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Anomalous diffusion in nonlinear oscillators with multiplicative noise

Kirone Mallick*
Service de Physique The´orique, Centre d’E´ tudes de Saclay, 91191 Gif-sur-Yvette Cedex, France

Philippe Marcq†
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The time-asymptotic behavior of undamped, nonlinear oscillators with a random frequency is investigated
analytically and numerically. We find that averaged quantities of physical interest such as the oscillator’s
mechanical energy, root-mean-square position, and velocity grow algebraically with time. The scaling expo-
nents and associated generalized diffusion constants are calculated when the oscillator’s potential energy grows
as a power of its position:U(x);x2n for uxu→`. Correlated noise yields anomalous diffusion exponents equal
to half the value found for white noise.
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I. INTRODUCTION

Randomness in the external conditions entails the par
eters of a dynamical system to fluctuate. The extent of th
fluctuations is independent of any thermodynamic charac
istic of the system in contrast to intrinsic fluctuations t
amplitude of which is proportional to the equilibrium tem
perature, in accordance with the fluctuation-dissipation th
rem @1,2#. Usually, external randomness appears as a m
plicative noise in the dynamical equations. The interplay
noise and nonlinearity in a system far from equilibrium r
sults in some unusual phenomena@3#. In fact, the presence o
noise dramatically alters the properties of a nonlinear
namical system both qualitatively and quantitatively~for a
recent review, see@4#!. For example, it was recently show
that in a spatially extended system, a multiplicative noi
white in space and time, generates an ordered symme
breaking state through a nonequilibrium phase transit
whereas no such transition exists in the absence of n
@5,6#. Noise can also induce spatial patterns@7,8# or improve
the performance of a nonlinear device through stocha
resonance@9#. Furthermore, even if some important qualit
tive features of a deterministic system survive to exter
noise, their quantitative characteristics may change: a st
fixed point may become unstable@10#, a bifurcation may be
delayed ~noise-induced stabilization! @11,12#, and scale-
invariant properties which manifest themselves as po
laws may be altered with the appearance of nonclassical s
ing exponents@13#.

The discovery of Brownian motors that are able to rect
random fluctuations into a directed motion~noise-induced
transport! has triggered renewed interest in the study
simple one-dimensional mechanical models of particles
potential with random parameters@14#. It is well known that
a linear oscillator subjected to parametric noise can be
stable even if damping is taken into account@10,15#. This

*Electronic address: mallick@spht.saclay.cea.fr
†Electronic address: marcq@irphe.univ-mrs.fr
1063-651X/2002/66~4!/041113~14!/$20.00 66 0411
-
se
r-

o-
ti-
f
-

-

,
ry-
n,
se

ic

l
le

r
al-

f
a

n-

noise-induced energetic instability has been observed in
verse experimental contexts such as electronic oscilla
@16,17#, nematic liquid crystals@18#, and surface waves~Far-
aday instability! @19#. In engineering fields, this instability
plays a crucial role in the study of the dynamic response
flexible structures to random environmental loading such
the wave-induced motion of offshore structures or the vib
tion of tall buildings in a turbulent wind@20#. The presence
of nonlinear friction tends to limit the oscillation amplitude
the pendulum with a randomly vibrating suspension axis a
undergoing nonlinear friction, known as the van der Pol
cillator, has been studied in the small-noise limit using p
turbative expansions@16,21#.

In the present work, we consider the motion of an u
damped nonlinear oscillator trapped in a general confin
potential and submitted to parametric random fluctuatio
Because there is no dissipation, the energy of the sys
increases with time and we shall show that the position,
momentum, and the energy grow as power laws of time w
scaling exponents that depend on the behavior of the con
ing potential at infinity@22#. A key feature of our method is
to use the integrability properties of the associated determ
istic nonlinear oscillator in order to derive exact stochas
equations in action-angle variables. We then use the ave
ing technique of classical mechanics@23#, together with a
reduction procedure@24,25#, to calculate exactly the anoma
lous scaling exponents, irrespective of the amplitude of
noise. Some of our results were derived earlier, in the p
ticular case of a cubic nonlinearity using an energy-envel
equation@26#. Our method enables us to derive the numeri
prefactors appearing in the scaling laws~generalized diffu-
sion constants!, and our analytical predictions compare ve
satisfactorily with the numerical results. In the case of no
correlated in time, the anomalous diffusion exponents
modified: they can be obtained by dimensional analysis
guments, and the values thus found also agree with num
cal results. Throughout this work, crossover phenomena
tween different scaling regimes are emphasized.

This article is organized as follows. In Sec. II, we rec
that the energy of a linear oscillator with multiplicative noi
©2002 The American Physical Society13-1
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grows exponentially with time and that this growth may
characterized by a Lyapunov exponent. In Sec. III, we c
sider a particle in an arbitrary confining potential that gro
as a polynomial at large distances. Our technique allows
to study precisely the long-time behavior of the system. A
particular case, we analyze the classical Duffing oscillato
the presence of parametric, Gaussian white noise. In Sec
we discuss the case of colored noise, where the presence
new time scale~the correlation time! leads to a crossove
from the white noise regime to another scaling regime. O
conclusions are presented in Sec. V. In Appendix A, the n
linear oscillator in the presence of both additive and mu
plicative noise is briefly studied: we show that at long tim
the effect of additive noise is irrelevant. Appendix B is d
voted to numerical methods.

II. LINEAR OSCILLATOR WITH PARAMETRIC NOISE

In this section we review known results for an undamp
linear oscillator submitted to parametric noise—a gene
and widely studied model—in order to understand the role
external multiplicative noise@3,10,16#. The dynamical equa
tion for such a system is

d2

dt2
x~ t !1„v21j~ t !…x~ t !50, ~1!

wherex(t) represents the position of the oscillator at timt
andv is its frequency. The random noisej(t) is a Gaussian
white noise of zero mean value and of amplitudeD:

^j~ t !&50,

^j~ t !j~ t8!&5Dd~ t2t8!. ~2!

The physical interpretation of Eq.~1! is that the frequency
of the oscillator is not constant in time but fluctuates arou
its mean valuev because of randomness in the external c
ditions ~external noise!. When these fluctuations are dete
ministic and periodic in time, Eq.~1! is a Mathieu equation
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which has been extensively studied@23#. Here, we are inter-
ested in the case where these fluctuations are random wit
deterministic part. The origin,x50 anddx/dt50, is an un-
stable stationary solution of Eq.~1!. As shown in Ref.@10#,
this instability can be studied from the dynamical evoluti
of the probability distribution function~PDF! P(x,v,t) of x

and v ~with v5 ẋ5dx/dt). This PDF obeys the Fokker
Planck equation@1,2# associated with Eq.~1!,

]P

]t
52v

]P

]x
1v2x

]P

]v
1

D
2

]2

]v2
~x2P!, ~3!

where Eq.~1! is understood according to Stratonovich rule
This Fokker-Planck equation leads to a closed system

ordinary differential equations that couple then11 moments
of ordern, i.e., moments of the typêxn2kvk&, wheren and
k are positive integers and 0<k<n:

d

dt
^xn2kvk&5~n2k!^xn2k21vk11&2v2k^xn2k11vk21&

1
D
2

k~k21!^xn2k12vk22&. ~4!

The divergence of the moments with time results from
existence of at least one positive eigenvalue of the lin
system~4!. In particular, the mean value of the mechanic
energyE of the system~i.e., the sum of its kinetic and po
tential energies! grows exponentially with time,

^E&5 1
2 ^v2&1 1

2 v2^x2&}emt, ~5!

where the growth ratem is the positive real root of the equa
tion,

m314v2m52D. ~6!

It has also been proved that the quenched average o
energyE grows linearly with time, hence the Lyapunov e
ponentL, defined as
od
FIG. 1. Linear oscillator with multiplicative noise: Eq.~1! is integrated numerically forD51 with a time stepdt51023. Ensemble
averages are computed over 104 realizations. We plot the average^ ln E(t)& and the ratiô ln E(t)&/t ~inset! vs time t. ~a! v51, L(v51)
5 limt→`^ ln E(t)&/t50.219(3); ~b! degenerate casev50, L(v50).0.580(5). Both estimates of the Lyapunov exponent are in go
agreement with the theoretical prediction@27,28#.
3-2
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ANOMALOUS DIFFUSION IN NONLINEAR . . . PHYSICAL REVIEW E 66, 041113 ~2002!
L5 lim
t→`

1

t
^ logE&, ~7!

is finite and strictly positive@27,28#. The positivity of the
Lyapunov exponent implies the instability of all moments
long times. Note that the growth ratem, defined in Eq.~5!, is
larger than the Lyapunov exponent because of the conve
inequality, loĝE&>^logE&.

In Fig. 1~a!, we present the numerical solution of Eq.~1!
averaged over a large number of realizations of the no
where the pulsation isv51. The algorithm used to solv
this stochastic differential equation with multiplicative noi
is inspired by@29# and explained in Appendix B. A numerica
estimate of the Lyapunov exponent, given in Fig. 1~a!, agrees
very well with the analytic expression of Refs.@27,28#. The
usual statistical equipartition of the total energy between
netic and potential contributions is satisfied:^E&5v2^x2&
5^v2&.

In Fig. 1~b!, we show the same quantities for the dege
erate linear oscillator obtained by takingv equal to 0. This
degenerate case exhibits the same behavior as the ge
case and the Lyapunov exponent can be calculated by ta
thev→0 limit in the formulas of Refs.@27,28#. We conclude
that the instability triggered by the noise is the domina
effect and that the presence of the linear restoring for
2v2x is irrelevant.

Hence, in order to avoid an exponential increase of
energy and the amplitude of the oscillator, it is necessar
go beyond the linear approximation and consider the ef
of nonlinear restoring forces@30#.

III. GENERAL NONLINEAR OSCILLATOR
WITH PARAMETRIC NOISE

We now consider the case of a particle trapped in a c
fining potentialU(x) and subject to an external noise. A
before, the potential is supposed to be harmonic for sm
oscillation amplitudes: whenuxu→0,

U; 1
2 v2x2. ~8!

For the potential to be confining, we must haveU→1`
whenuxu→`. We restrict our analysis to the case whereU is
a polynomial function ofx, even inx, in order to respect the
x→2x symmetry. Hence, whenuxu→`,

U;
1

2n
lx2n with n>2. ~9!

The dynamics of this mechanical system is given by

d2

dt2
x~ t !1„v21j~ t !…x~ t !1lx~ t !2n2150, ~10!

wherej(t) is the Gaussian white noise of Eq.~2!.
We shall prove that the nonlinear term is relevant a

prevents the average amplitude from growing exponentia
Instead of an exponential behavior, the average energy o
oscillator, as well as the variances of its position and vel
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ity, exhibit a power law behavior with time. We shall calc
late exactly the associated scaling exponents.

A. Degenerate nonlinear oscillator with parametric noise

As before, we expect the amplitude of the oscillator
grow without bounds at large times. The linear part of t
restoring force2v2x is negligible in comparison to the non
linear term when the amplitude of the oscillator is large.
order to study the long-time behavior of the oscillator, w
therefore simplify Eq.~10! to that of a degenerate nonlinea
oscillator:

d2

dt2
x~ t !1j~ t !x~ t !1x~ t !2n2150. ~11!

The coefficient of the nonlinear term is set equal to unity
rescaling the variablex(t) to x(t)l1/(2n22).

First we study the deterministic part of Eq.~11! and shall
add the noise term afterwards@20#. In one dimension, the
deterministic nonlinear oscillator is integrable because
energyE, defined as

E5
1

2
ẋ21

1

2n
x2n, ~12!

is a conserved quantity. The exact solution of the mechan
system,ẍ1x2n2150, for a fixed value ofE is given by

x5E1/2nSn@~2nE!(n21)/2nt#, ~13!

ẋ5~2n!(n21)/2nE1/2Sn8@~2nE!(n21)/2nt#. ~14!

The functionSn is defined as the inverse function of an h
perelliptic integral:

Sn~X!5Y↔X5AnE
0

Y/(2n)
1/2n du

A12u2n

5
An

~2n!1/2n
E

0

Y du

A12
u2n

2n

. ~15!

From this definition, we find a relation betweenSn and its
derivativeSn8 ,

Sn8~X!5
~2n!1/2n

An
S 12

@Sn~X!#2n

2n D 1/2

. ~16!

From Eqs.~13! and~14!, we define the action-angle var
ables of the nonlinear oscillator@23,33#. The action variable
I corresponds to the area under a constant energy curv
phase space:
3-3
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I 54E
0

(2nE)1/2nA2E2
x2n

n
dx

54~2n11n!1/2nE(n11)/2nE
0

1
A12u2ndu}E(n11)/2n.

~17!

The angle variablef, canonically conjugate to the actionI,
is equal tov(E)t ~but for an unimportant additive constant!,
wherev(E) is the frequency corresponding to the energyE:

v~E!5~2nE!(n21)/2n. ~18!

Hence, for the free system~without noise! the second-orde
dynamical equationẍ1x2n2150 is equivalent to the follow-
ing two first-order equations, the first one representing
ergy conservation:

İ 5Ė50,

ḟ5v~E!5~2nE!(n21)/2n. ~19!

The presence of external noise spoils the integrability
the dynamical system~11! and causesE to grow with time by
continuously injecting energy into the system. From E
~13! and ~14!, the phase is now identified as

f5S n
21S x

E1/2nD 5AnE
0

x/[(2nE)1/2n] du

A12u2n
. ~20!

The angle variablef is well defined modulo the period 4Kn
of the functionSn , where

Kn5AnE
0

1 du

A12u2n
. ~21!

In terms of the energy-angle coordinates (E,f), the original
variables (x,ẋ) read as follows:

x5E1/2nSn~f!, ~22!

ẋ5~2n!(n21)/2nE1/2Sn8~f!. ~23!

We now take into account the external noise and rew
the system~19! in (E,f) coordinates. The stochastic evol
tion equation for the energy is given by

Ė5xẋj~ t !5~2n!(n21)/2nE(n11)/2nSn~f!Sn8~f!j~ t !.
~24!

Using Eqs.~23! and~24!, we obtain the stochastic evolutio
of the phase variable:

ḟ5~2nE!(n21)/2n2
1

~2n!1/n

Sn~f!2

~2nE!(n21)/2n
j~ t !. ~25!

With the help of the auxiliary variableV, defined as

V5~2n!(n11)/2nE(n21)/2n, ~26!
04111
-

f
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e

we derive a compact form for the two stochastic evoluti
Eqs.~24! and ~25!:

V̇5~n21!Sn~f!Sn8~f!j~ t !, ~27!

ḟ5
V

~2n!1/n
2

Sn~f!2

V
j~ t !. ~28!

We emphasize that the coupled equations~27! and ~28! are
mathematically equivalent to the initial system and ha
been derived without any approximation. Moreover, the
ture of the parametric perturbation has played no role in
derivation: the functionj(t) can be a deterministic or a sto
chastic function with arbitrary statistical properties.

We now perform a precise analysis of the long-time b
havior of the nonlinear oscillator driven by a multiplicativ
Gaussian white noise. From an heuristic point of view,
observe from Eq.~27! that V undergoes a diffusion proces
and should scale typically ast1/2. We also notice from Eq.
~28! that, asV grows, the phasef varies more and more
rapidly with time. Hence, the phasef is a fast variable and it
is natural to average the dynamics over its rapid variatio
This averaging process leads to some remarkable and ge
identities between different physical quantitites. Thus,
obtain the average ofẋ2 from Eq. ~23!:

^ẋ2&5~2n!(n21)/nSn8~f! 2̄^E&52

E
0

1

duA12u2n

E
0

1 du

A12u2n

^E&.

~29!

The last equality is derived by writingu5Sn(f), and using
Eqs. ~16! and ~21!. Moreover, the following identity is true

~as can be shown by integrating*0
11A12u2ndu by parts!:

E
0

1

duA12u2n5nE
0

1

du
u2n

A12u2n

52nE
0

1

duA12u2n1nE
0

1 du

A12u2n
.

~30!

Substituting this identity into Eq.~29! leads to

^E&5
n11

2n
^ẋ2&. ~31!

From the definition~12! of the energy, we derive anothe
statistical equality:

^ẋ2&5^x2n&. ~32!

We emphasize that these generalized equipartition relat
are ‘‘universal’’ in the sense that they are independent of
form of the noise we consider. In particular, identities~31!
and ~32! are valid for multiplicative as well as for additiv
3-4
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noise~see Appendix A!. The only hypothesis is that the prob
ability distribution functionPt(V,f) becomes uniform inf
over the interval@0,4Kn# when t→`. We observe from the
numerical simulations presented in Fig. 2~c! that this condi-
tion is very well satisfied.

The same averaging procedure allows us to deriv
closed equation for the stochastic evolution of the slow v
ableV. We start by writing the Fokker-Planck equation go
erning the evolution of the PDFPt(V,f) associated with the
system~27!,~28!. Since the noise term appears as a multip
cative factor, one must be cautious about the convention u
to define stochastic calculus. Here, as well as in the follo
ing, we shall use Stratonovich rules because they are
tained naturally when white noise is considered as a limi
colored noise with vanishing correlation time@1,2#. The
Fokker-Planck equation corresponding to Eqs.~27! and~28!
reads

] tP52
V

~2n!1/n
]fP1

D
2 F]fS g~f!

V
]f

g~f!

V
PD

2]fS g~f!

V
]V f ~f!PD2]VS f ~f!]f

g~f!

V
PD

1]V@ f ~f!]V f ~f!P# D , ~33!

where we have defined

f ~f!5~n21!Sn~f!Sn8~f! and g~f!5Sn~f!2.
~34!

The Fokker-Planck equation~33! written in the variables
(V,f) is exact because we study the case of a Gaus
white noise. In order to pursue our calculations, we assu
that Pt(V,f) becomes independent off when t→`, i.e.,
that the probability measure forf is uniform over the inter-
val @0,4Kn#. We now average the Fokker-Planck equati
~33! over the angular variable. We shall use the fact that
average of the derivative of any function is zero:

]f~ !̄50. ~35!

This implies that

]f@g~f!]fg~f!#50 and f ~f !̄50

because f ~f!5
n21

2
]fg~f!. ~36!

Using these properties and, in particular, the last identity
~36!, we derive the phase-averaged Fokker-Planck equa

] t P̃5
MnD

2
S ]V

2 P̃2
2

n21
]V

P̃

V
D , ~37!

whereP̃t(V) is now a function ofV and t only, and where
Mn is given by
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Mn5
~n21!2

n
~2n!2/n

E
0

1

du u2A12u2n

E
0

1 du

A12u2n

5
~n21!2

n11
~2n!2/n

GS 3

2nD
GS 1

2nD
GS 3n11

2n D
GS 3n13

2n D , ~38!

G( ) being the Euler gamma function@31#. The effective
Langevin dynamics for the variableV is thus

V̇5
MnD
n21

1

V
1Jn~ t !, ~39!

where the effective Gaussian white noiseJn(t) satisfies the
relation

^Jn~ t !Jn~ t8!&5MnDd~ t2t8!. ~40!

The averaged distribution functionP̃t(V) can be calcu-
lated because Eq.~37! is exactly solvable due to its invari
ance under rescalingst→l2t, V→lV, l being an arbi-
trary real number~this invariance is the same as that of t
heat equation!. Equation ~37! is solved by using the self
similar ansatz

P̃t~V!5
1

At
PS V

At
D .

The PDF ofV is found to be

P̃t~V!5
1

GS n11

2~n21! D
V2/(n21)

~2MnDt !(n11)/2(n21)

3expH 2
V2

2MnDtJ , ~41!

from which we obtain the PDF of the energy

P̃t~E!5
1

GS n11

2~n21! D
n21

nE

3S ~2n!(n11)/nE(n21)/n

2MnDt D (n11)/[2(n21)]

3expH 2
~2n!(n11)/nE(n21)/n

2MnDt J . ~42!

The long-time behavior of the amplitude, velocity, an
energy of the general nonlinear oscillator can now be
rived. Using the equipartition identity~31! and Eq.~42!, we
obtain
3-5
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FIG. 2. General nonlinear oscillator: Eq.~11! is integrated numerically forD51 with a time stepdt, and averaged over 104 realizations
for n52 (2n2153), dt5531024; n53 (2n2155), dt5531024; n54 (2n2157), dt51024. ~a! Average energŷ E(t)& vs
time t. ~b! The limit limt→`^E(t)&/tan, an5n/(n21) yields the following estimates of the diffusion constantsDE

(n) : DE
(2)

50.031(1), DE
(3)50.097(3), DE

(4)50.130(5). These are in excellent agreement with the predictions of Eqs.~48!–~50!. ~c! The measured

equipartition ratiô E(t)&/^v(t)2& is close to the theoretical value (n11)/(2n) given in Eq.~31!: 3
4 for n52; 2

3 for n53; 5
8 for n54.
3n11 1 1 2

a-
^E&5
1

~2n!~n11!/~n21!

GS 2n22D
GS n11

2n22D ~2MnDt !n/(n21)

}tn/(n21), ~43!

^ẋ2&5
2n

n11
^E&}tn/(n21). ~44!

Using Eq.~38!, we find that

S n
2~f!5

1

Kn
E

0

KnS n
2~f!df5~2n!1/n

E
0

1 u2 du

A12u2n

E
0

1 du

A12u2n

5
n13

~2n!1/n~n21!2
Mn , ~45!

where we made the change of variablesu5Sn(f), and used
the following identity~obtained by integrating by parts!:
04111
E
0

u2A12u2n du5
n

n13E0

u du

A12u2n
. ~46!

Finally, we deduce from Eqs.~13!, ~42!, and~45!

^x2&5S n
2~f!^E1/n&

5
2

n21

Mn

~2n!1/n

GS 3n11

2n22D
GS n11

2n22D S 2MnDt

~2n!(n11)/nD 1/(n21)

}t1/(n21). ~47!

WhenD51, the analytical results for the nonlinear oscill
tors with cubic x3 (n52), quintic x5 (n53), and heptic
nonlinearityx7 (n54) are as follows:

for n52, ^E&50.031t2, ^ẋ2&50.042t2,

^x2&50.125t; ~48!

for n53, ^E&50.097t3/2, ^ ẋ2&50.145t3/2,
3-6
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^x2&50.290t1/2; ~49!

for n54, ^E&50.130t4/3, ^ẋ2&50.208t4/3,

^x2&50.347t1/3. ~50!

The cubic oscillator (n53) will be discussed in more deta
in Sec. III B. Formulas~43!, ~44!, and ~47! were verified
numerically. The scaling exponents and the prefactors gi
in Eqs. ~48!, ~49!, and ~50! are in excellent agreement wit
the numerical values, as shown in Fig. 2.

In conclusion, we have derived the following scaling r
lations:

E;tn/(n21),

x;t1/[2(n21)],

ẋ;tn/[2(n21)]. ~51!

In particular, it should be noted thatx undergoes an anoma
lous diffusion with time with exponent 1/(2n22). If we
maken→1 formally, this exponent diverges to infinity: thi
is consistent with the exponential growth of the linear os
lator ~see Sec. II!.

We end this section by considering the case of a gen
confining potential energyU neither necessarily polynomia
in x nor even inx. The only requirement is thatU→1`

when uxu→`. We discuss the qualitative behavior ofE, ẋ,
andx at long times from elementary scaling consideratio
Suppose first thatU;uxur for large values ofuxu, r being an
arbitrary real number.

~i! If r .2, then balance between kinetic and poten
energies leads toE; ẋ2;xr ; thus, the time evolution of the
energy is given byĖ;xẋj;E[(1/r )2(1/2)]j. From the scaling
relationsĖ;E/t andj;t21/2, we conclude that

E;t r /(r 22), x;t1/(r 22), ẋ;t r /[2(r 22)].

This qualitative argument can be made rigorous by gene
izing the results obtained above to noninteger values ofr.

~ii ! If r<2, then the potentialU is negligible with respect
to the multiplicative noise term, and we are back to the c
of the degenerate linear oscillator. Therefore,E, ẋ, and x
grow exponentially with time.

If the potential grows exponentially, i.e.,U;exb
, b being

a positive real number, then similar considerations lead
E;t and ẋ;t1/2 ~disregarding logarithmic corrections!. We
then conjecture that the amplitudex diffuses in a logarithmi-
cally slow manner:x;(ln t)1/b.

B. The degenerate cubic oscillator

In this section, we study the particular case of a cu
nonlinearity,

d2

dt2
x~ t !1j~ t !x~ t !1x~ t !350. ~52!
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The results obtained in Sec. III A adopt simpler expressio
in terms of the classical Jacobi elliptic functions sn, cn, a
dn @31,32#.

The exact solution of the deterministic version of E
~52!, ẍ1x350, is

x5E1/4

snS ~4E!1/4t;
1

A2
D

dnS ~4E!1/4t;
1

A2
D , ~53!

ẋ5~2E!1/2

cnS ~4E!1/4t;
1

A2
D

dn2S ~4E!1/4t;
1

A2
D , ~54!

for a fixed value of the energyE, defined as

E5 1
2 ẋ21 1

4 x4. ~55!

The quarter of the period of the elliptic functions sn, cn, a
dn that appear in Eqs.~53! and ~54! is given by

K25KS 1

A2
D 5A2E

0

1 du

A12u4
.1.854. ~56!

When the noise term is taken into account, the energ
not conserved. Inverting the relation~53!, we obtain the defi-
nition of the phase variable:

f5sd21S x

E1/4
,

1

A2
D , ~57!

where we have introduced the function sd5sn/dn. The sto-
chastic evolution of the variablesE andf becomes

Ė5xẋj~ t !5A2E3/4
sn~f;1/A2! cn~f;1/A2!

dn3~f;1/A2!
j~ t !,

~58!

ḟ5~4E!1/42
sd2~f;1/A2!

2A2E1/4
j~ t !. ~59!

Introducing the auxiliary variableV52A2E1/4, the Eqs.~58!
and ~59! can be written in the simpler form

V̇5
sn~f!cn~f!

dn3~f!
j~ t !, ~60!

ḟ5
V

2
2

sd2~f!

V
j~ t !, ~61!

where the elliptic modulus 1/A2 common to all the elliptic
functions has been omitted.
3-7
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FIG. 3. Cubic oscillator.~a! Skewness factors of the positionx(t) ~dashed line! and velocityv(t) ~solid line!. ~b! Flatness factors of the
positionx(t) ~dashed line! and velocityv(t) ~solid line!. Numerical data is obtained from the same runs as in Fig. 2.
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The averaging process, with respect to the fast varia
generates an effective Langevin dynamics for the slow v
ableV(t). Starting from the Fokker-Planck equation for th
total PDF,Pt(V,f), and averaging overf leads to the fol-
lowing evolution equation for the averaged probability d
tribution:

] t P̃5
DM2

2
S ]V

2 P̃22]V

P̃

V
D , ~62!

whereP̃t(V) is now a function ofV and t only, and where
M2 is given by

M25
1

KE0

Ksn2~f!cn2~f!

dn6~f!
df

52

E
0

1

u2A12u4 du

E
0

1 du

A12u4

5
32p2

5XGS 1

4D C4 .0.3655 . . . .

~63!

The effective Langevin dynamics for the variableV is given
by

V̇5
DM2

V
1J~ t !, ~64!

where the effective noiseJ(t) satisfies the relation

^J~ t !J~ t8!&5M2Dd~ t2t8!. ~65!

The Fokker-Planck equation~62! can be solved exactly
We obtain the following PDF for the energy:

P̃t~E!5
1

ApE
S 4E1/2

DM2t D
3/2

expH 2
4E1/2

DM2tJ . ~66!

The long-time behavior of the amplitude, velocity, and e
ergy of the cubic oscillator can now be derived:
04111
e,
i-
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-

^E&5
15

64
~DM2t !25

48p4

5FGS 1

4D G8 ~Dt !2.0.0313~Dt !2,

~67!

^ẋ2&5
4

3
^E&5

64p4

5FGS 1

4D G8 ~Dt !2.0.0417~Dt !2, ~68!

^x2&5sd2~f!^E1/2&

5
15

16
~M2!2Dt5

192p4

5FGS 1

4D G8Dt.0.125Dt. ~69!

The prefactor in the mean value of the energy, Eq.~67!,
agrees with that of@26#.

The distribution function allows us to calculate the PD
in the (x,ẋ) variables in the time-asymptotic regime. In pa
ticular, the skewness and flatness factors of the position
of the velocity can be calculated analytically. Since bo
variablesx and ẋ are parity symmetric, their skewness va
ishes. The flatness is given by

^x4&

^x2&2
5

4

3@sd2~f!#2

^V4&

^V2&2
5

16

45M 2
.2.66, ~70!

^v4&

^v2&2
5

9

4

cn4~f!

dn8~f!

^V8&

^V4&2
5

27

5
55.4. ~71!

These values are also in excellent agreement with the
merical computations shown in Fig. 3. We notice that t
variablesx and ẋ are non-Gaussian because their flatn
differs from the Gaussian value 3.
3-8
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FIG. 4. Duffing oscillator: Eq.~72! is integrated numerically forv51, l51026, and D51 with a time stepdt51024. Ensemble
averages are computed over 103 realizations.~a! ^E(t)& vs t; the dashed line corresponds to the expected power law^E(t)&.DE(l)t2. ~b!
The numerical value of the equipartition ratio^E(t)&/^v(t)2& changes from a value close to 1 to3

4 . ~c! The numerical estimate of the
generalized diffusion constantDE(l)5 limt→`^E(t)&/t2 is 3.0(4)3104; the dashed line corresponds to the expected diffusion cons
DE(l)53.133104. ~d! ^ ln E(t)&/t vs timet; the dashed line corresponds to the Lyapounov exponentL50.22 expected in the linear regime
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C. The Duffing oscillator with multiplicative noise

We now study the general case of a nonzero pulsationv:

d2

dt2
x~ t !1@v21j~ t !#x~ t !1x~ t !350. ~72!

Here the coefficient of the nonlinear term has been resc
to unity and the random noise is Gaussian and white
defined in Eq.~2!. The deterministic nonlinear mechanic
system correponding to Eq.~72! is known as the Duffing
oscillator.

The results of Secs. II and III B show two regimes: sta
ing from a small initial condition, the amplitude of the osc
lator grows exponentially with time untilx;v, where the
linear and nonlinear terms are of the same order and then
amplitude grows as the square-root of time according to
~69!. Because the deterministic system corresponding to
~72! is integrable, this crossover from exponential to alg
braic can be derived in a quantitative manner.

Whenv is nonzero, Eqs.~53! and ~54! become

x5S 4E2

4E1v4D 1/4
sn@~4E1v4!1/4t;k#

dn@~4E1v4!1/4t;k#
, ~73!
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ẋ5~2E!1/2
cn@~4E1v4!1/4t;k#

dn2@~4E1v4!1/4t;k#
, ~74!

where the elliptic modulusk varies with the energy and i
given by

k25
A4E1v42v2

2A4E1v4
. ~75!

We notice thatk tends to the limiting value 1/A2 when the
energy goes to infinity. Defining the angle variable as

f5sd21S ~4E1v4!1/4

A2E
x;kD , ~76!

we rewrite the dynamical equation in energy-angle coor
nates. However, while deriving the dynamical equation forf
we must remember that the elliptic modulusk depends on the
energyE and is, therefore, a function of time. After reintro
ducing the multiplicative noise term, the stochastic Duffi
oscillator in the energy-angle variables becomes
3-9
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FIG. 5. Cubic oscillator with colored noise. Equations~80!,~82! are integrated numerically forn52, 2n2153, D51, andt51 with
a time stepdt51025. Ensemble averages are computed over 103 realizations.~a! The average energŷE(t)& grows linearly with time. The
inset gives an estimate of the diffusion constantDE.0.047(3). ~b! The time-asymptotic value of the equipartition ratio^E(t)&/^v(t)2& is
equal to3
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Ė5
2E

~4E1v4!1/4

sn~f;k!cn~f;k!

dn3~f;k!
j~ t !; ~77!

ḟ5~4E1v4!1/42
~2E1v4!

~4E1v4!5/4
sd2~f;k!j~ t !

2
Ev2j~ t !

~4E1v4!7/4S sd4~f;k!2
sn~f;k!cn~f;k!

dn3~f;k!

3E
0

f

sd2~u;k!du D . ~78!

As compared to Eq.~59!, two supplementary terms appear
Eq. ~78!. These terms are related todk/dt and are propor-
tional to v2.

Although the dynamical equations are more complica
than those of the purely cubic case, the analysis can be
formed as above. We shall, however, simplify our discuss
here by takingk equal to its asymptotic value 1/A2. This
approximation is justified as soon as the energy is large.
also replace the noisej(t) by the effective noiseJ(t) de-
fined in Eq.~65!. This second approximation is only qualita
tively correct, since it amounts to neglecting a determinis
force in the effective Langevin dynamics forE. We thus
obtain

Ė.
2E

~4E1v4!1/4
J~ t !. ~79!

We deduce from Eq.~79! that as long asE!v4, the energy
behaves as the exponential of a Brownian motion and, th
fore, increases exponentially with time. However, whenE
.v4, the nonlinear term becomes important. Equation~77!
reduces to Eq.~58!, and the energy grows as the square
time.

We expect that the crossover from exponential to al
braic growth will appear whenE;v4 or x;v. Using un-
scaled variables, the balance between linear and nonli
terms in Eq.~72! is obtained whenx5xc;v/Al. Figure 4
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demonstrates that the two regimes are observed numeri
when the nonlinear coefficientl is very small compared to
v2: we use the numerical valuesv51 and l51026. We
notice that in the short-time linear regime, the usual equip
tition relation for a quadratic potential is verified (^E&
.^ẋ2&), while the exponential growth of the energy is cha
acterized by the Lyapunov exponentL, defined in Eq.~7!. In
the long-time regime, the equipartition ratio reaches its n
linear value3

4 , while the energy growth becomes algebra
with a generalized diffusion constantDE(l), in good agree-
ment with Eq. ~67!, up to the expected scaling facto
DE(l)5DE /l.

IV. COLORED GAUSSIAN NOISE

We now consider the case where the Gaussian noise h
nonzero correlation time, and discuss how the previou
found scalings are modified. The system we want to stu
satisfies the dynamical equation

d2

dt2
x~ t !1x~ t !h~ t !1x~ t !2n2150, ~80!

whereh is a colored Gaussian noise of zero mean value. T
statistical properties ofh are determined by

^h~ t !&50,

^h~ t !h~ t8!&5
D
2t

e2ut2t8u/t, ~81!

wheret is the correlation time of the noise. The noiseh can
be obtained from white noise by solving the Ornste
Uhlenbeck equation

dh~ t !

dt
52

1

t
h~ t !1

1

t
j~ t !, ~82!

wherej(t) is the Gaussian white noise defined in Eq.~2!,
and t,t8@t.
3-10
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FIG. 6. Cubic oscillator with additive noise. Equation~A1! is integrated numerically forn52, D51 with a time stepdt5531024.
Ensemble averages are computed over 104 realizations.~a! The average energŷE(t)& grows linearly with time. The inset gives an estima
of the diffusion constant when noise is additive:DE.0.505(5). ~b! The time-asymptotic value of the equipartition^E(t)&/^v(t)2& is equal
to 3

4 .
b
q

r

e

in
lu

o
e
ty

is

rg

co

h
ce

pro-
d in
d

as

l-
n-

u-

d
we
and
the

i-
By
dy-
-
of

ri-
very
ing
to

e-
en-
ics,
time
e-
tem
. In
Introducing action-angle variables as in Sec. III, we o
tain the same set of coupled Langevin equations, E
~27!,~28!, wherej(t) is replaced by the colored noiseh(t).
As emphasized previously, the generalized equipartition
lations are independent of the nature of the noise: Eqs.~31!
and ~32! remain valid when the noise is correlated in tim
This is confirmed by numerical simulations@see Fig. 5~b! for
n52].

The scalings found in Sec. III A are deduced by averag
the Fokker-Planck equation. Here, we must write the evo
tion equation for the joint PDF ofx, v5 ẋ andh, Pt(x,v,h):

]P

]t
52v

]P

]x
1~x2n212xh!

]P

]v
1

1

t

]hP

]h
1

D
2t2

]2P

]h2
.

~83!

We perform a scaling analysis of this equation in the spirit
@34#. Balancing the diffusion term with the time derivativ
leads toh;t1/2. Then we compare the terms of probabili
current (vP)/x and @(x2n212xh)P#/v. A consistent bal-
ance between these terms is possible only ifv2;x2n and
x2n22;h. We thus find the following scaling relations:

E;tn/[2(n21)],

x;t1/[4(n21)],

ẋ;tn/[4(n21)]. ~84!

Thus, we predict that the scaling exponents for colored no
are half the exponents calculated for white noise~51!. Nu-
merical simulations indeed confirm that the average ene
of a cubic oscillator (n52) with colored multiplicative noise
grows linearly with time@see Fig. 5~a!#.

The periodT of a deterministic oscillator~without noise!
decreases as the energy increases:T;E2(n21)/2n, from Eq.
~25!. When the equations are written in the energy-angle
ordinates, two time scalesT and t appear. In the regime
where t!T, the correlation time of the noise is muc
smaller than the typical variation time of the angle. Hen
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the noise can be considered to be white, the averaging
cedure can be applied as in Sec. III, and the scalings foun
~51! are correct. WhenT;t, the noise becomes correlate
over a period of the free system and cannot be treated
white anymore. Now,T;t corresponds toE;t22n/(n21),
which leads to crossover timetc of the order tc

n/(n21)

;t22n/(n21), i.e., tc;t22. For times larger thantc , the
scalings~84! are observed.

V. CONCLUSION

A particle trapped in a confining potential with white mu
tiplicative noise undergoes anomalous diffusion: if the co
fining potential grows asx2n at infinity, the particle diffuses
as ^x2&;Dx

(n) tbn. We have calculated the anomalous diff
sion exponentbn51/(n21), and the coefficientDx

(n) . We
have found similar laws for the diffusion of velocity an
energy. Thanks to generalized equipartition identities,
have derived universal relations between the exponents
between the prefactors. Our calculations are based on
assumption that in the long-time limit the probability distr
bution function becomes uniform in the phase variable.
averaging out the phase variations, an effective projected
namics for the action~or energy! can be defined. This tech
nique enabled us to derive the asymptotic distribution law
the energy in thet→` limit, and to calculate its non-
Gaussian features~skewness and flatness!. Our analytical re-
sults agree with the numerical simulations within the nume
cal error bars. Thus, the averaging procedure produces
accurate results; it would be an interesting and challeng
problem to characterize deviations from our results and
calculate subleading corrections.

In the case of colored multiplicative noise, we have d
duced the anomalous diffusion exponents from an elem
tary scaling argument. Our result, supported by numer
shows that the exponents are halved in the presence of
correlations. The efficiency of parametric amplification d
creases if the noise is coherent over a period of the sys
and, therefore, the particle diffuses at a much slower rate
3-11
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K. MALLICK AND P. MARCQ PHYSICAL REVIEW E 66, 041113 ~2002!
this case, however, the averaging technique is harder to a
because the noise itself is averaged out to the leading o
A precise calculation in the case of colored Gaussian n
still remains to be done.

We have considered only Hamiltonian systems, i.e., s
tems where no friction is present. Nevertheless, if the da
ing is small, the results we have derived for the undam
oscillator remain valid until the crossover time~identical to
the typical decay time of the energy! is reached. The genera
case of a nonlinear oscillator with~linear! friction leads to
interesting results and is currently under study@35#.

ACKNOWLEDGMENTS

It is a pleasure to thank Yves Pomeau for encouraging
to work in this field of nonlinear stochastic equations and
his advice. K.M. is grateful to Michel Bauer for many usef
discussions.

APPENDIX A: NONLINEAR OSCILLATOR WITH
EXTERNAL AND INTERNAL NOISE

In this Appendix we discuss the behavior of an oscilla
subjected to both additive and multiplicative noises. Beca
we are considering nondissipative systems, there is no
tionary probability distribution; the position, velocity, an
energy of the system satisfy scaling laws.

We first consider the case where the noise is only addit
As before, the linear term can be neglected in the long-t
limit and the dynamics is given by

d2

dt2
x~ t !1x~ t !2n215j~ t !, ~A1!

wherej(t) is the Gaussian white noise defined in Eq.~2!.
The oscillator’s energy, defined in Eq.~12!, now obeys the
following equation:

Ė5 ẋj~ t !. ~A2!

Although this equation can be analyzed as in Sec. III, we w
only discuss our results qualitatively, referring the reade
@35# for a thorough analysis. Using the energy and an
variables, defined in Eqs.~22! and ~23!, we find that the
angle variablef is a fast variable: the equipartition relation
ships, Eqs.~31! and ~32!, remain valid. This is indeed con
firmed by numerical simulations, as shown in Fig. 6~b! for a
cubic oscillator.

Sinceẋ;E1/2 andx;E1/2n, we obtain from Eq.~A2! the
scaling laws forE, ẋ, andx:

E;t,

x;t1/2n,

ẋ;t1/2. ~A3!

The scaling exponents for additive noise are different fro
and smaller than, the exponents for multiplicative wh
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noise @Eq. ~51!#. For example, we observe that a partic
subjected to an additive noise in a quartic potential (n52) is
subdiffusive with an anomalous exponent equal to1

2 ,
whereas in the presence of multiplicative noise it beha
diffusively.

Finally, when both additive and multiplicative noises a
present, the oscillator is governed by the equation

d2

dt2
x~ t !1x~ t !jmult~ t !1x~ t !2n215jadd~ t !, ~A4!

wherejmult andjadd are independent white noises of amp
tude Dmult and Dadd, respectively. If we study the energ
variation due to noise,Ė;xẋjmult1 ẋjadd.E(n11)/2njmult
1E1/2jadd, we observe that the first term has a domina
effect. From this simple argument, we conclude that the m
tiplicative noise is expected to dominate over the addit
noise and, therefore, asymptotically, the scaling laws will
those derived for the multiplicative noise alone. However
crossover between the two scalings~51! and~A3! should be
observed by choosingDmult!Dadd. Comparing Eqs.~51! and
~A3!, we find that the effect of the multiplicative noise star
to dominate after a crossover time of the order
(Dmulttc)

1/(2n22);(Daddtc)
1/2n, i.e., tc;D add

n21/D mult
n .

APPENDIX B: NUMERICAL ALGORITHM

The algorithm used to integrate numerically the stocha
ordinary differential equations studied in this article is t
one-step collocation method advocated in@29#. In this Ap-
pendix, we recall the general principles underlying th
method, and give the algorithms we used to integrate E
~11! and~80!–~82! for white and colored noise, respectivel
All stochastic equations are understood according to S
tonovich rules.

Let $xi% i 51, . . . ,N be N real variables of timet, andj(t) a
stochastic process assumed to be Gaussian and white
wish to solve systems ofN coupled Langevin equations o
the form

ẋi5 f i„$xj~ t !%…1gi„$xj~ t !%…j~ t !, ~B1!

where f i andgi areN ~smooth! functions of thexi ’s. Let dt
be the integration time step. Upon formally integrating E
~B1! between 0 anddt, we obtain the following set of
coupled equations implicit in$xi(t)%:

xi~dt !2xi~0!5E
0

dt

f i„$xj~s!%…ds1E
0

dt

gi„$xj~s!%…j~s!ds.

~B2!

For small enoughdt, the functionsf i andgi may be Taylor
expanded in the vicinity oft50, e.g.,

f i„$xj~s!%…5 f i„$xj~0!%…1]kf i„$xj~0!%…dxk~s!

1 1
2 @]k] l f i„$xj~0!%…#dxk~s!dxl~s!1•••,

~B3!
3-12
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wheredxk(s)5xk(s)2xk(0). Replacing the functionsf i and
gi in Eq. ~B2! by the expansion~B3!, we obtain a new set o
coupled integral equations implicit in$dxi%. Upon solving
these equations up to an arbitrary order indt, we obtain
dxk(dt). In practice, we implemented an algorithm exact
O(dt2).

1. White noise

We integrate the following set of first-order differenti
equations:

ẋ5v, ~B4!

v̇52v2x2lx2n211xj, ~B5!

where the Gaussian white noisej(t) verifies Eq.~2!. The
exact evolution equations fordx(dt)5x(dt)2x(0) and
dv(dt)5v(dt)2v(0) read

dx~dt !5E
0

dt

ds@v~0!1dv~s!#, ~B6!

dv~dt !5E
0

dt

ds$2v2@x~0!1dx~s!#2l@x~0!1dx~s!#2n21

1@x~0!1dx~s!#j~s!%. ~B7!

The auxiliary variablesZ1 andZ2, defined by

Z1~dt !5E
0

dt

j~s!ds, ~B8!

Z2~dt !5E
0

dt

Z1~s!ds, ~B9!

are Gaussian random variables with zero average and
following correlations: ^Z1(dt)2&5Ddt, ^Z2(dt)2&
5Ddt3/3, and^Z1(dt)Z2(dt)&5Ddt2/2. Up to order (dt)2,
we find

x~dt !5x~0!1v~0!dt1Z2~dt !

1 1
2 dt2@2v2x~0!2lx~0!2n21#, ~B10!

v~dt !5v~0!1Z1~dt !1dt@2v2x~0!2lx~0!2n21#

1 1
2 dt2v~0!@2v2x~0!2~2n21!lx~0!2n22#.

~B11!

In practice, we use twoindependentGaussian random
noises, Z1 and Y1, with zero mean and correlation
nd

04111
he

^Z1(dt)2&5Ddt, and ^Y1(dt)2&5Ddt. As shown in Ref.
@29#, the variableZ2 may be approximated by the expressi

Z2~dt !5dtS 1

2
Z1~dt !1

1

2A3
Y1~dt !D ~B12!

when the algorithm is exact up to orderdt2.

2. Colored noise

When the noiseh(t) is correlated, we must solve a set
three coupled equations:

ẋ5v, ~B13!

v̇52v2x2lx2n211xh, ~B14!

ḣ52
1

t
h1

1

t
j. ~B15!

The set of exact integral equations becomes

dx~dt !5E
0

dt

ds@v~0!1dv~s!#, ~B16!

dv~dt !5E
0

dt

ds$2v2@x~0!1dx~s!#2l@x~0!1dx~s!#2n21

1@x~0!1dx~s!#@h~0!1dh~s!#%, ~B17!

dh~dt !5E
0

dt

dsH 2
1

t
@h~0!1dh~s!#1

1

t
j~ t !J .

~B18!

The algorithm to orderdt2 reads

x~dt !5x~0!1v~0!dt1
1

2
v~0!dt2, ~B19!

v~dt !5v~0!1dt@2v2x~0!2lx~0!2n211x~0!h~0!#

1
1

t
x~0!Z2~dt !1

1

2
dt2S v~0!@2v2x~0!

2~2n21!lx~0!2n221h~0!#2
1

t
x~0!h~0! D ,

~B20!

h~dt !5h~0!1
1

t
Z1~dt !12

1

t
h~0!dt2

1

t2
Z2~dt !

1
1

2
dt2

h~0!

t2
. ~B21!
ev.
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@12# J. Röder, H. Röder, and L. Kramer, Phys. Rev. E55, 7068

~1997!.
@13# W. Genovese and M. A. Mun˜oz, Phys. Rev. E60, 69 ~1999!.
@14# P. Reimann, Phys. Rep.361, 57 ~2002!.
@15# K. Lindenberg and B. J. West, Physica A128, 25 ~1984!.
@16# R. L. Stratonovich,Topics on the Theory of Random Noi

~Gordon and Breach, New York, 1963!, Vol. 1; ~1967!, Vol. 2.
@17# S. Kabashima, S. Kogure, T. Kawakubo, and T. Okada

Appl. Phys.50, 6296~1979!.
@18# T. Kawakubo, A. Yanagita, and S. Kabashima, J. Phys. S

Jpn.50, 1451~1981!.
@19# R. Berthet, S. Residori, B. Roman, and S. Fauve, Phys. R

Lett. 33, 557 ~2002!.
@20# J. B. Roberts and M. Vasta, J. Appl. Mech.67, 763 ~2000!.
04111
i,

er

.

c.

v.

@21# P. S. Landa and A. A. Zaikin, Phys. Rev. E54, 3535~1996!.
@22# J. P. Bouchaud and A. Georges, Phys. Rep.195, 127 ~1990!.
@23# L. D. Landau and I. Lifshitz,Mechanics~Pergamon Press, Ox

ford, 1969!.
@24# C. van den Broeck, M. Malek Mansour, and F. Baras, J. S

Phys.33, 557 ~1982!.
@25# F. Drolet and J. Vin˜als, Phys. Rev. E57, 5036~1998!.
@26# V. Seshadri, B. J. West, and K. Lindenberg, Physica A107, 219

~1981!.
@27# D. Hansel and J. F. Luciani, J. Stat. Phys.54, 971 ~1989!.
@28# L. Tessieri and F. M. Izrailev, Phys. Rev. E62, 3090~2000!.
@29# R. Mannella, inNoise in Nonlinear Dynamical Systems, Vol.

Experiments and Simulations, edited by F. Moss and P. V. E
Mc Clintock ~Cambridge University Press, Cambridge, 198!.

@30# C. Degli Esposti Boschi and L. Ferrari, Phys. Rev. E63,
026218~2001!.

@31# M. Abramowitz and I. A. Stegun,Handbook of Mathematica
Functions~National Bureau of Standards, Washington, D.C
1966!.

@32# P. F. Byrd and M. D. Friedman,Handbook of Elliptic Integrals
for Engineers and Physicists~Springer-Verlag, Berlin, 1954!.

@33# A. J. Lichtenberg and M. A. Lieberman,Regular and Chaotic
Dynamics~Springer-Verlag, Berlin, 1992!.

@34# Y. Pomeau, J. Phys. I3, 365 ~1993!.
@35# K. Mallick and P. Marcq~unpublished!.
3-14


