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NMR imaging and structure measurements using the long-range dipolar field in liquids

Chandrasekhar Ramanathan* and Richard W. Bowtell
Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United King

~Received 5 June 2002; published 1 October 2002!

We extend the Fourier-based formalism previously developed to analyze structural measurements obtained
using the long-range liquid dipolar field in NMR, in the short time regime. It is shown that in the case of a
two-spin system, the signal measured in an average structure measurement is related to the spatial cross-
correlation function of the spin densities of the two components. It is also demonstrated that in the case of
cylindrically symmetrical systems, the measured data are related to the Meijer transform~or K transform! of
the radial distribution function of the spin density. Experiments were performed on structured phantoms
exhibiting cylindrical symmetry over the length scale probed, and were found to be in excellent agreement with
the theory. Finally, it is shown that changes in image contrast with the strength of the modulation gradient can
be expressed in terms of the action of a dipolar ‘‘filter.’’
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INTRODUCTION

The use of NMR methods to obtain structural informati
has been well established since Mansfield and Grannell
showed NMR ‘‘diffraction’’ effects in solids@1# and later
developed its relation to NMR imaging@2#. NMR diffusion
measurements—in systems that restrict free diffusion—h
been used to measure the autocorrelation of the shape
tion of a pore space@3#, and this idea has been extended
NMR diffusive diffraction@4#. Barralet al. have also shown
that the Fourier space data collected in a conventional N
imaging experiment can yield the spatial autocorrelat
function or Patterson function of the spin density of the s
tem being studied@5#. Recently, average structure measu
ments have been obtained by exploiting the long-range d
lar field in liquids.

Long-range dipolar fields in liquids are not averaged
by molecular motions, and give rise to a resultant local fi
that is generally nonzero unless the system is spheric
symmetrical@6#. This field has been ignored in most NM
experiments, but has recently become important with
shift to higher static magnetic fields. Numerous manifes
tions of this field have been observed—including the form
tion of multiple spin echoes in solid@7# and liquid 3He @8#,
and water@9# in a two-pulse spin-echo experiment, dynam
line-shape distortions@10#, and apparent intermolecula
multiple-quantum coherences@11#. The dipolar field is gen-
erally nonlocal, with contributions to the field at each po
coming from all positions in the sample. However, in t
case of spatially modulated magnetization the dipolar fi
experienced by a spin is predominantly determined by
local magnetization located at a distance less than the w
length of the modulation@11#. Since the modulation grating
that is written onto the spins is under the control of t
experimenter, it has been suggested that by manipulating
dipolar field it might be possible to extract structural info
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mation about the sample@12#. This idea has been exploite
in making structural measurements on systems containin
single spin species@13,14#, and has been extended to syste
with two different spin species located in different compa
ments within a sample@11,15–17#.

Robyr and Bowtell showed that in an isotropic samp
the amplitude of the signal measured in the short time reg
as a function of the gradient modulation is related to
Hankel transform of the radial distribution function@18#. In
the present work, we ignore the effects of diffusion, but e
tend the formalism used to cylindrical structures as well
experiments on compartmentalized two-spin systems.

THEORY

Single spin species

Consider the standardn-quantum CRAZED ~COSY-
revamped by asymmetricz-gradients! pulse sequence illus
trated in Fig. 1. In the following analysis, we neglect th
effects of radiation damping, relaxation, and diffusion. In
tially the entire sample magnetization is aligned along
external magnetic fieldB0ẑ. When the magnetization is nu
tated, the dipolar field evolves with the magnetization. Af
a (p/2)y pulse, the magnetization is aligned along thex di-
rection, and evolves under the first gradient pulse
M 1(rW)5M0(rW)eikWm•rW, where ukWmu5gGd, its direction is
specified by the gradient direction, andM 15Mx1 iM y as
usual. After theu pulse, we have

M 1~rW !5M0~rW !Fcos2S u

2DeikWm•rW2sin2S u

2De2 ikWm•rWG ~1!

u-
-

FIG. 1. The CRAZED experiment.
©2002 The American Physical Society01-1
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and

Mz~rW !52M0~rW !
sinu

2
@eikWm•rW1e2 ikWm•rW#. ~2!

After the second gradient pulse,Mz is unchanged, butM 1

becomes

M 1~rW !5M0~rW !Fcos2S u

2Dei (n11)kWm•rW2sin2S u

2Dei (n21)kWm•rWG .
~3!

This magnetization evolves in the dipolar field according
the modified Bloch equations

dMz

dt
52

ig

2
@M 2Bd12M 1Bd2#, ~4!

dM1

dt
52 ig@M 1Bdz2MzBd1#, ~5!

where BW d is the dipolar field due to the spins (Bd15Bdx

1 iBdy ; Bd25Bdx2 iBdy). The dipolar field at a positionrW
due to the magnetization of the sample is given by

BW d~rW !5
m0

4pE d3rW8
123 cos2u rr 8

2urW2rW8u3
@3Mz~rW8!ẑ2MW ~rW8!#.

~6!

The field is nonlocal and depends strongly on the shap
the sample. However, Devilleet al. observed that this equa
tion has the form of a convolution integral and showed t
following a spatial Fourier transformation, the field becom
local in k space@7#,

BW d~kW !5
m0

3
L~ k̂!@3Mz~kW !ẑ2MW ~kW !#, ~7!

whereL( k̂)5P2( k̂• ẑ) is the second-order Legendre polyn
mial of the cosine of the angle betweenk̂ and the static
magnetic field. The componentBW d(kW50W ) is the spatially uni-
form ~dc! component of the magnetic field and is propo
tional to the total magnetization in the sample. Thez com-
ponent of this field can produce small, but observable sh
of the resonance frequency~for water protons at 500 MHz
gm0M0'13 rad/s).

The observed signalS(kWm ,t) is obtained by integrating
the transverse magnetizationM 1(rW) over the entire sample
Defining Mz

S5*2`
` d3rWMz(rW) and MS5*2`

` d3rWM 1(rW), it
can be shown thatdMz

S/dt50 and

dMS

dt
52

igm0

8p3 E2`

`

d3kWL* ~ k̂!Mz* ~kW ,t !M 1~kW ,t !, ~8!

whereL* ( k̂)5L( k̂)5P2( k̂• ẑ) @14#. At short timest after
the second gradient pulse (gBdt!1), the dipolar field only
generates a small perturbation of the magnetization
04120
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Mz* (kW ,t) and M 1(kW ,t) can be replaced in Eq.~8! by their
values att50 yielding a linear growth of the signal with
time,

S~kWm ,t !52
igm0t

8p3 E
2`

`

d3kWL~kW !Mz* ~kW ,0!M 1~kW ,0!. ~9!

Taking the spatial Fourier transforms of Eqs.~2! and~3! and
substituting them into Eq.~9!, we get

S~kWm ,t !5
igm0t sinu

16p3 E
2`

`

d3kWL~ k̂!@M0* ~kW2kWm!

1M0* ~kW1kWm!#Fcos2S u

2D M0~kW2~n11!kWm!

2sin2S u

2D M0~kW2~n21!kWm!G . ~10!

The integral in Eq.~10! depends on the relative magnitud
of the bandwidth (kmax) of M0(kW ) and the strength of the
modulationkWm . If ukWmu is smaller thankmax, the two terms in
the first square brackets will overlap. The dipolar field is n
well localized in this situation. For small values ofn, the
terms in the second square brackets overlap with those in
first, and a nonzero signal can be measured. In the absen
an external gradient modulation (ukWmu50), the measured
signal is proportional to*`

`d3kWL( k̂)uM0(kW )u2, and is deter-
mined by the shape and structure of the sample.

In order to localize the dipolar field and avoid overla
between spectral components, the strength of the app
modulation must be at leastkmax. WhenukWmu is greater than
kmax, the two terms in the first square brackets no long
overlap. This also ensures that each term in the second s
brackets can overlap with at most one term in the first se
brackets. In this case, the integral will reduce to zero unl
n562 or n50 ~note that negative values ofn correspond to
cases in which the direction of the second gradient is
versed with respect to that of the first gradient!. The results
obtained in these three cases are, forn522,

S~kWm ,t !5

igm0t sinu cos2S u

2D
16p3 E

2`

`

d3kWL~kW2kWm!uM0~kW !u2;

~11!

for n50,

S~kWm ,t !5
igm0t sinu

16p3 Fcos2S u

2D E
2`

`

d3kWL~kW1kWm!UM0~kW !U2

2sin2S u

2D E
2`

`

d3kWL~kW2kWm!UM0~kW !U2G ; ~12!

and forn52,
1-2
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S~kWm ,t !52

igm0t sinu sin2S u

2D
16p3

3E
2`

`

d3kWL~kW1kWm!uM0~kW !u2. ~13!

uM0(kW )u2 has been shown to be the Fourier transform of
spatial autocorrelation function or the Patterson funct
PM(rW) of the spin-density function@5#. Thus the NMR signal
measured as a function of the modulation vectorkWm is a
convolution of the Fourier transform of the spin-dens
Patterson function and the dipolar weighting functionL(kW ).

Two spin species

Heteronuclear dipolar field experiments can be analy
by considering the experiment shown in Fig. 2, whereA and
B are the two~different! spins in the sample@15–17#.

The pulses used are now frequency-selective so that
only excite a single spin species. The first twop/2 pulses are
tuned to the resonance of speciesA. The magnetization of
spin speciesA after the secondp/2 RF pulse is

M 1
A ~rW !5 iM 0

A~rW !sin~kWm•rW ! ~14!

and

Mz
A~rW !52M0

A~rW !cos~kWm•rW !. ~15!

The large gradient after the pulse crushes the transverse
netization,M 1

A (rW). We assume that the intervaltm is short
compared to theT1 of speciesA, so that the modulated lon
gitudinal magnetization remains locked unchanged alongẑ.
SpeciesB has not been perturbed by the first part of t
experiment. The thirdp/2 RF pulse is a selective pulse tune
to the resonance of speciesB. After the modulation gradien
pulse, the transverse magnetization is given by

M 1
B ~rW !5M0

B~rW !einkWm•rW. ~16!

The transverse magnetization of theB spins now evolves in
the dipolar field created by the longitudinal magnetization

FIG. 2. The heteronuclear CRAZED experiment.
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theA spins. IfvA2vB@gBd , the only effective term of the
dipolar field is the component alongẑ, given by

Bdz
A ~kW !5

2m0

3
L~ k̂!Mz

A~kW !ẑ. ~17!

The evolution of speciesB follows:

dM1
B ~rW !

dt
52 igBM 1

B ~rW !Bdz
A ~rW !, ~18!

yielding

M 1
B ~rW,t !5M0

B~rW !einkWm•rW exp@2 igBBdz
A ~rW !t#. ~19!

At short times, we can expand the exponential to first or
(e2x'12x), and get@19#

M 1
B ~rW,t !5M0

B~rW !einkWm•rW@12 igBBdz
A ~rW !t#. ~20!

Integrating the magnetization over the entire sample, we
the measured signal

SB~kWm ,t !5E
2`

`

d3rW@M0
B~rW !einkWm•rW

2 igBtM0
B~rW !einkWm•rWBdz

A ~rW !#. ~21!

The first integral reduces to zero under a strong grad
modulation. Considering the simplest case in whichn51,
we apply Parseval’s relations to get

SB~kWm ,t !52
igBt

8p3E2`

`

d3kW @M0
B~kW2kWm!Bdz

A* ~kW !#. ~22!

Substituting the Fourier transform of Eq.~15!,

SB~kWm ,t !'
im0gBt

24p3 E
2`

`

d3kWL~ k̂1 k̂m!M0
B~kW !M0

A* ~kW !,

~23!

where we have again used the property thatL* ( k̂)5L( k̂),
and we have dropped the cross termM0

B(kW2kWm)M0
A(kW

1kWm). Comparing the result above with that obtained in t
single-spin case@Eqs. ~11!–~13!#, it is seen that the signa
obtained in this experiment as a function ofkWm represents the
Fourier transform of the cross correlation between the s
densities of the two components.

Average structure measurements

The results obtained in the above two cases can be ca
the general formS(kWm ,t)5A(u)h(kWm), whereA(u) con-
tains the constants and angular factors andh(kWm) represents
the integral overkW . Parseval’s relation can then be used
evaluateh(kWm),
1-3
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h~kWm!5E
2`

1`

d3kWC~kW !L~kW1kWm! ~24!

5~8p3!E
2`

1`

d3rWP~rW !L~rW !e2 ikWm•rW, ~25!

where

L~rW !5
4p

3

123~ r̂ • ẑ!2

2urWu3
~26!

and whereC(kW ) represents eitheruM0(kW )u2 or M0
B(kW )M0

A* (kW )

depending on the experiment, andP(rW) represents the corre
sponding spatial auto- or cross-correlation function.

Thus, from Eq.~25!, we see that the measured data c
respond to the Fourier transform of the product of the spa
correlation function of the spin density and the weighti
function L(rW), which can be considered to be a filter in re
space. Considering then512 case for a single spin specie

@P(rW)5PM(rW)# as an illustrative example, the measured s
nal is

S~kWm ,t !58p3A~u!E
2`

1`

d3rWPM~rW !L~rW !e2 ikWm•rW. ~27!

Using the Fourier inversion formula, we can obtain t
weighted Patterson function

PM~rW !L~rW !5
1

8p3A~u!
E

2`

1`

d3kWmS~kWm ,t !e1 ikWm•rW.

~28!

In order to obtain the three-dimensional Patterson function
a sample, we need to samplek space in all directions by
repeating the experiment for different modulations and th
apply the Fourier inversion procedure shown above. If
sample being studied has certain structural symmetries,
expressions in Eqs.~27! and~28! can, however, be simplified
further. Note that while the spatial autocorrelation functi
of the spin density of a single spin species is used in
following discussion, it is equally applicable to the spat
cross-correlation function between the two spin species
shown above.

Spherical symmetry

For an isotropic medium, the Patterson functionPM(rW)
depends only on the distance,r. We consider the direction o
kWm to be fixed, and observe the signal as a function of
amplitude. Expanding Eq.~25! in spherical coordinates an
integrating over the angular terms, we obtain

h~kWm!5
64p4

3
L~ k̂!E

0

`PM~r !

r
j 2~kmr !dr, ~29!

where j 2 is a spherical Bessel function. The integration k
nel j 2(kmr ) describes the spatial variation of the dipolar fie
as a function of the modulation strength for the case
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spherical symmetry@11,18#. By expanding the spherica
Bessel function in terms of ordinary Bessel functions of fra
tional order, we can expressS(kWm ,t) in terms of a Hankel
transform of the Patterson function of the spin density

S~kWm ,t !5

iA2p1.5gm0t sinu sin2
u

2

3Akm

L~ k̂!

3E
0

`PM~r !

r 3/2
J2.5~kmr !dr. ~30!

Note thatL( k̂) only depends on the angle between the
rection of the applied external gradient andẑ, and not on its
magnitude. This term is maximal when the gradient is alo
ẑ and zero at the magic angle. From the inversion form
for the Hankel transform@20#, we get

PM~r !

r 5/2
52

3i

A2p1.5gm0t sinu sin2
u

2

S 1

L~ k̂!
D

3E
0

`

S~km ,t !J2.5~kmr !km
3/2 dkm , ~31!

which is the same as the expression obtained in@18#, when
diffusion effects are neglected. The Hankel transform a
arises in other NMR experiments, such as pulsed field gr
ent measurements of spherically symmetric diffusion pro
gators @21#, and in the imaging of spherically symmetr
spin-density distributions@22#.

Cylindrical symmetry

For long, oriented structures it is useful to consider t
problem in cylindrical coordinates, where we assume that
sample extends infinitely along the axis of the cylinder a
that the reduced Patterson function now depends only on
radial coordinater in the cylindrical system. We can evalua
h(kWm) from Eq. ~25! for a given direction ofkWm using a
cylindrical coordinate system aligned with the axis of o
system, where this axis~w! is oriented at an anglea with
respect to the static magnetic field,

h~kWm!5
32p4

3 E
0

`

PM~r !rdr

3E
0

2p

dfE
2`

1`

dwS 123 cos2u rz

2urWu3
D e2 ikWm•rW

~32!

5
32p4

3 E
0

`

PM~r !rdr E
0

2p

dfe2 ik'r cos(fk2f)

3E
2`

1`

dwS 123 cos2u rz

2urWu3 D e2 ik iw, ~33!
1-4



,

NMR IMAGING AND STRUCTURE MEASUREMENTS . . . PHYSICAL REVIEW E 66, 041201 ~2002!
wherek' is the projection of the gradient perpendicular to the axis of the system andki is the projection parallel to the axis
andfk is the angle betweenk' and thex axis of the cylinder. The resulting expression forh(kWm) is ~details of the derivation
are presented in Appendix A!

h~kWm!5
64p5

3
~123 cos2a!ki E

0

`

drPM~r !K1~kir !J0~k'r !1
64p5

3
cos2aki

2E
0

`

drrPM~r !K2~kir !J0~k'r !

2
32p4

3
sin2aki

2E
0

`

drrPM~r !K2~kir !$pJ0~k'r !22pJ2~k'r !cos 2fk%

1
64p5

3
sin 2a cosfkki

2E
0

`

drrPM~r !K1~kir !J1~k'r !, ~34!
on
e

a

l
is

th
re

ijer

wn
jer
d

de-
sing
du-

l
eri-
whereKn(x) is a modified Bessel function. This expressi
simplifies considerably in the following cases. If the cylind
axis is parallel toB0 , a is set to zero in Eq.~34!, and

h~kWm!5~22!
64p5

3
ki E

0

`

drPM~r !K1~kir !J0~k'r !

1
64p5

3
ki

2E
0

`

drrPM~r !K2~kir !J0~k'r !, ~35!

which reduces to@23#

h~kWm!5
64p5

3
ki

2E
0

`

drrPM~r !K0~kir !J0~k't !. ~36!

Further, if the gradient is applied along the cylinder axis
well, k'50, J0(0)51 and a further simplification results,

h~kWm!5
64p5

3
ki

2E
0

`

drrPM~r !K0~kir !, ~37!

which has the form of a zeroth-order Meijer transform@20#
or K transform @24#. The modified Bessel function kerne
K0(kir ) describes the localization of the dipolar field in th
geometry and has been described by us previously@15#. The
Meijer transform of ordern is defined as

g~y!5Kn„f ~x!…5E
0

`

f ~x!Kn~xy!~xy!1/2 dx ~38!

and its inverse is

f ~x!5
1

p i Ec2 i`

c1 i`

g~y!I n~xy!~xy!1/2 dy, ~39!

wherec is chosen large enough so that all the poles lie to
left of the line of integration in the complex plane. Therefo

h~kWm!5
64p5

3
ki

3/2K~r 1/2PM~r !! ~40!

and the measured signal in then522 case is
04120
r
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S~ki ,t !5

i4p2gm0t sinu cos2
u

2

3
ki

3/2K~r 1/2PM~r !!.

~41!

Using the inversion formula, we obtain

r 1/2PM~r !5
3

4p3gm0t sinu cos2
u

2

E
c2 i`

c1 i`

ki
23/2S~ki ,t !I 0~kir !

3~kir !1/2 dki . ~42!

It is necessary to perform a numerical inversion of the Me
transform, since we only sampleki on the real line~similar
to a Laplace transform! @25#. References@20# and @24# pro-
vide tables of the inverse Meijer transforms of some kno
functions. We did not investigate the inversion of the Mei
transform in this paper. Equation~34! can also be expresse
in terms of the Meijer transform.

Imaging

The formalism developed above can also be used to
scribe the changes observed in NMR images acquired u
the CRAZED sequence, as a function of the applied mo
lation gradient. Starting fromS(kWm ,t)5A(u)h(kWm), we can
use Parseval’s relations to expandh(kWm),

h~kWm!5E
2`

1`

d3kWL~kW1kWm!M0* ~kW !M0~kW ! ~43!

5~8p3!E
2`

1`

d3rWBdz~rW !M0~rW !, ~44!

whereBdz(rW) is thez component of the dipolar field in rea
space. Therefore, the signal measured in an imaging exp
ment is given by
1-5
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S~kWm ,rW !58p3A~u!Bdz~rW !M0~rW ! ~45!

as long as the modulations of the imaging gradients and
dipolar field-selective gradients are well separated in ma
tude. The image obtained is therefore a product of a s
density imageM0(rW) and the dipolar fieldBdz(rW). Thus it is
the spatial variation of the dipolar field as a function of t
applied modulation that explains the changes in the im
contrast with the modulation@15#. Signal attenuation due to
diffusion and flow in the modulation gradients and in loc
susceptibility gradients can also modulate the image cont
The dipolar field in Fourier space is given by

Bdz~kW !5L~kW1kWm!M0~kW !, ~46!

where

L~kW !5
123~ k̂• ẑ!2

2
. ~47!

Thek-space dipolar field can therefore be considered to b
product of thek-space spin density and a dipolar ‘‘filter
functionL(kW ). In the special case in which the system und
study is cylindrically symmetrical~and appears infinite inz),
M (kW )5M (kr)d(kz). If, in addition, we now apply the
modulation along thez direction, thek-space filter reduces to
the following form:

L~kW1kWm!5L~kr ,km!5
1

2

kr
222km

2

kr
21km

2
. ~48!

Thus a gradient applied along thez direction~along the cyl-
inder axis! produces a radially varying filter function. Thi
function varies smoothly from21/2 for km!kr to 11 for
km@kr . Figure 6 shows the form of the filter for variou
values of km . For strong gradient modulations,Bdz(rW) is
directly proportional toM0(rW), and the image obtained i
proportional toM0

2(rW). This property has been used to sp
tially map the true spin density or water concentration in
human brain at 3 T, without using a calibration phanto
@26#.

EXPERIMENTAL RESULTS AND DISCUSSION

We performed experiments on samples of dimethylsil
ane ~DMSO! at 298 K on a 11.7 T~500 MHz! homebuilt
microimaging system@27#, with an actively screened grad
ent coil set. The sample was placed in a 12-mm tube wh
was centered in a 16-mm-diam, 3.5-cm-long cylindrical bi
cage RF coil. Two different structural phantoms were us
both containing sections of nylon string packed into the tu
of DMSO. The diameter of the nylon string in the first pha
tom was 1.1 mm, while that in the second phantom was
mm. Figures 3~a! and 3~d! show images of the two phan
toms, Figs. 3~b! and 3~e! show the corresponding spin
density Patterson functions, and Figs. 3~c! and 3~f! show the
04120
e
i-

n-

e

l
st.

a

r

-
e

-

h
-
,

e
-
.7

radial distribution functions obtained from the image da
@5#. It is seen that the first minimum of the function occurs
a distance which is close to the diameter of the nylon str
used in each case as expected, as the filling factor is alm
maximal in these phantoms.

The pulse sequence used is shown in Fig. 4. We usen
522, which yields a maximum signal atu5p/3. The
modulation gradients were applied along thez axis. The first
~nonselective! p pulse was used to refocus static field inh
mogeneities and allow the dipolar signal to grow@see Eq.
~9!#. Crusher gradients were placed along they axis on either
side of thep pulse. The secondp pulse is slice-selective fo
the imaging sequence. The echo timetE2 is relatively short in
order to limit the time that the magnetization evolves und
the action of a dipolar field that is modified by the effects
slice selection. A standard spin-warp imaging sequence
used for image acquisition. A four step (x,y,-x,-y) phase
cycle was applied to the firstp/2 pulse along with a receive
phase cycle of (x,-x,x,-x) to filter out the unwanted residua
conventional spin echo, and FID signals. 1283128 images
were obtained with a field of view of 14 mm314 mm and
gradient modulationskm ranging from 0.55 mm21 to
44 mm21. Four averages were acquired for the first phant
and a single average for the second phantom.

FIG. 3. ~a! Image of phantom 1,~b! corresponding spin-density
Patterson function, and~c! radial distribution function;~d! image of
phantom 2,~e! corresponding spin-density Patterson function, a
~f! radial distribution function.

FIG. 4. Experimental pulse sequence.
1-6
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The time between thep/2 pulse and thep/3 pulse was 1.8
ms. tE1 was set to 62.88 ms, whiletE2 was set to 30.68 ms
The duration of the first modulation gradient pulse was 1
and that of the second pulse was 2 ms. TheT1 of the DMSO
was measured to be 2.42 s using an inversion recovery
quence. The pulse repetition time was set to 7 s. As
self-diffusion of DMSO is relatively slow (D50.73
31029 m2/s at 298 K@28#!, diffusional attenuation is mini-
mal over the time scale of the experiment and can be
nored.

The integrated signal intensities as a function of
modulation wave vector for the two phantoms are shown
Fig. 5, along with the corresponding simulation results. T
simulations were performed by evaluating Eq.~41! as a func-
tion of k for the experimentally determined radial distrib
tion functions of the two phantoms. As the spatial resolut
of experimentally obtained RDFs is limited by the ima
resolution, we assumed that the radial distribution funct
was not changing rapidly between our sampled points
we used low pass interpolation to resample the function
higher frequency. We found an optimal interpolation fact
such that resampling at a higher frequency did not cha
the integral obtained. The increased resolution was requ
in order to stabilize the evaluation of the Meijer transform,
the integral in the equation involves a zero multiplied
infinity near the origin. The evaluation of the Meijer tran
form was then performed on this resampled data set. A lin
fit was then used to scale the numerical simulations and
experimental data. As can be seen from the figure, there
significant discrepancy between the data and the simulat
at low modulation strengths. This is the regime where th
is significant overlap between the different terms in the fi
bracket of Eq.~10!, and hence the analytical form of th
Meijer transform is not valid. In addition, at sma
modulation strengths, the phase cycling was unable
completely suppress the large undesired signal due to
FID and the conventional spin echo. As the modulat
strength

FIG. 5. Integrated signal intensity as a function of the modu
tion strength for the two experimental phantoms used. The cont
ous lines are the best fit of Eq.~41! to the data in each case.
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increases, it becomes easier to suppress the undesired s
Figure 6 shows the results of imaging experiments p

formed on both the phantoms as well as the resulting form
the filter in Eq.~48!. It is seen that the image intensity an
sharpness change significantly as the modulation is var
becoming increasingly sharper and clearer with increas
gradient modulation. This is consistent with the further loc
ization of the dipolar field at strong gradient modulation
The modulation strengths shown arekm56.1 mm21, km

515.4 mm21, km530.8 mm21, andkm541.8 mm21. It is
seen that changes in modulation produced with an axial
dient can significantly change the signal sensitivity to str
tural information in the radial direction.

CONCLUSIONS

In this paper we have extended the Fourier-based form
ism developed earlier to study structural information us
the long-range liquid dipolar field in NMR. This formalism
provides a powerful framework within which to analyze d
polar field scattering measurements, and can be applie
average structure measurements in both single and m
phase spin systems, as well as to describe the change
contrast produced in imaging experiments.
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FIG. 6. Images of phantom 1, phantom 2, and the filter funct
given in Eq. ~48!, for gradient modulationskm56.1 mm21 @~a!,
~e!, and ~i!#; km515.4 mm21 @~b!, ~f!, and ~j!#; km530.8 mm21

@~c!, ~g!, and~k!#; andkm541.8 mm21 @~d!, ~h!, and~l!#.
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APPENDIX

We start by writing Eq.~33! again,

h~kWm!5
32p4

3 E
0

`

PM~r !rdr E
0

2p

dfE
2`

1`

dwS 123 cos2u rz

2urWu3 D e2 ikWm•rW

5
32p4

3 E
0

`

PM~r !rdr E
0

2p

df e2 ik'r cos(fk2f)E
2`

1`

dwS 123 cos2u rz

2urWu3
D e2 ik iw. ~A1!

Since

cos2u rz5
w2cos2a1r 2sin2a cos2f12rw cosa sina cosf

r 21w2
, ~A2!

we can express the last integral in Eq.~A1! as

I 5E
2`

1`

dwFw2~123 cos2a!1r 2~123 sin2a cos2f!26rw sina cosa cosf

2~r 21w2!5/2 Ge2 ik iw. ~A3!

Considering the even and odd properties of the different terms,

I 52E
0

`

dwFw2~123 cos2a!1r 2~123 sin2a cos2f!

2~r 21w2!5/2
cos~kiw!1 i

6rw sina cosa cosf

2~r 21w2!5/2
sin~kiw!G

5~123 cos2a!E
0

`

dw
cos~kiw!

~r 21w2!3/2
13r 2@12sin2a~11cos2f!#E

0

`

dw
cos~kiw!

~r 21w2!5/2

16ir sina cosa cosfE
0

`

dw
w sin~kiw!

~r 21w2!5/2
. ~A4!

The first two terms are Fourier cosine transforms and the third is a Fourier sine transform. These transforms are
obtained from tables of integral transforms@24#,

FCS x2m

~x21a2!n11/2D 5
~21!ma2nAp

2nG~n11/2!

d2m

dy2m
@ynKn~ay!#, ~A5!

Rea.0,0<m,Ren11/2,

FSS x2m11

~x21a2!n11/2D 5
~21!m11Ap

2nanG~n11/2!

d2m11

dy2m11
@ynKn~ay!#, ~A6!

Rea.0,22<2m,2n,

whereKn is the modified Bessel function of ordern. Therefore, Eq.~A4! becomes

I 5~123 cos2a!
Ap

2rG~3/2!
kiK1~kir !13@12sin2a~11cos2f!#

Ap

4G~5/2!
ki

2K2~kir !

26i sina cosa cosf
Ap

4rG~5/2!

d

dki
@ki

2K2~kir !# ~A7!

5~123 cos2a!
ki

r
K1~kir !1cos2aki

2K2~kir !2sin2a cos2fki
2K2~kir !1 i sin 2a cosfki

2K1~kir !, ~A8!

where we have usedG(3/2)50.5G(1/2) andG(5/2)50.75G(1/2) andG(1/2)5Ap. The derivative in Eq.~A8! was evaluated
using Ref.@23#. If we substitute Eq.~A8! into Eq. ~A1!, it can be seen that the integral overf contains the following terms
041201-8
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E
0

2p

dfe2 ik'r cos(fk2f)5E
0

2p

df (
l 52`

1`

i lJl~2k'r !eil (fk2f)52pJ0~k'r !, ~A9!

E
0

2p

df cosfe2 ik'r cos(fk2f)5E
0

2p

df (
l 52`

1`

i lJl~2k'r !eil (fk2f)S eif1e2 if

2 D522p iJ1~k'r !cosfk , ~A10!

E
0

2p

df cos2fe2 ik'r cos(fk2f)5E
0

2p

df (
l 52`

1`

i lJl~2k'r !eil (fk2f)S e2if121e22if

4 D5pJ0~k'r !22pJ2~k'r !cos 2fk .

~A11!

Therefore, substituting Eq.~A8! into Eq. ~A1! and integrating overf,

h~kWm!5
64p5

3
~123 cos2a!ki E

0

`

drPM~r !K1~kir !J0~k'r !1
64p5

3
cos2aki

2E
0

`

drrPM~r !K2~kir !J0~k'r !

2
32p4

3
sin2aki

2E
0

`

drrPM~r !K2~kir !$pJ0~k'r !22pJ2~k'r !cos 2fk%

1
64p5

3
sin 2a cosfkki

2E
0

`

drrPM~r !K1~kir !J1~k'r !, ~A12!

which yields Eq.~34!.
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1

8p3E
2`

`

d3kWFM0
B~kW2nkWm!(

l50

`
ilgB

l tl

l!
~Bdz

Al!* G,
~A13!
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Bdz
Al~kW!5@Bdz

A ~kW!!Bdz
A ~kW!!•••!Bdz
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