 /R(;1023).

At the SL surface, the growth rate of ice is given by

v~x!5
QSL

L
5V2

k

Lh0
~F sinkx1G coskx!. ~69!

The form of the growth rate is different from that in th
usual MS theory. In the MS theory,v(x)5V1 f sinkx for the
surfacey5d sinkx. But now we have another term, coskx.
To understand its physical meaning, we write the relat
growth ratevs as the growth rate in a reference frame mo
ing with velocity V (vs[v2V).

vs~x!5 f sinkx2g coskx, ~70!
04120
e
-

f [2
k

Lh0
F, g[

k

Lh0
G. ~71!

The steady-state condition means

vs~x![
dys~x,t !

dt U
t50

,

where ys is the height of the SL surface in the referen
frame. From the steady-state condition, the time scale for
growth of the fluctuation is very long compared to our o
serving time scale. By solving the equation

vs~x![
dys~x,t !

dt U
t50

5 f sinkx2g coskx ~72!

with

ys~x,t50!5d sinkx, ~73!

we obtain

ys~x,t !5d~ t !sin~kx2vt ! ~74!

with relations

ḋ5 f , v5g/d. ~75!

The essential point is that the fluctuation is not only growi
up, but also traveling downwards (f .0, g.0). Therefore,
the amplification factor is determined fromF.

By using the relation2K085K1.0, we have

ḋ

d
52

k

Lh0d
F5Vk

K1~kR!

K0~kR! S 12
239

10 080
a2D

11
1272

10 080
a21S 239

10 080D
2

a4

. ~76!

Note that K1(kR)/K0(kR);111/2kR. In the case ofkR
@1/2, meaning a thick icicle, we obtain

ḋ

d
5Vk

12
239

10 080
a2

11
1272

10 080
a21S 239

10 080D
2

a4

. ~77!

Becausea}k, this form is similar to that of the amplifi-
cation factor given by the Mullins-Sekerka theory. The a
plification factor increases in proportion to wave number
thermal diffusion in air as expected for a Laplace instabili
and it decays by interaction with fluid (a terms!. The ther-
mal diffusion in thin water flow works just like the Gibbs
Thomson effect, since the fluid makes the temperature di
bution uniform and inhibits the Laplace instability. Fro
these two effects, we obtain the maximum value forḋ/d.

The maximum amplification factor occurs whena52.2
~Fig. 4!, which determines a preferred wavelength,

amax;2.2.
2-7
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By usingD51.331027 m2/s with experimental data,

U05~2.4;4!31022 m/s, h05~0.93;1.21!31024 m,

we have

lmax5
2p

kmax
52p

h0
2U0

Damax
55;13 mm, ~78!

which agrees well with the experimental value of 8 mm@9#.
Also, in agreement with observations, this value does
depend directly on external temperature.

Using the constraints betweenU0 , h0, and flow quantity
Q as

U05
gh0

2 sinu

2n
, Q5

4p

3
RU0h0 . ~79!

ThenQ is related tolmax as

lmax5
1

Damax
S n

gp D 1/3S 3Q

2RD 4/3

,

where it is assumed thatu5p/2. Therefore, ifQ is propor-
tional toR for usual icicles, its wavelength is uniquely dete
mined. But for thin icicles withR<l/(4p), we should in-
clude the 1/2kR term that we have neglected.

Next we consider the travel of fluctuations along t
icicle. The traveling phase velocityw is the following func-
tion of a:

w[
v

k
5

kG

Ldh0k
5

K1V

K0
b~a!;Vb~a!, ~80!

whereb(a) is defined by

b~a![

5

12
a

11
1272

10 080
a21S 239

10 080D
2

a4

, ~81!

and its form is given in Fig. 5.
At the 8 mm wavelength, fluctuation travels downwar

very slowly with speedw;0.5V, where V is the mean
growth rate (V5Ṙ). For the ambient air temperature o

FIG. 4. The dimensionless amplification factorh0
2U ḋ/DVd ver-

sus the dimensionless wave numbera. Laplace instability in air and
a GT-like effect due to hydrodynamics amplify perturbations t
have a wavelength given by a value ofa close to 2.2.
04120
t

28 °C, the experimentally determined speed is about 1 m
per hour. Because water flow carries heat flow downwa
this kind of motion seems to be natural. Actually the speedw
is zero whenU050 (a50). Then we can imagine that suc
speed is an increasing function of fluid velocityU0. But this
is not true. For~solid! surface fluctuation to change its form
it is necessary to emit latent heat nonuniformly. Like t
maximization of the amplification~growing! factor at a spe-
cific value ofa, the traveling speed may have such depe
dence ona. Qualitatively, this is due to the fact that the flu
not only carries heat downwards~small a region in Fig. 5!,
but also makes the temperature field uniform and thus s
presses the heat diffusion~largea region in Fig. 5!.

VI. CONCLUSIONS

We have shown that an icicle covered with a thin layer
water flow makes wavelike undulations on the ice duri
solidification and that the preferred wavelength is determin
by a MS-like theory. Thermal diffusion in air makes th
wavelength shorter, i.e., the amplification factor becom
larger for shorter wavelengths. On the other hand, ther
diffusion in a thin layer of water flow makes the waveleng
larger, i.e., the amplification factor becomes smaller
shorter wavelengths. From these two effects, a specific wa
length emerges with a maximum amplification factor of flu
tuation. The thermal diffusion in the thin layer of water flo
works just like the Gibbs-Thomson effect because the wa
flow makes the temperature distribution more uniform a
thus inhibits the Laplace instability. This is one of our ma
results.

Our lmax depends onu and flow quantityQ[2pRh0Ū

5 lh0Ū. (u dependence was observed for flow in an inclin
gutter experiment: Fig. 2. For an icicle,u5p/2 should be
used.!

lmax5
1

Damax
S n

gp sinu D 1/3S 3Q

2RD 4/3

, ~82!

where we have used the relative Nusselt equation@8#,

h05F nQ

gpR sinuG1/3

. ~83!

t

FIG. 5. The dimensionless speedw/V that the ripples travel
down an icicle versusa;U0

2/l, whereV is the growth rate of an
icicle.
2-8
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Theu dependence of the wavelength for the ramp cas
given by Matsuda@2# experimentally as

l;
8.2

singu
~mm!, ~84!

with g50.6;1. However, the number of data for plotting
few, and thus we cannot get a definite result experimenta
g is 0.3 in our theory. A difference exists, but it is not a lar
disagreement qualitatively.

In nature, all icicles have their own flow ratesQ, but
almost all have ripples with the same wavelength. This
explained by our analysis because the wavelength dep
on the ratio ofQ to R, not only onQ itself. It is then natural
to assume thatQ is proportional toR in nature. The selected
wavelength of our analysis does not depend explicitly
external temperature. Although the mean growth rateV and
also the amplification factor increase with decrease in te
perature, the selected wavelength with the maximum am
fication factor is independent of icicle growth rate~77!.

We have also shown that surface ripples are expecte
travel downwards during icicle growth with a speed of 0
times the average normal growth rate of the ice. This sho
be checked by experiments. Our theory can be used to
the waves around mineral stalagmite by changing the di
sion equation from temperature field to a solute density fie
Furthermore, our diffusion equation in the fluid is mat
ematically similar to the Schro¨dinger equation for a har
monic oscillator having a complex valued potential. The
fore, it may be possible to use the algebraic method
analysis. This issue will be discussed elsewhere.
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APPENDIX

We define the fluctuation fieldsc̃ and P̃ by the following
relation:

c52 1
3 y31y21c̃~x,y!, ~A1!

P5~12y!cotu1 P̂1 P̃. ~A2!

Then for the fluctuation fields, we have the followin
equations:

c̃yyyy5m Re@~2y212y1c̃y!c̃xyy2~221c̃yyy!c̃x#,

~A3!
04120
is

y.

s
ds

n

-
li-

to

ld
ap
-
.

-
r

r.
,

-
.
r
ue

P̃x5
1

2m
c̃yyy2

Re

2
@~2y212y1c̃y!c̃xy

2~22y121c̃yy!c̃x#, ~A4!

P̃y50. ~A5!

The boundary conditions are

c̃x SL50, ~A6!

c̃y SL5h2 sin2 x22h sinx, ~A7!

P̃ AL52
W0

sinu
~ h̃xx2h sinx!1~ h̃1h sinx!cotu,

~A8!

c̃yy AL52~ h̃1h sinx!, ~A9!

c̃x AL5~ h̃x1h cosx!@~11h sinx1h̃!2

22~11h sinx1h̃!2c̃y AL#, ~A10!

where the AL surface is determined byy511h sinx1h̃, and
the SL surface is determined byy5h sinx.

To solve the above equations, we assume the solut
have the form

c̃5c̃ (0)1mc̃ (1)1•••, ~A11!

P̃5 P̃(0)1•••, ~A12!

c̃yyy
(0) 50, ~A13!

and we neglect higher orders inm. The solutions for the
zeroth-ordered stream function and pressure are

c̃ (0)5~ h̃1h sinx!y22@h2 sin2 x12~11h̃!h sinx#y

1F ~11h̃!h2 sin2 x1
1

3
h3 sin3 xG , ~A14!

P̃(0)52
W0

sinu
~ h̃xx2h sinx!1~ h̃1h sinx!cotu.

~A15!

To obtain the first-order stream function, we put the abo
solution into the following equation:

c̃yyy
(1) 52

2W0

sinu
~ h̃xxx2h cosx!12~ h̃x1h cosx!cotu1Re

3@~2y212y1c̃y
(0)!c̃xy

(0)2~22y121c̃yy
(0)!c̃x

(0)#,

~A16!

which is obtained by Eq.~A4! with the help of Eq.~A15!.
This expression is consistent with Eq.~A3!. After some in-
tegrations with the boundary conditions, we obtain
2-9
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c̃ (1)5
Re

30
~11h̃!h̃x y52

Re

6
h~11h̃!h̃x sinxy41

Re

3
h2

3~11h̃!h̃x sin2 xy31
1

3 F2
W0

sinu
~ h̃xxx2h cosx!

1~ h̃x1h cosx!cotuGy31
1

2
C1~x!y21C2~x!y

1C3~x!. ~A17!

C1 ,C2 ,C3 are determined by the boundary conditions. T
results are

C1522~11h̃1h sinx!FRe~11h̃!h̃xH 1

3
~11h̃1h sinx!2

2~11h̃!h sinxJ 2
W0

sinu
~ h̃xxx2h cosx!

1~ h̃x1h cosx!cotuG , ~A18!

C252
1

2
Re~11h̃!h̃xh

4 sin4 x1F W0

sinu
~ h̃xxx2h cosx!

2~ h̃x1h cosx!cotuGh2 sin2 x2C1~x!h sinx,

~A19!

]C3

]x
52

Re

5
@~11h̃!h̃x#xh

5 sin5 x2
Re

2
~11h̃!

3h̃xh
5 sin4 x cosx1

h3

3 F W0

sinu
~ h̃xxxx1h sinx!

2~ h̃xx2h sinx!cotuGsin3 x2
h2

2
]xC1~x!sin2 x

2h]xC2~x!sinx. ~A20!

Now we put c̃5c̃ (0)1mc̃ (1) into Eq. ~A10!. We now
have

2~11h̃!2h̃x1m@c̃x
(1)

AL1~ h̃x1h cosx!c̃y
(1)

AL#50.
~A21!
la

c

04120
e

We expand the fluctuation of water-layer thickness as

h̃5h̃(0)1mh̃(1), ~A22!

and by putting it into the above equation, we haveh̃x
(0)50,

and so we can use

h̃(0)50. ~A23!

This can be done by redefiningh0 after subtracting a con
stant. Thenh̃(1) is determined by

h̃x
(1)52 1

2 @c̃x
(1)

AL1h cosxc̃y
(1)

AL# h̃50 . ~A24!

From the fact thath̃ starts fromO(m) in its expansion, we
can determinec̃ (1) as

c̃ (1)5S W0

sinu
1cotu D @ 1

3 h cosxy32h cosx~11h sinx!y2

1$h3 sin2 x cosx12h2 sinx cosx%y#1C3 , ~A25!

]xC35h3 sinxS W0

sinu
1cotu D @ 4

3 h sin3 x2h sinx

13 sin2 x22#. ~A26!

From the above expression and Eq.~A24!, we obtain the
following simple relation:

h̃x
(1)52

h

3 S W0

sinu
1cotu D sinx. ~A27!

Furthermore,

h̃(1)5
h

3 S W0

sinu
1cotu D cosx. ~A28!

The height of the AL surface is

j~x!511h sinx, ~A29!

whereas the stream function is

c52 1
3 y31y21c̃ (0)~ h̃!1mc̃ (1)

52 1
3 ~y2h sinx!31~y2h sinx!2. ~A30!
@1# T. Tozuka, Denki Kagaku8, 218 ~1938! ~in Japanese!; C.
Knight, J. Cryst. Growth49, 193 ~1980!; N. Maeno and T.
Takahashi, Low Temp. Sci.43, 125~1984!; 43, 139~1984!; L.
Makkonen, J. Glaciol.34, 116 ~1988!; K. Szilder and E.P. Lo-
zowski, Ann. Glaciol. 19, 141 ~1994!; N. Maeno, L.
Makkonen, K. Nishimura, K. Kosugi, and T. Takahashi, J. G
ciol. 40, 319 ~1994!.

@2# S. Matsuda, Master’s thesis, Institute of Low Temperature S
ence, Hokkaido University, 1997~in Japanese!.

@3# W.W. Mullins and R.F. Sekerka, J. Appl. Phys.35, 444~1964!;
-

i-

see also Tamas Vicsek,Fractal Growth Phenomena~World
Scientific, Singapore, 1989!; for the theory of Crystal Growth,
general textbooks are, for example, Ivan V. Markov,Crystal
Growth for Beginners~World Scientific, Singapore, 1995!; A.
A. Chernov,Modern CrystallographyIII, Springer Series in
Solid-State Sciences 36~Springer, Berlin, 1984!.

@4# S.R. Coriell and Robert L. Parker, J. Appl. Phys.36, 632
~1965!; S.R. Coriell and S.C. Hardy,ibid. 40, ~1969!; S.C.
Hardy and S.R. Coriell, J. Cryst. Growth3, 569 ~1968!; Y.
Furukawa and K. Nagashima, Appl. Math. Sci.7, 28 ~1997! ~in
2-10



ys

.

su

ev

te
nd
he

in
rge
is
in

This

SURFACE INSTABILITY OF ICICLES PHYSICAL REVIEW E66, 041202 ~2002!
Japanese!, and related references are therein.
@5# J.S. Wettlaufer, M.G. Worster, L. Wilen, and J.G. Dash, Ph

Rev. Lett.76, 3602~1996!.
@6# G.D. Ashton~unpublished!; G.D. Ashton and J.F. Kennedy, J

Hydraul. Div., Am. Soc. Civ. Eng.98, 1603 ~1972!; K.L.
Carey, Geol. Surv. Prof. Pap.550-B, B192~1966!; R.R. Gilpin,
T. Hirata, and K.C. Cheng, J. Fluid Mech.99, 619~1980!; K.S.
Hsu, Ph.D. thesis, University of Iowa, 1973, p. 147; K.S. H
F.A. Locher, and J.F. Kennedy, J. Heat Transfer101, 598
~1979!; P.A. Larsen, J. Boston Soc. Civ. Eng.56, 45 ~1969!;
C.B. Thorsness and T.J. Hanratty, AIChE J.25, 686 ~1979!;
summary is given in M. Epstein and F.B. Cheung, Annu. R
Fluid Mech.15, 293 ~1983!.
04120
.

,

.

@7# D.J. Benney, J. Math. Phys.45, 150 ~1966!.
@8# L. Landau and E. Lifschitz,Fluid Mechanics, 2nd ed.~Perga-

mon, Oxford, UK, 1987!.
@9# The amplification rate of a wave~fluctuation! depends on its

wavelength. Only the wave with the largest amplification ra
can survive during the development of the fluctuations, a
other modes will be observed as lower-amplitude noise. T
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