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Anomalous diffusion in nonlinear oscillators with multiplicative noise
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The time-asymptotic behavior of undamped, nonlinear oscillators with a random frequency is investigated
analytically and numerically. We find that averaged quantities of physical interest such as the oscillator’s
mechanical energy, root-mean-square position, and velocity grow algebraically with time. The scaling expo-
nents and associated generalized diffusion constants are calculated when the oscillator’s potential energy grows
as a power of its positiori#(x) ~x2" for |x| — . Correlated noise yields anomalous diffusion exponents equal
to half the value found for white noise.
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[. INTRODUCTION noise-induced energetic instability has been observed in di-
verse experimental contexts such as electronic oscillators
Randomness in the external conditions entails the paran}16,17], nematic liquid crystal§18], and surface wavd$ar-
eters of a dynamical system to fluctuate. The extent of thesaday instability [19]. In engineering fields, this instability
fluctuations is independent of any thermodynamic charactemplays a crucial role in the study of the dynamic response of
istic of the system in contrast to intrinsic fluctuations theflexible structures to random environmental loading such as
amplitude of which is proportional to the equilibrium tem- the wave-induced motion of offshore structures or the vibra-
perature, in accordance with the fluctuation-dissipation theotion of tall buildings in a turbulent windi20]. The presence
rem[1,2]. Usually, external randomness appears as a multief nonlinear friction tends to limit the oscillation amplitude:
plicative noise in the dynamical equations. The interplay ofthe pendulum with a randomly vibrating suspension axis and
noise and nonlinearity in a system far from equilibrium re-undergoing nonlinear friction, known as the van der Pol os-
sults in some unusual phenomdB4 In fact, the presence of cillator, has been studied in the small-noise limit using per-
noise dramatically alters the properties of a nonlinear dyturbative expansiongl6,21].
namical system both qualitatively and quantitativélgr a In the present work, we consider the motion of an un-
recent review, sepd]). For example, it was recently shown damped nonlinear oscillator trapped in a general confining
that in a spatially extended system, a multiplicative noisepotential and submitted to parametric random fluctuations.
white in space and time, generates an ordered symmetrBecause there is no dissipation, the energy of the system
breaking state through a nonequilibrium phase transitionincreases with time and we shall show that the position, the
whereas no such transition exists in the absence of noismomentum, and the energy grow as power laws of time with
[5,6]. Noise can also induce spatial pattef@s3] or improve  scaling exponents that depend on the behavior of the confin-
the performance of a nonlinear device through stochastiing potential at infinity[22]. A key feature of our method is
resonancg9]. Furthermore, even if some important qualita- to use the integrability properties of the associated determin-
tive features of a deterministic system survive to externalstic nonlinear oscillator in order to derive exact stochastic
noise, their quantitative characteristics may change: a stablquations in action-angle variables. We then use the averag-
fixed point may become unstall&0], a bifurcation may be ing technique of classical mechanif3], together with a
delayed (noise-induced stabilization[11,12, and scale- reduction procedurf24,25, to calculate exactly the anoma-
invariant properties which manifest themselves as powelous scaling exponents, irrespective of the amplitude of the
laws may be altered with the appearance of nonclassical scatoise. Some of our results were derived earlier, in the par-
ing exponent$13]. ticular case of a cubic nonlinearity using an energy-envelope
The discovery of Brownian motors that are able to rectifyequation26]. Our method enables us to derive the numerical
random fluctuations into a directed motignoise-induced prefactors appearing in the scaling lavgeneralized diffu-
transport has triggered renewed interest in the study ofsion constants and our analytical predictions compare very
simple one-dimensional mechanical models of particles in &atisfactorily with the numerical results. In the case of noise
potential with random parametdr$4]. It is well known that  correlated in time, the anomalous diffusion exponents are
a linear oscillator subjected to parametric noise can be unmodified: they can be obtained by dimensional analysis ar-
stable even if damping is taken into accolih,15. This  guments, and the values thus found also agree with numeri-
cal results. Throughout this work, crossover phenomena be-
tween different scaling regimes are emphasized.
*Electronic address: mallick@spht.saclay.cea.fr This article is organized as follows. In Sec. Il, we recall
"Electronic address: marcq@irphe.univ-mrs.fr that the energy of a linear oscillator with multiplicative noise
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grows exponentially with time and that this growth may bewhich has been extensively studigzB]. Here, we are inter-
characterized by a Lyapunov exponent. In Sec. Ill, we conested in the case where these fluctuations are random with no
sider a particle in an arbitrary confining potential that growsdeterministic part. The origik=0 anddx/dt=0, is an un-

as a polynomial at large distances. Our technique allows ustable stationary solution of E¢l). As shown in Ref[10],

to study precisely the long-time behavior of the system. As ahis instability can be studied from the dynamical evolution
particular case, we analyze the classical Duffing oscillator irof the probability distribution functiodPDF P(x,v,t) of x

the presence of parametric, Gaussian white noise. In Sec. I¥nd  (with v =x=dx/dt). This PDF obeys the Fokker-
we discuss the case of colored noise, where the presence obganck equatioi1,2] associated with Eq1),

new time scalethe correlation timeleads to a crossover

from the white noise regime to another scaling regime. Our P JP P D &2

conclusions are presented in Sec. V. In Appendix A, the non- T Vox + wzx% + 0 —Z(XZP), 3

linear oscillator in the presence of both additive and multi- v

plicative noise is briefly studied: we show that at long times _ . _
the effect of additive noise is irrelevant. Appendix B is de-Where Eq(1) is understood apcordmg IO SHaonavichiles:
voted to numerical methods This Fokker-Planck equation leads to a closed system of

ordinary differential equations that couple the 1 moments
of ordern, i.e., moments of the type&x" *v*), wheren and
k are positive integers and<ok=n:

In this section we review known results for an undamped
Iinear_oscillator_ submitted fo parametric noise—a generic — (XM kpky = (n—K)(xN KLkt Ty 2 xn Kt Lk 1y
and widely studied model—in order to understand the role of dt
external multiplicative nois€3,10,14. The dynamical equa-

II. LINEAR OSCILLATOR WITH PARAMETRIC NOISE

. . D
tion for such a system is + Ek(k_ 1)<Xn—k+zvk—2>_ ()
d2
—2x(t)+(w2+ E(t))x(1)=0, (1)  The divergence of the moments with time results from the
dt existence of at least one positive eigenvalue of the linear

. ] ) system(4). In particular, the mean value of the mechanical
wherex(t) represents the position of the oscillator at tilme energyE of the system(i.e., the sum of its kinetic and po-

andw is its frequency. The random noigét) is a Gaussian tential energiesgrows exponentially with time,
white noise of zero mean value and of amplitude

(E)=3(v)+ 3(x)eer, )
(£(1))=0, T
where the growth ratg is the positive real root of the equa-
(§(DE(L))=Da(t—t"). (2 tion,
The physical interpretation of E€L) is that the frequency wi+4w?u=2D. (6)

of the oscillator is not constant in time but fluctuates around

its mean valuev because of randomness in the external con- It has also been proved that the quenched average of the
ditions (external noisg When these fluctuations are deter- energyE grows linearly with time, hence the Lyapunov ex-
ministic and periodic in time, Eq1) is a Mathieu equation, ponentA, defined as
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FIG. 1. Linear oscillator with multiplicative noise: E¢l) is integrated numerically fob=1 with a time stepst=10"3. Ensemble
averages are computed over*I@alizations. We plot the averagi E(t)) and the ratio{In E(t))/t (insep vs timet. (@ o=1, A(w=1)
=lim,_..(In E(t))/t=0.2193); (b) degenerate case=0, A(w=0)=0.5805). Both estimates of the Lyapunov exponent are in good
agreement with the theoretical predictiv,28§|.
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1 ity, exhibit a power law behavior with time. We shall calcu-
A= ||m;<|09 E), (7)  late exactly the associated scaling exponents.
t—oo
is finite and strictly positivd27,28. The positivity of the A. Degenerate nonlinear oscillator with parametric noise

Lyapunov exponent implies the instability of gll moments at  Ag pefore, we expect the amplitude of the oscillator to
long times. Note that the growth rate defined in Eq(5),is  grow without bounds at large times. The linear part of the
larger than the Lyapunov exponent because of the convexityasioring force— w?x is negligible in comparison to the non-
inequality, logE)=(log E). _ _ linear term when the amplitude of the oscillator is large. In
In Fig. 1(a), we present the numerical solution of E®)  order to study the long-time behavior of the oscillator, we

averaged over a large number of realizations of the noisgnherefore simplify Eq(10) to that of a degenerate nonlinear
where the pulsation ig»=1. The algorithm used to solve gillator:

this stochastic differential equation with multiplicative noise

is inspired by[29] and explained in Appendix B. A numerical g2

estimate of the Lyapunov exponent, given in Fi(p)lagrees —zx(t) + E(H)xX(t) +x(1)2"1=0. (12
very well with the analytic expression of Ref27,28. The dt

usual statistical equipartition of the total energy between ki-

netic and potential contributions is satisfigdE)= w?(x?) The coefficient of the nonlinear term is set equal to unity by
—(v?). rescaling the variablg(t) to x(t)AY(21~2),

In Fig. 1(b), we show the same quantities for the degen- First we study the deterministic part of E4.1) and shall
erate linear oscillator obtained by takimgequal to 0. This add the noise term afterward20]. In one dimension, the
degenerate case exhibits the same behavior as the genegigterministic nonlinear oscillator is integrable because the
case and the Lyapunov exponent can be calculated by takirgnergyE, defined as
the w— 0 limit in the formulas of Refd.27,28. We conclude
that the instability triggered by the noise is the dominant 1., 1 .
effect and that the presence of the linear restoring force E= EX + %x ' (12
— w?x is irrelevant.

Hence, in order to avoid an exponential increase of the . . .
energy and the amplitude of the oscillator, it is necessary 5 @ con_gerved quantity. Th? exact SOIUUO”_ of _the mechanical
go beyond the linear approximation and consider the effecgystemx+x*""1=0, for a fixed value oE is given by
of nonlinear restoring forcgs30].

x=EY2S [(2nE)("~ D/t (13
I1l. GENERAL NONLINEAR OSCILLATOR
WITH PARAMETRIC NOISE X=(2n) (- DINEVZS [ (onE) (=i (14)

We now consider the case of a particle trapped in a con-
fining potentialZ/(x) and subject to an external noise. As The functionS, is defined as the inverse function of an hy-
before, the potential is supposed to be harmonic for smalberelliptic integral:
oscillation amplitudes: whejx|—0,

122, ) vn  du
U~z (8) Sn(X)=Y<—>X=\/ﬁJY/(2n)
For the potential to be confining, we must halfe- + o 0 1-u2n
when|x|— 0. We restrict our analysis to the case whiris \/—
a polynomial function ok, even inx, in order to respect the _ n fY du (15)
X— —X symmetry. Hence, whejx|— o, (2m¥n)o 2
1 “on
— 2n :
U on AX" with n=2. 9
: . . L From this definition, we find a relation betweéh and its
The dynamics of this mechanical system is given by derivative s’
n:?
d2
—X(D)+ (@7 +HEOXM) AP TH=0, (10 , (2n)tn [Sa(X) 17"\ M2
dt SH(X)= n 1- > . (16)
n n

whereé(t) is the Gaussian white noise of E@).

We shall prove that the nonlinear term is relevant and From Eqs.(13) and(14), we define the action-angle vari-
prevents the average amplitude from growing exponentiallyables of the nonlinear oscillatp23,33. The action variable
Instead of an exponential behavior, the average energy of thHecorresponds to the area under a constant energy curve in
oscillator, as well as the variances of its position and velocphase space:
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(an)l/Zn X2n
I =4J 2E— —dx
0 n

:4(2n+1n)l/2nE(n+1)/mflmdu(xE(n+l)/2n_
0

17

The angle variableb, canonically conjugate to the actidn

is equal tow(E)t (but for an unimportant additive constant

wherew(E) is the frequency corresponding to the enegy
w(E)=(2nE)("~ D/, (18)

Hence, for the free systefwithout noise the second-order
dynamical equatiom+x?"~*=0 is equivalent to the follow-

PHYSICAL REVIEW E 66, 041113(2002

we derive a compact form for the two stochastic evolution
Eqgs.(24) and (25):

Q=(n—1)S,(P)Sh(P)&(1), (27)
0S¢
“on Q- &(t). (28)

We emphasize that the coupled equati¢?id and (28) are
mathematically equivalent to the initial system and have
been derived without any approximation. Moreover, the na-
ture of the parametric perturbation has played no role in the
derivation: the functioré(t) can be a deterministic or a sto-
chastic function with arbitrary statistical properties.

We now perform a precise analysis of the long-time be-

ing two first-order equationS, the first one representing enhaVior of the nonlinear oscillator driven by a multiplicative

ergy conservation:

¢=w(E)=(2nE)("~1/2, (19

Gaussian white noise. From an heuristic point of view, we
observe from Eq(27) that{) undergoes a diffusion process
and should scale typically a2 We also notice from Eq.
(28) that, as() grows, the phaseb varies more and more
rapidly with time. Hence, the phageis a fast variable and it

is natural to average the dynamics over its rapid variations.

The presence of external noise spoils the integrability ofThis averaging process leads to some remarkable and general

the dynamical systerfll) and causek to grow with time by

identities between different physical quantitites. Thus, we

continuously injecting energy into the system. From Eqsgptain the average of? from Eq. (23):

(13) and(14), the phase is now identified as

_ X x/[(2nE)Y21  d
_ o1 _

The angle variable is well defined modulo the periodk4,
of the functionsS,,, where

(20

du

In terms of the energy-angle coordinatés ¢), the original
variables &,x) read as follows:

(21)

.

x=EY2S,(¢), (22)

x=(2n)(""DNEVZS (), (23)

We now take into account the external noise and rewrite
the system(19) in (E,¢) coordinates. The stochastic evolu-

tion equation for the energy is given by

'E: xx§(t) — (zn)(nfl)IZnE(nJrl)/ZnSn( ¢)8{1(¢)§(t)
(24)

1
f duy1—u®"

(32) = (2n) ("~ DINS! ($)X(E) = 2

Jl ” (E).
0 J1—u®"
(29

The last equality is derived by writing= S,(¢), and using
Egs.(16) and (21). Moreover, the following identity is true

(as can be shown by integratidélx/l—uzndu by parts:

1 1 UZI"I
du\/l—uznznf du———
fo 0o J1-u?

1 1 du
:—nf du 1—u2”+nf :
0 0 y1-u®"
(30
Substituting this identity into Eq29) leads to
Ey— n+1 y a1
(E)= (). (3D

Using Egs.(23) and(24), we obtain the stochastic evolution From the definition(12) of the energy, we derive another

of the phase variable:

: 1 Sn(9)?
_ (n—1)/2n _ n
¢=(2nE) am aneye- oD (29
With the help of the auxiliary variabl€), defined as
Q: (Zn)(n-%—l)IZnE(n—l)/Zn’ (26)

statistical equality:

(2= ().

We emphasize that these generalized equipartition relations
are “universal” in the sense that they are independent of the
form of the noise we consider. In particular, identiti@)

and (32) are valid for multiplicative as well as for additive

(32
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noise(see Appendix A The only hypothesis is that the prob- 1 ) -
ability distribution functionP,(£2, ) becomes uniform inp (n-1)2 fo duuyl-u
over the interval 0,4K,] whent—o~. We observe from the =———(2n)%"
numerical simulations presented in FigcRthat this condi- n 1 du
tion is very well satisfied. [ _.2n
The same averaging procedure allows us to derive a ° vi-u
closed equation for the stochastic evolution of the slow vari- 3 3n+1
able(). We start by writing the Fokker-Planck equation gov- (n—1)2 F(ﬁ) on
erning the evolution of the PDP,((2, ¢) associated with the =————(2n)2" , (39
system(27),(28). Since the noise term appears as a multipli- n+1 (i) 3n+3
cative factor, one must be cautious about the convention used 2n 2n

to define stochastic calculus. Here, as well as in the follow- ) ) )
ing, we shall use Stratonovich rules because they are ob-() being the Euler gamma functiof81]. The effective
tained naturally when white noise is considered as a limit of-angevin dynamics for the variabl@ is thus

colored noise with vanishing correlation tinid,2]. The

Fokker-Planck equation corresponding to E@S) and(28) 0= M,D £+: (1) (39)
reads n-10 ~™7
o) D g(é) gl where the effective Gaussian white noiEg(t) satisfies the
hP=———0d,P+ E[%(T%T ) relation
(2n)
(En(t)En(t"))=MDa(t—t"). (40)
_ad)(g((f) 90 F($)P| g f(¢)a¢¥P> )
The averaged distribution functioR,({)) can be calcu-
lated because Eq37) is exactly solvable due to its invari-
+aQ[f(¢)an(¢)P]>, (33 ance under rescalings—-\%t, Q—\Q, \ being an arbi-
trary real numbefthis invariance is the same as that of the
where we have defined heat equation Equation(37) is solved by using the self-

similar ansatz

f(¢)=(n=1)Sy(#)Sh(¢) and  g(¢)=S5n(¢)*.

34 ~ 1_[Q
The Fokker-Planck equatiof83) written in the variables
(Q.,qS) is exact because we study the case of a Gaussmphe PDE ofQ) is found to be
white noise. In order to pursue our calculations, we assume
that P,({},$) becomes independent ¢f whent—», i.e., 1 Q20-1)
that the probability measure fab is uniform over the inter- P(Q)=
val [0,4K,]. We now average the Fokker-Planck equation nt1l |\ (2m,pt)(n+H20-1)
(33) over the angular variable. We shall use the fact that the 2(n—1)
average of the derivative of any function is zero: 0?2
S xexp[ - _} @D
d94()=0. (39 2MaDt
This implies that from which we obtain the PDF of the energy
20L0(#)7,9(#)]=0 and f(¢)=0 B t -t
#9 +d P(E)= n+1 nE
b ; _n—1a 36 r 2(n—1)
ecause f(d)=—75—349(¢). (36) ((Zn)(n+l)/nE(n1)/n)(n+l)/[2(nl)]
Using these properties and, in particular, the last identity in 2My Dt
(36), we derive the phase-averaged Fokker-Planck equation: p{ (zn)(n+1)/nE(nl)/n]
Xexp — (42
B M,D - 2 ; ﬁ) a 2 M, Dt
' 2 & n-1"tq) The long-time behavior of the amplitude, velocity, and

_ energy of the general nonlinear oscillator can now be de-
whereP,(Q) is now a function of() andt only, and where rived. Using the equipartition identit§81) and Eq.(42), we
M, is given by obtain
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FIG. 2. General nonlinear oscillator: E@1) is integrated numerically faP=1 with a time stepst, and averaged over 1@ealizations
for n=2 (2n—1=3), 6t=5x10"% n=3 (2n—1=5), 8t=5%X10"*% n=4 (2n—1=7), 6t=10"* (a) Average energy E(t)) vs
time t. (b) The limit lim_.(E(t))/t®, a,=n/(n—1) vyields the following estimates of the diffusion constari4": D&
=0.0311), D®=0.0973), D¥=0.1305). These are in excellent agreement with the predictions of @@—(50). (c) The measured

equipartition ratio{ E(t))/(v(t)?) is close to the theoretical valua¢ 1)/(2n) given in Eq.(31): 3 for n=2; % for n=3; 3 for n=4.

3n+1

2n2)
n+1

2n—2

B 1
o (2n)(”+ 1)/(n—1)

(ZMnDt)n/(nfl)

(E)

octn/(nfl), (43)

. 2n
0C)= g By, @9

Using Eq.(38), we find that

1 u?du
—— 1 (K 0 \1—u®"
Sip)=—| SAp)dp=(2n——F—
KnJo 1 du
0 VI-u®
n+3

:(zn)l/n(n_l)ZMn' (45)

where we made the change of variahlesS, (¢), and used

the following identity(obtained by integrating by pajts

Jl 2= du= [ w7 au 46
e =] e

Finally, we deduce from Eq%13), (42), and(45)

(%) =SHS)(E™)

1ﬂ(3n+1
2 M, lzn=2/[ 2m,pt \MOP
T n—-1 (Zn)l/n n+1 (2n)(+
r
2n—2

octl/(nfl)_ (47)
WhenD=1, the analytical results for the nonlinear oscilla-
tors with cubicx® (n=2), quintic x> (n=3), and heptic
nonlinearityx’ (n=4) are as follows:

for n=2, (E)=0.03%?, (x?)=0.0422,
(x?)=0.125; (48)
for n=3, (E)=0.09%%? (x?)=0.1453°%?,
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<x2>=0.2901’2; (49 The results obtained in Sec. Il A adopt simpler expressions
in terms of the classical Jacobi elliptic functions sn, cn, and
for n=4, (E)=0.13*3 (x?)=0.208*? dn[31,32. , -y .
The exact solution of the deterministic version of Eq.
(x?)=0.34711"3, (500 (52, x+x3=0, is
The cubic oscillator f=3) will be discussed in more detail va 1
in Sec. llIB. Formulas(43), (44), and (47) were verified sn (4E) 41;5
numerically. The scaling exponents and the prefactors given x=EL4 (53
in Egs. (48), (49), and(50) are in excellent agreement with va. 1 ’
the numerical values, as shown in Fig. 2. dn| (4E)"; 2
In conclusion, we have derived the following scaling re-
lations: 1
E~{n/(n-1) cn (4E)1/4t;—)
! : V2
x=(2E)*?2 (54)
X~t1/[2(n—l)],

y .1)’
dnz((4E) %: N

for a fixed value of the energl, defined as

thn/[Z(n*l)]. (51)

In particular, it should be noted thatundergoes an anoma-
lous diffusion with time with exponent 1/§2-2). If we E=1x2+1x4 (55)
maken—1 formally, this exponent diverges to infinity: this
is consistent with the exponential growth of the linear oscil-The quarter of the period of the elliptic functions sn, cn, and
lator (see Sec. )l dn that appear in Eq$53) and(54) is given by

We end this section by considering the case of a general
confining potential energy/ neither necessarily polynomial 1
in x nor even inx. The only requirement is thadi— + K=K 2

_ Jl du
: L : : o Vi-d®
when |x|—«. We discuss the qualitative behavior Bf X,
andx at long times from elementary scaling considerations. \when the noise term is taken into account, the energy is

Suppose first thai~|x|" for large values ofx|, r beingan  not conserved. Inverting the relatiés3), we obtain the defi-

arbitrary real number. nition of the phase variable:
(i) If r>2, then balance between kinetic and potential

=1.854. (56)

energies leads t&~x2~x"; thus, the time evolution of the ) x 1
energy is given by ~xxé~ELN~(12)]¢ From the scaling $=sd’ SN (57
relationsE~E/t and é~t~Y2 we conclude that
where we have introduced the function=ssh/dn. The sto-
E~t"=2) x~tU=2) y_/[2(r=2)] chastic evolution of the variablds and ¢» becomes

This qualitative argument can be made rigorous by general-

sn($;112) cn(¢;11V2)

izing the results obtained above to noninteger values of E=xxg(t)=2E¥ AP (B 1N2) &),
(i) If r=2, then the potentidl is negligible with respect (¢ (58)
to the multiplicative noise term, and we are back to the case
of the degener_ate Iinear_ oscillator. TherefoEe,x, and x . SOQ(¢;1/\/§)
grow exponentially with time. ¢=(4E)"*— ——=— —&(1). (59
If the potential grows exponentially, i.é4~ exB, B being 2\2E

a positive real number, then similar considerations lead t

E~t andx~t'? (disregarding logarithmic correctiond\e
then conjecture that the amplitudaliffuses in a logarithmi-

?ntroducing the auxiliary variabl® =22EY the Eqs(598)
and(59) can be written in the simpler form

~ 1B

cally slow mannerx~ (Int)**. - SN()cn( &) 0 0

B. The degenerate cubic oscillator dn3(¢>)
In this section, we study the particular case of a cubic .0 sif(¢)
nonlinearity, b=75——q &, (61)
2

d_X(t)Jrg(t)X(t)er(t)s:O_ (52)  Where the elliptic modulus 12 common to all the elliptic
dt? functions has been omitted.
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FIG. 3. Cubic oscillator(a) Skewness factors of the positiaiit) (dashed lingand velocityv (t) (solid line). (b) Flatness factors of the
positionx(t) (dashed lingand velocityv (t) (solid ling). Numerical data is obtained from the same runs as in Fig. 2.

The averaging process, with respect to the fast variable, 15 4874
generates an effective Langevin dynamics for the slow vari- (E)= a(DMzt)zz ﬁ(Dt)Z:ODSl&?Dt)Z,
able Q) (t). Starting from the Fokker-Planck equation for the 5[1“( ”
total PDF,P,(Q),¢), and averaging ovep leads to the fol-

lowing evolution equation for the averaged probability dis- (67)
tribution:
- 4 64"
~ DM ~ P 2y (E\= 2 2
o z(agp—zag— | ©2 (%)= 5(E) Wg(m) 0.0417D1)2, (68)
2 Q 51|
whereP,(Q) is now a function ofQ andt only, and where
M, is given by (x2>=m<E1’2)
f K @)em(9) | 15 192
n6(¢ = 1—6(M2) Dt= WthO.lZEDt. (69
5T —
1 4
f u?y1—u*du o2
0 o
=2— " = 80363 ... The prefactor in the mean value of the energy, ),
f u 5(r(—)) agrees with that of26].
o y1-u? 4 The distribution function allows us to calculate the PDF

(63) in the (x,x) variables in the time-asymptotic regime. In par-
ticular, the skewness and flatness factors of the position and
The effective Langevin dynamics for the varialfleis given  of the velocity can be calculated analytically. Since both
by variablesx andx are parity symmetric, their skewness van-
ishes. The flatness is given by

. DM, _
Q= Q +E(1), (64)
. . . . (x*) 4 (0%
where the effective noisg (t) satisfies the relation = = =2.66, (70
<X2>2 3[ OQ(¢)]2 <QZ>2 45M 2
s
(EWE))y=MyDs(t—t'). (65)
The Fokker-Planck equatiof62) can be solved exactly. (v* 9 cn ( $) (Q8) 27
We obtain the following PDF for the energy: — =—=54, (71
9 ay <UZ>2 4 dr|8(¢) <Q4>2 5

1 4El/2 3/2 1/2
Py(E)= \/—E<DM2t) exp{ B DMzt]' (66) These values are also in excellent agreement with the nu-
merical computations shown in Fig. 3. We notice that the

The long-time behavior of the amplitude, velocity, and en-variablesx and x are non-Gaussian because their flatness
ergy of the cubic oscillator can now be derived: differs from the Gaussian value 3.
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FIG. 4. Duffing oscillator: Eq(72) is integrated numerically fom=1, A=10"%, and D=1 with a time stepst=10*. Ensemble
averages are computed over T8alizations(a) (E(t)) vst; the dashed line corresponds to the expected powel E))=Dg(M)t2. (b)
The numerical value of the equipartition rafi&(t))/(v(t)% changes from a value close to 1 go (c) The numerical estimate of the
generalized diffusion constag(\)=lim_.(E(t))/t? is 3.0(4)x 10%; the dashed line corresponds to the expected diffusion constant
De(M)=3.13x10% (d) (In E(t))/t vs timet; the dashed line corresponds to the Lyapounov expahend.22 expected in the linear regime.

C. The Duffing oscillator with multiplicative noise cr (4E+ w4)1/4t;k]

- x=(2E)*? : 74)
We now study the general case of a honzero pulsabion (2E) AP (4E + o*) ¥4 K] (
2
—X(t) +[@?+ E(1)Ix(1) +x(1)*=0. (72)  where the elliptic moduluk varies with the energy and is
dt :
given by

Here the coefficient of the nonlinear term has been rescaled r
to unity and the random noise is Gaussian and white, as k2= VAE+ 0"~ o . (75
defined in Eq.(2). The deterministic nonlinear mechanical 2JAE + w?
system correponding to Eq72) is known as the Duffing
oscillator.

The results of Secs. Il and 111 B show two regimes: start-\é\;zrnonciégiﬂo( :r?f?rtljs tng}?nilém'tt'Qg ;’r?llfg \}a{%avt\)llr:eegsthe
ing from a small initial condition, the amplitude of the oscil- 99 Y- 9 9
lator grows exponentially with time untd~ w, where the

linear and nonlinear terms are of the same order and then the (4E+ w14
amplitude grows as the square-root of time according to Eq. p=sd* TX; , (76)
(69). Because the deterministic system corresponding to Eq.
(72) is integrable, this crossover from exponential to alge-
braic can be derived in a quantitative manner. we rewrite the dynamical equation in energy-angle coordi-
When o is nonzero, Eqs(53) and (54) become nates. However, while deriving the dynamical equation¢gor
we must remember that the elliptic moduludepends on the
1/4 i energyE and is, therefore, a function of time. After reintro-
:( 4E? ) s (4E+ ") t;k] (73  ducing the multiplicative noise term, the stochastic Duffing
AE+w*]  dn(4E+w®)V4:k] oscillator in the energy-angle variables becomes
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FIG. 5. Cubic oscillator with colored noise. Equatiai8§),(82) are integrated numerically for=2, 2n—1=3, D=1, and7=1 with
a time stepst=10"°. Ensemble averages are computed ovérrg@lizations(a) The average energ{E(t)) grows linearly with time. The
inset gives an estimate of the diffusion constBrt=0.0473). (b) The time-asymptotic value of the equipartition ratl(t))/(v(t)?) is
equal to3.

_ 2E sn(¢:k)en( ¢:k) demonstrates Fhat the th .regir-nes are observed numerically
E= YT &(b); (77 when the nonlinear coefficient is very small compared to
(4E+ ") dri(¢;k) w?: we use the numerical values=1 and\=10 5. We
(2E+ %) notice that in the short-time linear regime, the usual equipar-
b=(AE+ wh) V4 . 5/4Sd2(¢;k)§(t) tltlo_n reIatu_an for a quadrgnc potential is venﬁec_(E()
(4E+ ") =(x?)), while the exponential growth of the energy is char-
5 acterized by the Lyapunov exponekt defined in Eq(7). In
~ Eo%é(D) s (¢_k)_5f( ¢;kyen( k) the long-time regime, the equipartition ratio reaches its non-
(4E+ o)™ , dré(¢;k) linear value2, while the energy growth becomes algebraic
with a generalized diffusion constabiz(\), in good agree-
¢ ment with Eq. (67), up to the expected scaling factor
Xfo scP(6;k)d6|. (78 Dg(\)=Dg/\.
As compared to Eq59), two supplementary terms appear in IV. COLORED GAUSSIAN NOISE
Eq. (78). These terms are related ek/dt and are propor- We now consider the case where the Gaussian noise has a

tional to w?. o= : .
@ onzero correlation time, and discuss how the previously

Although the dynamical e.quations are more_complicate ound scalings are modified. The system we want to study
than those of the purely cubic case, the analysis can be PEL tisfies the dynamical equaﬁon

formed as above. We shall, however, simplify our discussion

here by takingk equal to its asymptotic value {2. This 42
approximation is justified as soon as the energy is large. We —x(1)+x(t) p(t) +x(t)2""1=0, (80)
also replace the nois&(t) by the effective noiséZ(t) de- t2

fined in EqQ.(65). This second approximation is only qualita-
tively correct, since it amounts to neglecting a deterministicvherer is a colored Gaussian noise of zero mean value. The
force in the effective Langevin dynamics f&. We thus statistical properties ofy are determined by

obtain
(n(1))=0,
. 2E
E=— 1 E(1). (79) D /
(4E+ %) <n(t)n(t')>:2—7e—““ i, (81)

We deduce from Eq79) that as long aE<w*, the energy

behaves as the exponential of a Brownian motion and, theravherer is the correlation time of the noise. The noigean

fore, increases exponentially with time. However, when be obtained from white noise by solving the Ornstein-

> @*, the nonlinear term becomes important. Equatigf) ~ Uhlenbeck equation

reduces to Eq(58), and the energy grows as the square of

time. dn(t)
We expect that the crossover from exponential to alge- dt

braic growth will appear wheiE~ w* or x~w. Using un-

scaled variables, the balance between linear and nonlinearhere £(t) is the Gaussian white noise defined in E2),

terms in Eq.(72) is obtained whenx= x;~ ol J\. Figure 4 andt,t’>r.

1 1
=~ D+ -4, 82
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FIG. 6. Cubic oscillator with additive noise. EquatioAl) is integrated numerically fon=2, D=1 with a time stepst=5x10"*.
Ensemble averages are computed ovérre@lizations(a) The average energdE(t)) grows linearly with time. The inset gives an estimate
of the diffusion constant when noise is additii:=0.5055). (b) The time-asymptotic value of the equipartitiog(t))/(v(t)?) is equal
to 3.

Introducing action-angle variables as in Sec. lll, we ob-the noise can be considered to be white, the averaging pro-
tain the same set of coupled Langevin equations, Eqsedure can be applied as in Sec. I, and the scalings found in
(27),(28), whereé(t) is replaced by the colored noisgt). (51) are correct. WheM~ 7, the noise becomes correlated
As emphasized previously, the generalized equipartition reever a period of the free system and cannot be treated as
lations are independent of the nature of the noise: 8.  white anymore. NowT~ 7 corresponds tE~ 7 2"(~1),
and (32) remain valid when the noise is correlated in time.which leads to crossover timé, of the ordert”’(n 1
This is confirmed by numerical simulatiofsee Fig. B) for 72001 e, te~7 2. For times larger thanc, the
n=2]. scalings(84) are observed.

The scalings found in Sec. Il A are deduced by averaging
the Fokker-Planck equation. Here, we must write the evolu-

tion equation for the joint PDF of, v =x and#, Py(x,v,7): V. CONCLUSION
9P 9P P 1onP D &P _ A pa_lrtlcle '_[rapped in a confining potentl_al Wlth whlte mul-
— =y —+ (X" xp) — — tiplicative noise undergoes anomalous diffusion: if the con-
at X T In 277 gy fining potential grows ag?" at infinity, the particle diffuses

(83  as(x?)~D{"tAr. We have calculated the anomalous diffu-
ssion exponeni3,=1/(n—1), and the coefficiend{” . We

ave found similar laws for the diffusion of velocity and
energy. Thanks to generalized equipartition identities, we
have derived universal relations between the exponents and
between the prefactors. Our calculations are based on the
assumption that in the long-time limit the probability distri-

We perform a scaling analysis of this equation in the spirit 0
[34]. Balancing the diffusion term with the time derivative
leads toy~tY2. Then we compare the terms of probability
current @P)/x and [(x?""*—x7)P]/v. A consistent bal-

ance between these terms is possible only?f-x?" and
2n—2

X 7. We thus find the following scaling relations: bution function becomes uniform in the phase variable. By
E~tV[2(n-1] averaging out the phase variations, an effective projected dy-
namics for the actiorfor energy can be defined. This tech-
~tY4n=1)1 nique enabled us to derive the asymptotic distribution law of
the energy in thet— limit, and to calculate its non-
~tM[a(n-1)] (84)  Gaussian featurgskewness and flatngs©ur analytical re-

sults agree with the numerical simulations within the numeri-
Thus, we predict that the scaling exponents for colored noiseal error bars. Thus, the averaging procedure produces very
are half the exponents calculated for white noigl). Nu-  accurate results; it would be an interesting and challenging
merical simulations indeed confirm that the average energgroblem to characterize deviations from our results and to
of a cubic oscillator (= 2) with colored multiplicative noise calculate subleading corrections.
grows linearly with timg/see Fig. $a)]. In the case of colored multiplicative noise, we have de-
The periodT of a deterministic oscillatofwithout nois¢  duced the anomalous diffusion exponents from an elemen-
decreases as the energy increadesE ™ (""V2" from Eq. tary scaling argument. Our result, supported by numerics,
(25. When the equations are written in the energy-angle coshows that the exponents are halved in the presence of time
ordinates, two time scale$ and 7 appear. In the regime correlations. The efficiency of parametric amplification de-
where 7<T, the correlation time of the noise is much creases if the noise is coherent over a period of the system
smaller than the typical variation time of the angle. Henceand, therefore, the particle diffuses at a much slower rate. In
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this case, however, the averaging technique is harder to apphoise [Eq. (51)]. For example, we observe that a particle

because the noise itself is averaged out to the leading ordesubjected to an additive noise in a quartic potentiek Q) is

A precise calculation in the case of colored Gaussian noissubdiffusive with an anomalous exponent equal %o

still remains to be done. whereas in the presence of multiplicative noise it behaves
We have considered only Hamiltonian systems, i.e., sysdiffusively.

tems where no friction is present. Nevertheless, if the damp- Finally, when both additive and multiplicative noises are

ing is small, the results we have derived for the undampegresent, the oscillator is governed by the equation

oscillator remain valid until the crossover tinfielentical to

the typical decay time of the energig reached. The general d2

case of a nonlinear oscillator witfinean friction leads to —ZX(t)+X(t)§mu|t(t)+X(t)2”_l=§ado(t), (A4)

interesting results and is currently under sti@$). dt

where &, and &,44 are independent white noises of ampli-

tude Dp,,r and D,qq, respectively. If we study the energy
It is a pleasure to thank Yves Pomeau for encouraging usariation due to noiseE~XxX&murt Xéag= E™ " "2 Emunt

to work in this field of nonlinear stochastic equations and for+ EY%¢,4,, we observe that the first term has a dominant

his advice. K.M. is grateful to Michel Bauer for many useful effect. From this simple argument, we conclude that the mul-
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discussions. tiplicative noise is expected to dominate over the additive

noise and, therefore, asymptotically, the scaling laws will be

APPENDIX A: NONLINEAR OSCILLATOR WITH those derived for the multiplicative noise alone. However, a
EXTERNAL AND INTERNAL NOISE crossover between the two scalingd) and (A3) should be

observed by choosinB ;<< Dagq- Comparing Eqs(51) and

In this Appendix we discuss the behavior of an oscillator(a3z), we find that the effect of the multiplicative noise starts
subjected to both additive and multiplicative noises. Becausg, dominate after a crossover time of the order of

we are considering nondissipative systems, there is no stagp i yl(2n-2) _(p U0 e t ~ph-lpn
tionary probability distribution; the position, velocity, and% muitc) (Daade) ™, 1-€:1te~Daga /D mui
energy of the system satisfy scaling laws.

We first consider the case where the noise is only additive.

As before, the linear term can be neglected in the long-time  The algorithm used to integrate numerically the stochastic
limit and the dynamics is given by ordinary differential equations studied in this article is the
one-step collocation method advocated 29]. In this Ap-
pendix, we recall the general principles underlying this
method, and give the algorithms we used to integrate Egs.
(11) and(80)—(82) for white and colored noise, respectively.
where () is the Gaussian white noise defined in Ef). All stochastic equations are understood according to Stra-

The oscillator’s energy, defined in E(L2), now obeys the tonovich rules.
following equation: Let {X;}i=1 ... n beN real variables of time¢, and¢(t) a

stochastic process assumed to be Gaussian and white. We
E=xX&(t). (A2)  Wwish to solve systems dfl coupled Langevin equations of

the form

Although this equation can be analyzed as in Sec. Ill, we will

only discuss our results qualitatively, referring the reader to xi=fi (X (O +aix; (DHEW), (B1)

[35] for a thorough analysis. Using the energy and angle

variables, defined in Eqg22) and (23), we find that the wheref; andg; areN (smooth functions of thex;’s. Let 6t

angle variablep is a fast variable: the equipartition relation- pe the integration time step. Upon formally integrating Eq.

ships, Eqs(31) and (32), remain valid. This is indeed con- (B1) between O anddt, we obtain the following set of
firmed by numerical simulations, as shown in Figo)for a  coupled equations implicit ifix;(t)}:
cubic oscillator.

Sincex~EY? andx~EY?, we obtain from Eq(A2) the
scaling laws forE, x, andx:

APPENDIX B: NUMERICAL ALGORITHM

d2
—X(1) +Xx(1)2" = &(t), (A1)
dt?

ot ot
Xi(&)—xi(O)ZJO fi({x;(s)})ds+ fo gi({x;(s)}é(s)ds.

(B2)
E~t,
For small enoughdt, the functionsf; andg; may be Taylor
x~t/2n, expanded in the vicinity of=0, e.g.,
x~t12, (A3) fi({x;(S)D="1i({x;(0)}) + akFi({x;(0)})oxk(S)

1 (Ux
The scaling exponents for additive noise are different from, +alaatix(0)D]1ox(s) dx(s) + -,
and smaller than, the exponents for multiplicative white (B3)
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wheredx () = x(S) — Xk(0). Replacing the functionf and

g; in Eq. (B2) by the expansioiiB3), we obtain a new set of [29], the variableZ, may be approximated by the expression

coupled integral equations implicit idx;}. Upon solving
these equations up to an arbitrary orderdn we obtain

ox(6t). In practice, we implemented an algorithm exact to

O(6t?).
1. White noise
We integrate the following set of first-order differential
equations:
X=v, (B4)
v=—w X A\Xx"" 14 x¢, (B5)

where the Gaussian white noigét) verifies Eq.(2). The
exact evolution equations fobx(dt)=x(dt)—x(0) and
dv(dt)=v(6t)—v(0) read

ot
5X(5t)=fo dgv(0)+dv(s)], (B6)

dv(dt)= f:ds{— 0?[x(0)+ 6X(s)]— N[ x(0)+ 6x(s)]>" 1

+[x(0)+ x(s)]&(s)}- (B7)
The auxiliary variableZ, andZ,, defined by
ot
Zl(&):jo &(s)ds, (B8)
ot
ZZ(&):L Zy(s)ds, (B9)

are Gaussian random variables with zero average and the

following  correlations: (Z,(6t)%)=Dét, (Z,(5t)?)
=D6t3/3, and(Z,(8t)Z,(8t))=Dst?/2. Up to order §t)?,
we find

X(8t)=x(0)+v(0) st+ Z,( 6t)
+ 26t — w?x(0)—Ax(0)2""1],  (B10)
v(8t)=v(0)+Z1(8t)+ 8t — w?x(0) — Ax(0)2" 1]
+16t%0(0)[ — wx(0) — (2n—1)Ax(0)?"2?].
(B11)

In practice, we use twandependentGaussian random

noises, Z; and Y4, with zero mean and correlations

PHYSICAL REVIEW E 66, 041113(2002

(Z,(8t)%)=Dét, and (Y,(8t)2)=Dét. As shown in Ref.

1 1
Zy(8t) = | 5Z1(8) + ——=Y1 () (B12)

2\3

when the algorithm is exact up to ordér?.

2. Colored noise

When the noisey(t) is correlated, we must solve a set of

three coupled equations:

X=v, (B13)
v=—w?X— A"+ x7, (B14)
. 1 1
n=—_nt_¢& (B19
The set of exact integral equations becomes
OX(6t)= J’:tdS[U(O)-I-ﬁv(S)], (B16)

Sv(ot)= Jomds{—wz[x(0)+ SX(8)]—A[x(0)+ &x(s)]?" 1

+[x(0)+ ox(s) [ 7(0) + 6n(s) I}, (B17)
ot 1 1
om(ot)= fo ds{ —~[n(0)+59(9)]+ — &) .
(B19)
The algorithm to ordebt? reads
X(8t)=x(0)+v(0)st+ ;U(O)é\tz, (B19)

v(8t)=v(0)+ &t[ — wX(0) —AX(0)?" "1+ x(0) 7(0)]
1 1
+ ;X(O)Zz(ét)vL Eétz v(0)[ — w?x(0)
1
—(2n—=1)Ax(0)*"" 2+ »(0)]— ;X(O) 7(0) |,
(B20)
1 1 1
n(6t)=n(0)+ ;Zl(f?t)+ - ;77(0)&— —Z2(0t)
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