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NMR imaging and structure measurements using the long-range dipolar field in liquids
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We extend the Fourier-based formalism previously developed to analyze structural measurements obtained
using the long-range liquid dipolar field in NMR, in the short time regime. It is shown that in the case of a
two-spin system, the signal measured in an average structure measurement is related to the spatial cross-
correlation function of the spin densities of the two components. It is also demonstrated that in the case of
cylindrically symmetrical systems, the measured data are related to the Meijer trarisfdfntransform of
the radial distribution function of the spin density. Experiments were performed on structured phantoms
exhibiting cylindrical symmetry over the length scale probed, and were found to be in excellent agreement with
the theory. Finally, it is shown that changes in image contrast with the strength of the modulation gradient can
be expressed in terms of the action of a dipolar “filter.”
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INTRODUCTION mation about the samplée.2]. This idea has been exploited
in making structural measurements on systems containing a

The use of NMR methods to obtain structural informationsingle spin specidd 3,14, and has been extended to systems
has been well established since Mansfield and Grannell firg¥ith two different spin species located in different compart-
showed NMR “diffraction” effects in solids/1] and later ~ments within a samplgl1,15-17.
developed its relation to NMR imagin@]. NMR diffusion Robyr and Bowtell showed that in an isotropic sample,
measurements—in systems that restrict free diffusion—havéhe amplitude of the signal measured in the short time regime
been used to measure the autocorrelation of the shape fungs a function of the gradient modulation is related to the
tion of a pore spacg3], and this idea has been extended toHankel transform of the radial distribution functi¢h8]. In
NMR diffusive diffraction[4]. Barralet al. have also shown the present work, we ignore the effects of diffusion, but ex-
that the Fourier space data collected in a conventional NMRend the formalism used to cylindrical structures as well as
imaging experiment can yield the spatial autocorrelatiorexperiments on compartmentalized two-spin systems.
function or Patterson function of the spin density of the sys-
tem being studiedl5]. Recently, average structure measure-
ments have been obtained by exploiting the long-range dipo-
lar field in liquids. Single spin species

Long-range dlpolar fields in Ilqwds are not averaged out Consider the standard-quantum CRAZED (COSY-
by molecular motions, and give rise to a resultant local field

) . . revamped by asymmetrizgradient$ pulse sequence illus-
that is g_enerally nonzero unless thg system s S’pher'c""”%’rated in Fig. 1. In the following analysis, we neglect the
symmetrlcal[G]t.) Th;‘s field hasl b%en |gnor§d In most I.\I::ARh effects of radiation damping, relaxation, and diffusion. Ini-
experiments, but has recently become important with t %ially the entire sample magnetization is aligned along the
shift to higher static magnetic fields. Numerous manifesta- T A S
tions of this field have been observed—including the forma£xtérnal magnetic fiel@yz. When the magnetization is nu-
tion of multiple spin echoes in solii7] and liquid *He [8], tated, the dipolar field evol\_/es _Wlth the_ magnetlzatlon._After
and wate[9] in a two-pulse spin-echo experiment, dynamic @ (7/2)y pulse, the magnetization is aligned along ihei-
line-shape distortiong10], and apparent intermolecular '€ction, and evolves under the first gradient pulse as
multiple-quantum coherencésl]. The dipolar field is gen- M. (r)=Mg(r)e'*m", where |ky|=yG4, its direction is
erally nonlocal, with contributions to the field at each pointspecified by the gradient direction, an, =M,+iM, as
coming from all positions in the sample. However, in theusual. After thed pulse, we have
case of spatially modulated magnetization the dipolar field
experienced by a spin is predominantly determined by the M., (F)=Mq(r)
local magnetization located at a distance less than the wave- * 0
length of the modulatiof11]. Since the modulation grating

THEORY

co§(§) eikm T — girP

0 — ik T
2] w

that is written onto the spins is under the control of the RF 2 0
experimenter, it has been suggested that by manipulating the ” ”
dipolar field it might be possible to extract structural infor-
Gradient | s | | 5 |
*Present address: Department of Nuclear Engineering, Massachu- 5 5
setts Institute of Technology, Cambridge, MA 02139; electronic ad-
dress: sekhar@mit.edu FIG. 1. The CRAZED experiment.
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and
- o SN0 i gt
M) = =Mo(1) —[e*n +e ¥n ] (2)

After the second gradient pulskl, is unchanged, buw ,
becomes

M, (r)=My(r)

cos"(g) el (N 1k T _ sinz(g) ei(n—l)lsz}

)

This magnetization evolves in the dipolar field according to

the modified Bloch equations

dM, iy

i = 2 [M-By:~M.Bg-], 4
dMm,
gi ~ 1IM:Ba~MBy. ], 5)

where By is the dipolar field due to the spin®{. =Bgy
+iBgy; Byg- =Bgx—iBgy). The dipolar field at a position
due to the magnetization of the sample is given by

d3Q,1—3 co§0rr,[3M (Y N(F)]
— | & r'yz—M(r')].
4 2/r—r'|3 ‘

(6)

Ba(r)=

The field is nonlocal and depends strongly on the shape dfignal is proportional tgf Zd3kA (k)| M o(k)
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M* (k,t) and M, (k,t) can be replaced in Eq8) by their
values att=0 yielding a linear growth of the signal with
time,

-yt
S(km,t)—_ 8773

f d3kA (K)M* (K,00M ;. (k,0). (9)

Taking the spatial Fourier transforms of E¢@) and(3) and
substituting them into Eq9), we get

Stk = ZEE SR RN OME (R Ko
I 0 R .
+ Mg (K+Km)] co§(§)Mo(k—(n+1)km)
[0 R N
—smz(z Mo(k—(n—l)km)}. (10

The integral in Eq(10) depends on the relative magnitudes
of the bandwidth K, Of MO(IZ) and the strength of the
modulationk,,. If |K,| is smaller thark . the two terms in

the first square brackets will overlap. The dipolar field is not
well localized in this situation. For small values of the
terms in the second square brackets overlap with those in the
first, and a nonzero signal can be measured. In the absence of
an external gradient moduIatiorjIZ(n|=0), the measured

2 and is deter-

the sample. However, Devillet al. observed that this equa- mined by the shape and structure of the sample.

tion has the form of a convolution integral and showed that

In order to localize the dipolar field and avoid overlap

following a spatial Fourier transformation, the field becomesbetween spectral components, the strength of the applied

local in k spaceg 7],

By(K)= S ARI3M(K)2— M (K)], ™

modulation must be at leakt, .. When|k,,| is greater than
Kmax, the two terms in the first square brackets no longer
overlap. This also ensures that each term in the second set of
brackets can overlap with at most one term in the first set of
brackets. In this case, the integral will reduce to zero unless

whereA (k) =P,(k-2) is the second-order Legendre polyno- n=+2 orn=0 (note that negative values nfcorrespond to

mial of the cosine of the angle betweénand the static
magnetic field. The componeﬁg(ﬁz 5) is the spatially uni-

cases in which the direction of the second gradient is re-
versed with respect to that of the first gradjefthe results

form (do) component of the magnetic field and is propor-©btained in these three cases are,rfer—2,

tional to the total magnetization in the sample. Theom-

ponent of this field can produce small, but observable shifts

of the resonance frequencfor water protons at 500 MHz,
yuoMo~13 rad/s).

The observed signaﬁB(IZm,t) is obtained by integrating
the transverse magnetizatid)m+(F) over the entire sample.
Defining M>=[*_d3M,(r) and M>=["_d3M_(r), it
can be shown thadM>/dt=0 and

dm* B i?’Mof”
dt 873

. d3kA* (KM* (K,HM, (K,t), (8)

where A* (k)= A (k) =P,(k-2) [14]. At short timest after
the second gradient pulseB4t<1), the dipolar field only

] ) 0
i yuot Sin 6 cog —) ~
" — 3L L 0\ (2.
Sk, ,t)= 16,3 jﬁwd KA (k—Kkm) [Mo(k)|%
(17)
for n=0,
N _|’y,lL0tS|n0 0 * 30 N N . p)
S(km,t)—W{COSZ(E) fﬁmd KA (k+kqp) | Mo(k)
Y AN - |,
—sir? 5] d3KA (k—km) | Mo(k)[2]; (12

generates a small perturbation of the magnetization anednd forn=2,
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RF, w2 n/2 the A spins. Ifwp— wg>yBy, the only effective term of the
ﬂ ﬂ dipolar field is the component alorgy given by
N 2,%0 ~ N
RF, 7\2 BiAK) = - A(M(K)z, (17
[ The evolution of specieB follows:
Gradient e
dMB(r) . .
G | | omene G —Jt( = —i7eME(NBG(r), (18
) nd

yielding
FIG. 2. The heteronuclear CRAZED experiment.

ME(F,t)=ME(r)e" T exi —iygBi(N)t].  (19)

1Kol smesmz(z) At short times, we can expand the exponential to first order
1672 (e7*~1-x), and gef19]

S(lzm,t): -

ME(r,t)=ME(r)emm T1—iygBA(Nt]. (20
><J FRAR+EDMOE. (19 2(r)=MGNE™ T1-i7gBRMN. (20
- Integrating the magnetization over the entire sample, we get

|MO(I2)|2 has been shown to be the Fourier transform of thehe measured signal

spatial autocorrelation function or the Patterson function

Pu(r) of the spin-density functiof6]. Thus the NMR signal Sp(km 1) = J: d3r[ME(r)enkm !
measured as a function of the modulation vedZQ,r is a o
convolution of the Fourier transform of the spin-density —ithMg(F)e‘“km'rBQZ(F)]. (21

Patterson function and the dipolar weighting funct’vto(i?).
The first integral reduces to zero under a strong gradient
Two spin species modulation. Considering the simplest case in which1,

we apply Parseval’s relations to get
Heteronuclear dipolar field experiments can be analyzed

by considering the experiment shown in Fig. 2, wharand |

B are the two(different spins in the samplélS—lﬂ. Sg(Km,t)= e j d3k['V|o( )BQ;(Q)]_ (22)
The pulses used are now frequency-selective so that they

only excite a single spin species. The first twf2 pulses are

tuned to the resonance of speciesThe magnetization of Substituting the Fourier transform of EALS),

spin specied after the secondr/2 RF pulse is

- N - I oyst
MA (1) =iM B(F)Sin(Rey- 1) a9 Slkn0~"0 f GORA (ko ME(R M (R).
and (23
M?(F): _ Mé(F)cos{Rm. 0. (15 where we have again used the property th&(k)= A (k),

and we have dropped the cross temhS(K—Ky)Mo(k

The large gradient after the pulse crushes the transverse matyKm). Comparing the result above with that obtained in the

netization,M” (F). We assume that the intervg}, is short ~ Single-spin cas¢Egs. (1)—(13)], it is seen that the signal
compared to thd; of speciesA, so that the modulated lon- ©Obtained in this experiment as a functionkgf represents the

gitudinal magnetization remains locked unchanged akang Fourier transform of the cross correlation between the spin
SpeciesB has not been perturbed by the first part of thedenSItIeS of the two components.

experiment. The thirdr/2 RF pulse is a selective pulse tuned

to the resonance of speciBsAfter the modulation gradient Average structure measurements

pulse, the transverse magnetization is given by The results obtained in the above two cases can be cast in
- . P the general formS(k 1) =A(6) n(k.), where A(6) con-
M (F) = ME ()T 1g e o (Kn )= A(6) m(Kr), where A(0)
tains the constants and angular factors k) represents

The transverse magnetization of tBespins now evolves in the integral ovelk. Parseval's relation can then be used to
the dipolar field created by the longitudinal magnetization ofevaluaten(km)
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. TR o spherical symmetry{11,18. By expanding the spherical
7(Km)= j_m d°kC(k) A (k+kp) (24 Bessel function in terms of ordinary Bessel functions of frac-

tional order, we can expresKkn,t) in terms of a Hankel

R transform of the Patterson function of the spin density
=(8773)f d*rP(r)A(r)ekm, (25
—o p
[ \/5771'5)/,U,Ot sin@siré =
where - 2 .
S(Kpy,t)= 3 A(k)
AG) 47 1-3(r-2)? . m
r=——
(|3 *Py(r
3 2lr xf —MS(IZ)JZ_S(kmr)dr. (30)
o r

and whereZ(k) represents eithéM o(K)|? or ME(k)M5* (k)
depending on the experiment, aﬁ(if) represents the corre- Note thatA (k) only depends on the angle between the di-

sponding spatial auto- or cross-correlation function. rection of the applied external gradient andand not on its
Thus, from Eq.(25), we see that the measured data cor-magnitude. This term is maximal when the gradient is along

respond to the Fourier transform of the product of the spatia% and zero at the magic angle. From the inversion formula
correlation function of the spin density and the weightingfOr the Hankel transformi20], we get

functionA(F), which can be considered to be a filter in real

spage. Cons;idering the= + 2 case for a single spin species Pu(r) 3i 1
[P(r)=Pn(r)] as an illustrative example, the measured sig- 52 0 L
nal is ' V2mtSyut sinasinzz AM
+ o0 > -
" —_q. 3 37 = N a— Ky o
S(km,t)—8’77' A(G)f,oc d rPM(r)A(r)e . (27) % JO S(km,t)Jz,s(kmr)kﬁ{Z dkm, (31)

Using the Fourier inversion formula, we can obtain the

weighted Patterson function which is the same as the expression obtainefl 8], when

diffusion effects are neglected. The Hankel transform also

N arises in other NMR experiments, such as pulsed field gradi-

Pu(NA(r)= %j wd3|2ms(|2m,t)e+“5mf, ent measurements of spherically symmetric diffusion propa-
8w A(6) )~ gators[21], and in the imaging of spherically symmetric
(28)  spin-density distributionf22].

In order to obtain the three-dimensional Patterson function of
a sample, we need to samptespace in all directions by
repeating the experiment for different modulations and then For long, oriented structures it is useful to consider the
apply the Fourier inversion procedure shown above. If théoroblem in cylindrical coordinates, where we assume that the
sample being studied has certain structural symmetries, th@@mple extends infinitely along the axis of the cylinder and
expressions in Eq$27) and(28) can, however, be simplified that the reduced Patterson function now depends only on the
further. Note that while the spatial autocorrelation functionradial coordinate in the cylindrical system. We can evaluate
of the spin density of a single spin species is used in they(k,) from Eq. (25) for a given direction ofk,, using a
following discussion, it is equally applicable to the spatialcylindrical coordinate system aligned with the axis of our
cross-correlation function between the two spin species asystem, where this axiv) is oriented at an angle with

Cylindrical symmetry

shown above. respect to the static magnetic field,
Spherical symmetry . 327t (=
o 3 7(Km) = — J Pw(r)rdr
For an isotropic medium, the Patterson functieg(r) 0

depends only on the distange We consider the direction of

> 2 0 — .
km to be fixed, and observe the signal as a function of its xf d¢f+ dw( Lfg%) e KmT
amplitude. Expanding Eq25) in spherical coordinates and 0 —o 2|r[3
integrating over the angular terms, we obtain (32)
L B4mt L [=Pyw(r) 4
. . 0 2
7(km) = —3 A(k)Jo —lalkgr)dr, o (29) :32377 f PM(r)rdrf dpeik.r cosidi— )
0 0

wherej, is a spherical Bessel function. The integration ker- i 1-3 co2d
nelj,(kyr) _describes the spatie_ll variation of the dipolar field % J dw( #ﬂ) e ikw (33)
as a function of the modulation strength for the case of 2|r|

—0o
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wherek, is the projection of the gradient perpendicular to the axis of the systenkjaadhe projection parallel to the axis,

and ¢, is the angle betweek, and thex axis of the cylinder. The resulting expression fy(rizm) is (details of the derivation
are presented in Appendix)A

. 64m® @ 64> , [
(k)= 3 (1—300§a)k“f0 drPM(r)Kl(kHr)Jo(klr)+Tcos’wkHJO drrPy(r)Ko(kyr)Jo(k,r)

32mt ([
- Tsmzaku J'o drrPy(r)Ka(kyr){mJo(k, r)—2mJ,(k, r)cos 2p}

647>

+
3

sin2acos¢kkﬁf drrPy(rKy(kir)Jda(k,r), (34)
0

whereK ,(x) is a modified Bessel function. This expression o, _ 0
simplifies considerably in the following cases. If the cylinder i47%yuot sinf cos -
axis is parallel toB,, « is set to zero in Eq(34), and S(ky,t) = 3 KK (r 2Py ().
R 64’775 s (41)
7(Kp)=(—2) 3 knJO drPy(r)Ky(kjr)Jo(k,r)

Using the inversion formula, we obtain

64m° , (=
+t3 kujo drrPy(r)Ka(kr)Jo(k.r), (39
3 c+iow
Y2Pu(r)= kj*?s(ky Dlo(k
which reduces t¢23] e Pu(r) X _ gfciim | Sk DTo(kyr)
A3 yuot smeco§§
. 64m° (>
ﬂ(km):Tk” Jo drrPM(r)Ko(k”r)Jo(kJ_t) (36) X(k”r)l/Z dk” (42)

Further, if the gradient is applied along the cylinder axis asy js necessary to perform a numerical inversion of the Meijer
well, k. =0, Jo(0)=1 and a further simplification results,  transform, since we only sample on the real line(similar
645 . toa Laplace trans_for)r[25]. R_e_:ference$20] and[24] pro-
n(K)= Tkﬁf drrPM(r)KO(k”r), (37) vide f[ables of the inverse I\/I_euer tran_sforms_ of some knq_vvn
0 functions. We did not investigate the inversion of the Meijer
transform in this paper. Equatid84) can also be expressed
which has the form of a zeroth-order Meijer transfor20] in terms of the Meijer transform.
or K transform[24]. The modified Bessel function kernel
Ko(kr) describes the localization of the dipolar field in this _
geometry and has been described by us previdudy The Imaging
Meijer transform of ordew is defined as The formalism developed above can also be used to de-
scribe the changes observed in NMR images acquired using
the CRAZED sequence, as a function of the applied modu-

lation gradient. Starting frorS(IZm,t)=A( 0) n(Em), we can
use Parseval’s relations to expan(jzm),

9(y)=K(F(x))= J:ux)KV(xy)(xy)”Z dx (39

and its inverse is

7(Km) = ff:d3EA<E+Em>M3<IZ>Mo<IZ> (43)

1 (c+iw
(00=—| " “amnomey = dy, @9

wherec is chosen large enough so that all the poles lie to the _ 3 [T 32 - -
left of the line of integration in the complex plane. Therefore, =(877) | drBay(r)Mo(r), (44)
(K= &7 325012, 1)) (40) :
)= 3 M whereBy,(r) is thez component of the dipolar field in real

space. Therefore, the signal measured in an imaging experi-
and the measured signal in thes —2 case is ment is given by
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S(Km,r) =813 A(0)Byr)Mq(r) (45) (©)

as long as the modulations of the imaging gradients and the
dipolar field-selective gradients are well separated in magni-
tude. The image obtained is therefore a product of a spin-

density imageM o(r) and the dipolar fiel4,(r). Thus it is

the spatial variation of the dipolar field as a function of the r(mm)
applied modulation that explains the changes in the image
contrast with the modulatiofil5]. Signal attenuation due to (M
diffusion and flow in the modulation gradients and in local
susceptibility gradients can also modulate the image contrast.
The dipolar field in Fourier space is given by

By(K)=A(K+Kmn)Mo(K), (46) r (mm) 5
where FIG. 3. (a) Image of phantom 1(b) corresponding spin-density

Patterson function, an@) radial distribution function(d) image of
o phantom 2,(e) corresponding spin-density Patterson function, and
. 1-3(k-2)? (f) radial distribution function.
A(k)= — (47

The k-space dipolar field can therefore be considered to be eadial distribution functions obtained from the image data
product of thek-space spin density and a dipolar “filter” [5]. It is seen that the first minimum of the function occurs at

function A (K). In the special case in which the system under2 distance which is close to the diameter of the nylon string
study is cylindrically symmetricaland appears infinite iz), used in each case as expected, as the filling factor is almost
M(K)=M(k,)8(k,). If, in addition, we now apply the Maximalinthese phantoms.

modulation along the direction, thek-space filter reduces to Tge pﬁ!sﬁ sgqltéence used is shown iln Fig_. 4/.3We tzused
the following form: =—2, which yields a maximum signal a#==/3. The

modulation gradients were applied along #haxis. The first
(nonselective 7 pulse was used to refocus static field inho-
. 1 k§—2kr2n mogeneities and allow the dipolar signal to grgsee Eq.
A(ktkm)=A(k, km)= 2 K2+ K2 (48) (9)]. Crusher gradients were placed along ytexis on either
pom side of therr pulse. The second pulse is slice-selective for
Thus a gradient applied along taelirection (along the cyl-  the imaging sequence. The echo titagis relatively short in
inder axi$ produces a radially varying filter function. This °rder to limit the time that the magnetization evolves under
function varies smoothly from-1/2 for k,<k, to +1 for th_e action o_f a dipolar field thgt is mod_lfled_by the effects of
km>k,. Figure 6 shows the form of the filter for various slice selection. A standard spin-warp imaging sequence was

. . > used for image acquisition. A four steg,¥,-x,-y) phase
values ofky. For strong gradient modulation8q(r) is cycle was applied to the first/2 pulse along with a receiver

directly proportional toMo(r), and the image obtained is phase cycle ofx,-x,x, ) to filter out the unwanted residual,

proportional toMg(r). This property has been used to spa-conventional spin echo, and FID signals. ¥2B28 images

tially map the true spin density or water concentration in thewere obtained with a field of view of 14 mxil4 mm and

human brain at 3 T, without using a calibration phantomgradient modulationsk,, ranging from 0.55 mm! to

[26]. 44 mm L. Four averages were acquired for the first phantom
and a single average for the second phantom.

EXPERIMENTAL RESULTS AND DISCUSSION

-} ® ®
We performed experiments on samples of dimethylsilox- RF ” ” tg/2 I] (tgy + tg2) /2 /\ tgy /2
ane (DMSO) at 298 K on a 11.7 500 MH2 homebuilt
microimaging systeni27], with an actively screened gradi-

ent coil set. The sample was placed in a 12-mm tube which G 25 |
was centered in a 16-mm-diam, 3.5-cm-long cylindrical bird- 3 G
cage RF coil. Two different structural phantoms were used, G HH

both containing sections of nylon string packed into the tube
of DMSO. The diameter of the nylon string in the first phan-
tom was 1.1 mm, while that in the second phantom was 0.7 ]
mm. Figures 8) and 3d) show images of the two phan-
toms, Figs. &) and 3e) show the corresponding spin-
density Patterson functions, and Fig&c)3and 3f) show the FIG. 4. Experimental pulse sequence.
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x 10° (b)
x T T T d

o
o

n
o

Signal intensity (arb. units)

0 10 20 » 30 40
kK (mm™) o
FIG. 5. Integrated signal intensity as a function of the modula- _#H_TD
tion strength for the two experimental phantoms used. The continu-
ous lines are the best fit of E¢41) to the data in each case. FIG. 6. Images of phantom 1, phantom 2, and the filter function
given in Eq.(48), for gradient modulation&k,,=6.1 mni * [(a),
(e), and ()]; kpy=15.4 mm* [(b), (f), and (j)]; kp,=30.8 mm*
The time between the/2 pulse and ther/3 pulse was 1.8 [(c), (9), and(k)]; andky,=41.8 mm * [(d), (h), and(1)].
ms.tg, was set to 62.88 ms, whilg, was set to 30.68 ms.
The duration of the first modulation gradient pulse was 1 ms

and that of the second pulse was 2 ms. Thef the DMSO  increases, it becomes easier to suppress the undesired signal.
was measured to be 242s using an inversion recovery se- Figure 6 shows the results of imaging experiments per-
quence. The pulse repetition time was set t0 7 s. AS gy med on both the phantoms as well as the resulting form of
Se'f"i'gfusz'on of DMSO is relatively slow R=0.73 e fiter in Eq.(49). It is seen that the image intensity and
x10"" m"/s at 298 K[28)), diffusional attenuation is mini- gnaryness change significantly as the modulation is varied,
mal over the time scale of the experiment and can be Igbecoming increasingly sharper and clearer with increasing

norﬁ(]jé integrated signal intensities as a function of thegradient modulation. This is consistent with the further local-

modulation wave vector for the two phantoms are shown in']%atlon of the_ dipolar field at strong grzid|ent mgcfulatlons.
Fig. 5, along with the corresponding simulation results. The . modulellt|on strengthsiihown akg=6.1 mnjl ' k_m
simulations were performed by evaluating E4() as a func-  — +°-4 MM °, kyp=30.8 mm *, andkp,=41.8 mm " Itis

tion of k for the experimentally determined radial distribu- S€€Nn that changes in modulation produced with an axial gra-
tion functions of the two phantoms. As the spatial resolutiondient can significantly change the signal sensitivity to struc-
of experimentally obtained RDFs is limited by the imagetural information in the radial direction.

resolution, we assumed that the radial distribution function

was not changing rapidly between our sampled points and

we used low pass interpolation to resample the function at a CONCLUSIONS

higher frequency. We found an optimal interpolation factor,

such that resampling at a higher frequency did not change |n this paper we have extended the Fourier-based formal-
the integral obtained. The increased resolution was require@m developed earlier to study structural information using
in order to stabilize the evaluation of the Meijer transform, asine long-range liquid dipolar field in NMR. This formalism
the integral in the equation involves a zero multiplied byprovides a powerful framework within which to analyze di-
infinity near the origin. The ev_aluation of the Meijer trans- polar field scattering measurements, and can be applied to
form was then performed on this resampled data set. Alineal, o e structure measurements in both single and multi-

fit was then used to scale the numerical simulations and thﬁhase spin systems, as well as to describe the changes in
experimental data. As can be seen from the figure, there is Sntrast produced in'imaging experiments

significant discrepancy between the data and the simulations
at low modulation strengths. This is the regime where there
is significant overlap between the different terms in the first
bracket of Eq.(10), and hence the analytical form of the
Meijer transform is not valid. In addition, at small
modulation strengths, the phase cycling was unable to We would like to thank Dr. Walter Kockenberger for his
completely suppress the large undesired signal due to theelp with the NMR microscope, and Sarah Gutteridge for
FID and the conventional spin echo. As the modulationhelpful discussions. C.R. would also like to thank Dr.
strength Thomas de Swiet for helpful discussions.
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APPENDIX
We start by writing Eq(33) again,

. 327t (= 2m +e  [1-3codb,| .- -
7(Km) = 3 f PM(r)rer dd)f dw| ———=——|e *m’'
0 0 o

2Irf?
3277 = [1-3cog6,,| .
J Pu(r)rdr dd) g kLT cosii "’)J dw| ——————|e I, (A1)
3 - 2Ir|?
Since
w?coSa+r2sirfa cos ¢+ 2rw cosa Sina CoS¢p
cog0,,= S , (A2)
r<+w
we can express the last integral in E41) as
+o  |w?(1—3 cofa)+r?(1—3 sirfa cos¢)—6rw sina cosa cos _
sz dwj ( )+ ¢) ¢ e kW, (A3)
o 2(r2+W2)5/2
Considering the even and odd properties of the different terms,
I med w?(1—3 coga)+r2(1—3sirfacose) ) + 6rw sina cosa OS¢ inlow)
= w cog kyw sin(kyw
0 2(r2+w?)52 [ 2(r2+w?)52 [
o cogkjw) ) o cogkjw)
=(1-3co¢ f dw————— +3r[1-sirfa(1+cos f dw—————
( Ct’) 0 (r2+W2)3/2 [ Ct’( ¢)] 0 (r2+W2)5/2
o w sin(kjw)
+6ir sina cosa cos¢fo dW(r2+—wZ)5’2' (A4)

The first two terms are Fourier cosine transforms and the third is a Fourier sine transform. These transforms are readily
obtained from tables of integral transforf],

X2m )_(_1)ma—v\/; d2m

N oP+a2) 2] 2T (v+1/2) dy?™

[y'K,(ay)], (A5)

Rea>0,0=<m<Rer+1/2,

(_1)m+1\/; d2m+l
- 2"a"T'(n+1/2) dy?™+1

X2m+l
( [y"Kq(ay)], (AB)

Fs
(X2+ aZ)n+ 1/2

Rea>0,—2=<2m<2n,

whereK , is the modified Bessel function of order Therefore, Eq(A4) becomes

|=(1-3cofa) kiK1(Kjr)+3[1—sirfa(1+coS¢) | =—rm

ar
2rT(3/2) AT 5/2) kfK(kjr)

—6i sina cosa cos¢ [kH 2(kr] (A7)

4rF(5/2) dk‘
=(1- 3co§a) K (kjr) +cosakfK(kjr) —sifa cos gkFK o (kjr) +i sin 2 cospkfK  (kjr), (A8)

where we have useld(3/2)=0.5['(1/2) andl'(5/2)=0.79'(1/2) andl'(1/2)= /. The derivative in Eq(A8) was evaluated
using Ref[23]. If we substitute Eq(A8) into Eq. (A1), it can be seen that the integral owgrcontains the following terms:
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+ oo

2 .
f dpe 'k’ C°S<¢k*</>>=f dd; 2 i3, (—k, e e N=273,(k,r), (A9)
0 0
2 . 2 i . ei¢+ e_i¢
d¢cos¢e*'kﬂc°s(¢k*¢)=f do >, i'3(—k e | = —27i3,(k, r)cosey, (A10)
0 ==
2m . ar _ e2d 404 20
f d¢ cogpe kLT °°S<¢k*¢>=f do >, i'J|(—kir)e"(‘/’k¢)(f) =mdo(k, r)—2mJ,(k, r)cos 2, .
0 0 |=—o
(A11)
Therefore, substituting EqA8) into Eq. (A1) and integrating over,
~ 64> 64
(Km) = 2(KyN) Jo(k, 1)+ —— coszakHJ drrPy(r)Ka(kjr)Jo(k, 1)
327t N
- —smzakH fo drrPy(r)Ka(kyr){mJo(k, 1) —2mJ,(Kk, r)cos 2p}
641> 5[
+ 3 sin 2« cos¢kkuf drrPy(r)Ky(kr)Jda(k,r), (A12)
0
which yields Eq.(34).
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