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Nonequilibrium relaxation analysis of two-dimensional melting
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The phase diagram of a hard-disk system is studied by observing nonequilibrium relaxation functions of a
bond-orientational order parameter using particle dynamics simulations. From a finite-time scaling analysis,
two Kosterlitz-Thouless transitions can be observed when the density is increased from the isotropic fluid
phase to closest packing. The transition densities are estimated to b&p &@d 0.91(2), where the density
denotes the fraction of area occupied by the particles, the density is normalized to one for the quadratic packing
configuration. These observations are consistent with the predictions of the Kosterlitz-Thouless-Halperin-
Nelson-Young theory.
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I. INTRODUCTION Monte Carlo(MC) simulations with constant pressuj@|.
With Lee-Kosterlitz scaling, they found a bulk free-energy
Since computer simulation suggested a melting transitiotarrier between two phases and concluded that the transition
in hard-particle systeri,2], many studies have been under- is of first order. As they used only up to 400 particles, it is
taken to understand the nature of this transition, which idifficult to say whether the system is large enough to ex-
now often called as the “Alder transition.” The property of trapolate to the thermodynamic limit. Fernandez, Alonso,
the two-dimensional solid of the hard-disk system is notand Stankiewicz reported that the two transition poipts
clear yet, as the two-dimensional system with short-rangand p,, were the same within statistical errdf$0]. They
interaction at density less than 1 lacks positional of@r obtained pj=p,=0.916(5) for the transition density and
Halperin and Nelsofi4], and Young[5] explained the two- concluded that the intermediate phase does not exist or its
dimensional solid based on the Kosterlitz-Thoulés§)  range is quite small. Weber, Marx, and Binder studied the
transition, which is referred to the Kosterlitz-Thouless-transition via the sub-block analysis method of finite-size
Halperin-Nelson-Young(KTHNY) theory. The KTHNY scaling and concluded that the transition is of first ofdét.
theory introduced a new phase, a “hexatic phase,” betweehey obtained the critical densitiep;=0.880 and p,,
the liquid and the solid phase. The correlation of the bond=0.905. Jaster studied the divergence of the bond-
orientational order is long-range in the solid phase, quasierientational correlation length and the susceptibility with
long-range in the hexatic phase, and short-range in the liquiMC simulations and obtained the results that are in good
phase[6]. With the assumption that two kinds of topological agreement with the KTHNY theory12]. He determined the
defects, a disclination and a dislocation, are unbound separitical densities asp;=0.899(1) andp,,=0.91. Recently,
rately, the theory predicts two KT transitions. Another theorySengupta, Nielaba, and Binder studied a dislocation-free tri-
was proposed by Chii7]. He studied the spontaneous gen-angular solid of hard disks by MC simulatiofis3].
eration of grain boundaries, and predicted a first-order tran- They found that the KTHNY transition preempts the first-
sition. order transition by a small margin with numerical solutions
To clarify the nature of this transition, many computer of KTHNY recursion relations. Though many papers have
simulations have been performed. Alder and Wainwright reheen dedicated to the problem, as yet there are no conclusive
ported that the transition is of first order in their particle results to explain the transition.
dynamics simulations with 870 particles. The densities were In this paper, we study the problem by analyzing the non-
normalized to 1 for the quadratic packing configuration, soequilibrium relaxation (NER) behavior of the bond-
p=4Nr?/A with the area of the system, the number of orientational order using particle dynamics simulations. By
particlesN, and the radius of the particlesHereafter we use analyzing the NER data, one can accurately determine tran-
the definition for density. They determined the highest densition points and exponents including dynamical exponents
sity at which the isotropic phase can existgs-0.880 and  for various kinds of systems with the MC methpt#—16.
the lowest one at which the solid phase can exisipgs NER was also applied to spin-glass transitions to analyze the
=0.912[2]. Zollweg, Chester, and Leung examined the sizeequilibrium phase diagrafi7]. These studies showed that
dependence in the hard-disk systems and found a logarithmiquilibrium properties of a system can be studied by analyz-
size dependence close to one of the melting pdBiksThey ing its NER behavior. NER methods saves much computa-
also argued that when the system becomes larger, the denstignal time because they use only the relaxation interval
range of the intermediate phase becomes smaller, so it is nathich cannot be used by equilibrium methods but which
clear whether the intermediate phase, which corresponds tccurs, nevertheless, in the simulations. Therefore the equi-
the hexatic phase in the KTHNY theory, survives or vanishesibrium state of the system does not have to be reached. In
in the thermodynamic limit. Lee and Strandburg foundaddition, it turns out that the NER methods less influenced
double peaks in a distribution range of volumes obtained byy finite-size effects.

1063-651X/2002/6@})/04111@4)/$20.00 66 041110-1 ©2002 The American Physical Society



WATANABE et al. PHYSICAL REVIEW E 66, 041110 (2002

y JaYaVaVaVaVaVaVaVaVaVaVaVaVm
Q
Q
le C
X
0
. > ¢
Searching Area

Q

FIG. 1. The definition of the neighboring angl, and the
number of neighboring particles, wherek is a particle index and ¢

| is an index of the neighboring particles. The valuggfis defined
as the angle between the line from partiklend! with respect to an G

arbitrary, but fixed global axis. The value of, is the number of

particles in the search area of the partikle o ) . ) )
FIG. 2. The initial configuration of a system with 225 particles,

and densityp=0.89. All quantities are dimensionless. A small sys-

Il. BOND-ORIENTATIONAL ORDER tem is shown to improve visibility. Circles represent particles, and
The bond-orientational ordes is defined as the lines are bonds to calculate the hexatic packing order parameter
¢¢ having a value of 1.

Mk g6i by 2
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(1) ' thatis smaller than the real radiusised for the simula-

T Mk tion [18]. The effective density is extrapolated for the hard-
core system as
whereN andn, denote the number of particles and the num- ANT'2
ber of neighbors of particlk, respectively. The definition of p=—3 2

n, and 6y, are described in Fig. 1. Note that the ang|gis
defined with respect to an arbitrary but fixed global axis. To

search neighboring particles, we use a search area within . . . .
circle with radiusR and ignore particles at long distance to vehereA is the area in which the particles are allowed 1o

save computer time, in contrast to Jaster, who uses th Oﬁ(\)’e.indN (Ias tg: trl]qgsrngf?éc(if gaégﬂg? 'nAt?renZys:gm' I:Stggt
Voronoi constructiof12]. The value ofRis set to 2.7 (r is wing, we u ! IV iy. Al pw

74 - . . .
the radius of particlesto find not more than six neighbors in to be 1.0<107", which is short in comparison to the theo-

the area. We confirmed that the value §f has about the retical mean contacting time, Wh'Ch.'S about 0in this .
same value for the Voronoi construction and our searchin§@s€: © make the numerical integration stable. The theoreti-

area method. The parametég becomes 1 when particles al mean contacting time is the time when two particles are

are located on the points of a hexagonal grid, and it becomé’ contact, and it can be calculated by the elastic modulus

0 when the particle location is completely disordered. Therefde the mean velocity of particles. Total simulational steps

fore ¢ can be used to describe how close the system is tgvr:sgt(r)wcc)eoge{ Lhﬁ]gti?éi? {?;rgstigfngegcsggr_frggq_%fﬁgsogi
hexagonal packing. The expectation valuefgfdepends on 9 k

densityp and in nonequilibrium on timé averaged for each density.
yp q At the beginning of the simulation, the particles were set

up in the perfect hexagonal order, in other words(t

IIl. NUMERICAL SIMULATION =0,0) is J'., and the partlcles are .given.an initial velo'city.in
random direction. This initial configuration is shown in Fig.
A. The model 2. In this condition, the asymptotic behavior @f(t,p) is

We monitor the time evolution o at various densities €xpected to be an exponential decay in the disordéheid)
in particle dynamics simulation with periodic boundary con-Phase, a power-law decay in the Kiiexatio phase and a
ditions. The fifth-order predictor-corrector method are usedlecay slower than power law in the order@alid) phase.
for the time integration. We treat elastic disks and extrapolate
to the hard disks. All properties are rescaled with a radius,
mass and mean kinetic energy of particles, so all quantities
are dimensionless. The number of partidésf the system A typical configuration of small systemN=225, is
was 23256. The density of the system is controlled byshown in Fig. 3 and the time evolution aps with N
choosing the value of the radius of particlesThe mass of =23 256 is shown in Fig. 4. Figure 4 shows tlkiatbecomes
the particlesn was set to 1, and the mean kinetic energy perasymptotically constant at high density in the solid phase and
particle (v2/N) was set to 12.8. Under this condition, the decays exponentially at low density in the liquid phase. The
Young’s modulus was set to @0 ensure that the penetra- KTHNY theory predicts the range of density in whichy
tion depth is smaller than 0.02The extrapolation to hard- shows power-law decay between the solid and the liquid
core systems can be done by calculating an effective radiushase, but this is not clear from Fig. 3.

B. Results
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FIG. 3. Typical configuration of a system with 225 particles, a
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FIG. 5. Finite-time scaling withp;=0.901, A=0.2, anda

scaled density=0.89, and a hexagonal packing order parameter=0.83. The data of lower densitiep< p;) fall on a single curve,

$6=0.182. A small system is shown in order to improve visibility.

C. Finite-time scaling analysis

Although it is not easy to estimate the transition densities
p; andp,, from Fig. 4, we can evaluate them from finite-time
scaling. The following finite-time scaling analysis is useful

to study the KT transitiorn19,20. For densities lower than
pi, a characteristic relaxation timeexists in the system, so
we can writegg(p,t) as

¢6(8,t)=t_W/7')(s=p;pi), €

with a critical exponenh.
We cannot scale the data of densities higher thamp;

but the data of higher densities do not show the scaling behavior.
Densities are 0.878, 0.881, 0.883, 0.885, 0.888, 0.890, 0.893,
0.898, 0.903, 0.907, 0.913, and 0.918.

stantd. Assuming the scaling relation~ £ with a dynami-
cal exponent [19,20, the divergence behavior of can be
written as

r(e)=bexpale), (4)

with constanta andb. Using Eqs(3) and(4), we obtain the
finite-time scaling functionpg as

bo(e,t)=t M pg(te”¥ ). (5)

One can apply the same argument to deterrpipe We ana-

because there is no characteristic relaxation time as in thigze the results ofpg with the scaling form Eq(5). Scaling

system with critical KT behavior.

According to the prediction of the KTHNY theory, the
correlation length¢ diverges exponentially at the KT transi-
tion point, so it has the form as~exp@/\¢), with a con-

1 T r

In(¢y)

In(t)

FIG. 4. The time evolutions of the hexatic-ordering parameter

¢ (log-log ploy. The asymptotic behavior apg becomes constant

at high density and decays exponentially at low density. The graphs

parameters are the critical densitigsand p,,, the critical
exponent\, and the proportionality constaatof Eq. (4).

The scaling plot of the liquid hexatic transition is shown
in Fig. 5. Parameters arg =0.9012), A=0.2(1), anda
=0.831). Wetaketexp(~a/\) as the horizontal axis and
¢s(e,)t* as the vertical. The graphs for the densities lower
than 0.901 are well scaled, but those of higher densities are
not. This feature is characteristic to the KT transiti@d,2(Q.
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correspond to the solid and the liquid phases, respectively. As pre-

dicted by the KTHNY theory, the density range in whigh shows

FIG. 6. Finite-time scaling withp,,=0.910, A=0.1, anda

power-law decay is between the solid and the liquid phases, but it=1.2. The data of lower densitiep€p,,) fall on a single curve,

cannot be determined from this figure.

but data of higher densities do not.
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The fit result for the hexatic-solid transition is shown in time scaling analysis, two KT-transition points are deter-
Fig. 6. Parameters arp,,=0.91(02), A=0.1(1), anda  mined asp;=0.901(2) andp,,=0.91(2). Thescaling be-
=1.2(1). Thedata at lower densities show good scaling be-havior only at lower density of the two transition points
havior while the data of higher densities do not, which alsocsuggests that these transitions are of the KT-transition type.
suggests a KT transition. These results show good agreement with the KTHNY theory.

One can determine these two critical densities uniquelyThis study also shows that the NER method can be used for
since they cannot be scaled by anyand a with different  the particle dynamics simulation as well as for the Monte
critical densities used above. Jaster estimated these two tra@arlo method.
sition points ap;=0.899(1) ang,,=0.91[12]. Our results
are consistent with his result. ACKNOWLEDGMENTS
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