PHYSICAL REVIEW E 66, 041109 (2002
Diversity of order and densities in jammed hard-particle packings
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Recently the conventional notion of random close packing has been supplanted by the more appropriate
concept of the maximally random jammé&dRJ) state. This inevitably leads to the necessity of distinguishing
the MRJ state among the entire collection of jammed packings. While the ideal method of addressing this
guestion would be to enumerate and classify all possible jammed hard-sphere configurations, practical limita-
tions prevent such a method from being employed. Instead, we generate numerically a large number of
representative jammed hard-sphere configuratimsmarily relying on a slight modification of the
Lubachevsky-Stillinger algorithm to do sand evaluate several commonly employed order metrics for each of
these packings. Our investigation shows that, even in the large-system limit, jammed systems of hard spheres
can be generated with a wide range of packing fractions figga0.52 to the fcc limit ¢p=~0.74). Moreover,
at a fixed packing fraction, the variation in the order can be substantial, indicating that the density alone does
not uniquely characterize a packing. Interestingly, each order metric evaluated yielded a relatively consistent
estimate for the packing fraction of the maximally random jammed siaigf£~0.63). This estimate, how-
ever, is compromised by the weaknesses in the order metrics available, and we propose several guiding
principles for future efforts to define more broadly applicable metrics.
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[. INTRODUCTION generate the ensemble of all possible jammed configurations
(or a statistical sample of this ensembénd then calculate
Hard-sphere systems have served as useful starting poir@§ “entropy” as a function of packing fraction based on
to study the structure of diverse systems such as liquidghese configurations. An example of a possible entropy defi-
living cells, granular media, glasses, and powd&rs5]. De- nition s given by Edward$7]. However, there are sevgraj
spite its apparent simplicity, however, the hard-sphere S’ysterﬁ)]ractlcal hurdles to the use of an entropy measure for finding

offers many conundrums. One of the most notable exampl the MRJ state. Most challenging among these is the necessity

. . il generating all possible jammed states in an unbiased fash-
of such a conundrum is the recent demonstration that thg), using a “universal” protocol in the large-system limit.

venerable notion of theandom close packeRCP “state”  Eyen if such a protocol could be developed, however, the
of hard-sphere systems is ill defined and must be abandonggsue of weighting the resulting configurations remains.
[6]. This explains why, despite many attempts, there haSome regions of configuration space are likely to be much
never been a rigorous prediction of the RCP density. Consisnore densely populated with jammed states than other re-
tent with the ill-defined nature of the RCP state is the faclgions. This suggests that configurations in those regions
that the putative RCP density is clearly dependent on thehould be accorded modified weight, but to what degree is
protocol used to generate the packing, even when this demmnclear. Consequently, at least in the near term, a different
sity is reproducible within a specific protocol. To replace theapproach is necessary.
RCP notion, Torquato, Truskett, and Debeneddfiintro- We seek to identify the MRJ state by generating a large
duced a new concept called theaximally random jammed database of representative jammed configurations and rely-
(MRJ) state, defined to be the configuration that maximizesng on commonly employearder metrics(such as those
disorder among all jammed hard-sphere arrangements. Thifiscussed in Ref{8]) to identify the most random among
definition lays the groundwork for studying randomness inthem. In principle, the disorder in a packing is completely
packings of particlegand in condensed-phase systems incharacterized by the many-body configurational probability
general and initiates the challenging search for the MRJdensity function. In practice, however, such complete infor-
state in a quantitative fashion. mation is never available and one must settle for reduced
One method for identifying the MRJ state would be toinformation. For example, from functionals of lower-order
correlation functions, one can extract a set of scalar order
metrics. Although there is no uniquely qualified order metric
*Corresponding author. Electronic address: to apply to the identification of the MRJ state, one anticipates
torquato@electron.princeton.edu that it is possible to develop a set of reasonable and distinct
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order metrics. Ideally, each order metric in this set will iden-and Debenedetfi6] have shown that this maximum packing
tify the same MRJ state, so the most sensitive among therfiaction is dependent on the growth rate of the spheres.
can be chosen to identify the MRJ density precisely. Roughly speaking, by choosing a high growth rate, the struc-
To create a representative database of packings, we piure of the initial configuration is preserved to some extent,
marily rely on the well-known Lubachevsky-StillingékS) ~ leading to a more random final configuration. A slower
algorithm[9], but we also include a small number of con- grovx_/th rate allows the spheres more time to equmbrate and
figurations based on the method of Zincherik6] or using SO yields more dense, but somewhat more ordered, final sys-
the protocol of Speedyl1]. The details of these methods are MS. _ _ _
contained in Sec. Il. We then evaluate the order of each Yhile the final configurations that can be generated from

configuration generated based on several order meties the LS algorithm haye been sh'own.to span a substantial
fined in Sec. Il). We attempt to use this information to esti- range of volume fractions essentially independent of system

mate the density of the MRJ state in Sec. IV. In doing so Wesize[G], it is reasonable to expect that jammed configurations

) . . ) X i [ at has been generated previ-
identify several areas in which the order metrics we hav may exist outside the range th g P

| o Vi hi ; lud usly. To extend this range, however, it is necessary to
employed fail and, relying on this experience, we conclu €modify the protocol employed very slightly. Specifically,

in Sec._V with a discussio_n of guidelines for designing and;iher than choosing a single growth ratethe growth rate
evaluating new order metrics. of the spheres is decreased during the generation of a pack-
ing. This permits the structure of the original packing to be
Il. GENERATION OF SPHERE PACKINGS retained to the greatest glegree possible. We _have (_:hosen to
employ discrete drops in the growth rate, in which the
In the results described here, we have employed systemgowth rate is decreased by a constant factor at each step.
of 500 identical hard spheres. We have chosen 500 spheres@ther schedules for the growth rate are certainly feasible.
minimize the computational costs of generating each con- As recently noted by Torquato and Stillinget3], there
figuration. Several larger systems of up to 10000 spheresre several possible definitions of “jammed.” Running the
were also generated. As the system size became larger, thg algorithm until the collision rate diverges ensures that the
packing fractions for a given set of parameters become morgpheres aréocally jammedexcept for the possible presence
narrowly distributed. Importantly, however, by varying the of caged but movable particles, or “rattlejs”Local jam-
parameters employed in the LS algorithm, a wide range ofning requires that no single sphere in the system can be
packing fractions can be generated, i.e., approximately fronranslated while holding fixed the positions of all other
¢=0.62 to the fcc limit ¢p~0.74). Indeed, the narrowing of spheres in the system. Recent work has shown that the LS
the distribution of packing fractions means that for suffi- protocol generates packings that are strictly jammed in al-
ciently large systems the packing fraction can be specifieghost all case§l14]. Strict jamming requires as a prerequisite
quite preciselya priori anywhere in this wide range of pos- that there can be no collective motion of any subset of the
sible densities. Note that other protocols, as discussed belogpheres, holding the positions of the remaining spheres fixed.
can achieve an even broader range of dengiigth packing  This definition of jamming also requires that attempted de-
fractions as low agh=0.52). formations of the simulation bofe.g., shearing the boxot
The simulation box was a cube with periodic boundarygenerate any sphere motions. We restrict our interest here to
conditions. We employed the LS algorithi@] for the gen-  strictly jammed systems. Typically a small percentdde
eration of most of our hard-sphere packings. This algorithn8 %) of rattler particles are present in our packings. The re-
is essentially a molecular dynamics simulation in which themainder of the particles, however, satisfy the strictly jammed
spheres grow over time. Once the initial conditiqephere  condition. We retain the rattlers to remain in accord with
positions and velocitigsare fixed, the system evolves deter- experimental packings. In restricting ourselves to strictly
ministically. Intuitively, the most random configurations jammed packings, we eliminate some common lattices from
should result from initializing the sphere centers as a Poissoour consideration, most notably the simple cubic lattice. We
process with diameters—0 (i.e., as an ideal gasUsing  have tested a representative sample of the random configu-
more dense initial configurations like the random sequentiatations generated for strict jamming and found all configura-
addition (RSA) algorithm[12] or a low-density equilibrium tions tested to meet this criterion.
liquid, however, produces very similar final packings but In addition to the packings generated using the LS algo-
saves significant computational time. We use RSA configurithm, we also include a small number of packings generated
rations to set the initial positions of the sphere centers. In thasing the Zinchenko protocgll0] or based on the Speedy
RSA method, sphere centers are placed uniformly in spacgrotocol [11]. The original packings that result from the
one at a time, rejecting any placement that would result in aispeedy protocol, however, are not even collectively jammed
overlap. This allows us to start our simulations at packingand so cannot be directly compared to strictly jammed struc-
fractions of ¢=0.30 rather than the very low-density ideal tures. We can use the LS algorithm to compress the Speedy
gas state. configurations further, producing strictly jammed packings.
The LS algorithm has a single paramekerwhich repre-  This is possible because the LS algorithm can be initialized
sents the sphere growth rate relative to the mean sphereith any sphere configuration that does not include overlaps.
speed. As the spheres grow larger, the collision frequency¥hus, we use the Speedy configurations as initial configura-
increases and a maximum packing fraction is asymptoticallyions for the LS algorithm, yielding strictly jammed pack-
approached. In monodisperse systems, Torquato, Truskethgs.
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IIl. DEFINITION OF ORDER METRICS 20 '

The bond-orientational order metr@g defined by Stein-
hardt, Nelson, and Roncheftl] provides aglobal measure
of crystallinity in the system. For each sphere, a set of bonds
is defined connecting its center to the centers of its neares
neighbor spheres. For this purpose it is necessary to choose _
method for designating two spheres as nearest neighbors. 3 10
number of methods for doing this is possible and will be
discussed below in greater detail, but for the present defini-
tion it is sufficient to assume that nearest neighbor sphere: 5
can be identified. We can then calculd®g based on the
spherical harmonic¥,(6,¢) as - ]
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FIG. 1. Radial distribution function of a single 500 sphere pack-

. . . ing (¢=0.637). Note that there are sizable fluctuations in the area
whereNy, is to the number of nearest neighbor bonds in theys e firgy minimum, making a precise determination of the posi-

system and); and ¢; are the polar and azimuthal angles of yjon of the minimum impossible.
bondi. Note that because we are usi@g only the Yy, are

used, though in the original Steinhardt, Nelson, and

: o . . n which n; is the average occupancy of thté shell and the
Ronchetti definition any spherical harmonic could be use : wE o .
) . . superscripts “fcc” and “ideal” refer to the reference open
(i.e., Qg could be calculated usingg,,). Qg is chosen here

because it reaches it maximum value for the perfect FCéCC lattice and ideal gas systems, respectively. There are sev-

; . . eral parameters that must be specified to make use of this
crystal (though the exact value varies slightly depending on . . .

S : order metric. In particulafNg,esis the number of shells over
the definition of nearest neighbors

A more local measure of orientational ordeY; ooy, can which the su_mmation is_carried out. In addition, i_t is_neces—
be obtained by evaluating the bond—orientatiéﬁcaaI’ order agary to specify the position of the shells and their width. In
each sphere individually, and then averaging over all sphere r_der to ensure th?t the fcc Iatt|cg maximizes the valug of
More preciselyQ mé be calculated as ftis necessary to fix the she.II positions such that they corre-

p Y6 local MAY spond to the successive neighbor shells of the open fcc lat-

tice. In addition, it is useful to define the shell width such

6

4
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j
M

2\ 172
Nfar & |1 that the maximum amount of space is covered, but that no
QG,IocaIEjz_:l 13 mzﬁ e Izl Yem(0i . i) . (20 two shells overlap. In other words, the shell width can be

defined as the minimum separation between coordination
4 shells in the open fcc lattice among the filg,e s Shells.
where n}, is the number of nearest neighbors of sphgre
Qs.10cal IS @nalogous to the two-dimensional definition of lo-
cal bond-orientational order in Kansal, Truskett, and IV. CALCULATION OF ORDER METRICS

Torquato[15]. As noted in that work, a local measure of A total of 2600 sphere packings were generated using the

O;dc?(:r:s mgrnei:eanS'Ité\gealt?nsergsﬂrgrﬁitﬂggiigig'32;’1 Wghllgcglrs algorithm with different growth rates and initial configu-
Eneasugr]e avoids thg ossibility of destructive ir;terfergence ber_ations. In addition, 60 packings based on the Speedy proto-

- PO; y col were analyzed, as were four packings using the
tween different crystalline regions.

In addition to bond-orientational order, sphere system%lnChenko protocol. For each of these configurations, the

. - Translational ordeiT and the local bond-orientational order
may also be characterized by the presence of translation
' . 6.10cal Were calculated.
order. Using the fcc lattice as a reference, Truskett, Torquatoy ®: . . . L
. . : Before discussing the results of this analysis, it is neces-
and DebenedetfB8] have defined a translational order metric . . ey
: : . . sary to specify the method employed for identifying nearest
T. In this metric, the mean occupation of thin shells concen-_". . ; : 4
S T X , neighbors for use in evaluating bond-orientational order.
tric with each individual sphere in a system is compared t .
) . _“Truskett, Torquato, and Debenedd®i employed a defini-
the mean occupation of the same shells in the open fcc lattice . . S
. . tion of nearest neighbors based on the radial distribution
and the ideal gas at the same number density. The transl

. . flinction of a packing. In particular, a cutoff distanGgy is
tional orderT is calculated as defined by the position of the first minimum in the radial
Nepet distribution function(seg Fig. L All spheres wiFhin a dis-

E (n; — nideal tancer pax are ther_l conslc_Jv_ered to be nearest neighbors of one
= - another. While this definition works well under some condi-

()  tions, it is difficult to implement with consistency. In particu-

= Nshells !
E (nfee— pideal lar, except for lattices or for very large packings, the radial
= ! distribution function of a finite packing will contain some
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fluctuations. Consequently, the position of the first minimumfcc lattice. In these cases, we have perturbed each sphere
will necessarily be subject to some variation. The local bondvery slightly from its original location by moving it a dis-
orientational order, however, is very sensitive to the value otance of 10°X ¢ in a random directionwhere o is the

Imax- R€asonable estimatesmyf,, can lead to differences in sphere diametgr This will remove any degeneracy and al-
Qs,0cal Of OVer 5%. These variations are unacceptably largdow nearest neighbors to be defined.

for identifying the MRJ state, so a less subjective definition
of nearest neighbors is required. We use the Delaunay triarQg oco VErsus packing fractionp, respectively. The different

Figures 2 and 3 show ordering phase diagram3 ahd

gulation, which is suitable for identifying nearest neighborssymbols in the plots correspond to variations in the sphere
uniquely and unambiguously for almost any point E]. growth rate and initial condition used in the LS algorithm.
The exception comes for cases in which five spheres are dllhe configurations labeled “one pass” were generated using
equidistant from any single point in space. While such dea constant growth rate for each configuration. The dimen-
generacies are extremely unlikely in random packings, thegionless growth rates used were in the range Gsd01
are present in the simple cubic lattice, the bcc lattice, and thes0.04 for these configurations. The configurations labeled
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034 5 g ]
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™7 L i FIG. 3. (Color onling Plot of
_ L 0,32 [ ! - 2 i local bond-orientational order
g - = o 0, N g E (Qs,10ca) Versus packing fraction
—10-35—! = & foc (deletions) | (¢) for jammed configurations.
Cy I 0.31 062 0625 063 0.635 (.64 ? cll:;cﬂﬁx : The same configurations used in
L i 3 R 1.:’2.1 . Figure 2 are shown here. Inset is
r : s loop 1/3x 1 a magnification of the neighbor-
"3 B 4 « loop 1/4x ] hood near a packing fraction of
- e s loop 1/5x 4 0.64.
L o o * Spaed:.r -
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[ o e g § 85 B P 5 59 9503 Lig.yt p ]
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“loop” were generated by decreasing the growth rate in atained at slightly lower packing fractions. This shows that the
stepwise fashion over the course of generating a single paclerguments of Torquato, Truskett, and Debenedléitcan be
ing. The factor by which the growth rate was decreased aapplied to packing fractions below=0.64 along with those
each step is indicated in the legend. For each of these combove this value as had been shown previously. Importantly,
figurations, the initial growth rate wds=1.0, which drops this demonstrates that there is a relatively broad range of
to I'=0.004 over the course of the simulation. Points labelegacking fractions over which amorphous hard-sphere sys-
“cubic” were generated using the same stepwise decreasintgms can be generated. A closely related observation is that
growth rate protocol, but were initialized with the spheresfor the set of configurations at any given packing fraction
arrayed as a simple cubic lattice. Configurations generatetthere is a range of values for each order metric. Even among
based on the Speedy or Zinchenko protocols are labeleamorphous systems at the same packing fraction, some con-
“Speedy” and “Zinchenko,” respectively, for a representa- figurations are less ordered than others. This clearly shows
tive subset of allapproximately 2700configurations gener- that the packing fraction alone does not uniquely character-
ated. Note that the Speedy configurations were compressézk an “amorphous” packing. In contrast to the RCP state,
using the LS algorithm until the collision rate diverged. Tothe MRJ state is defined independently of density and its
retain as much of the original character of the packings aballmarks are specified by a collection of relevant structural
possible, we used a growth rate that started at a valdé of properties that serve to distinguish it from among the entire
=1.0 and dropped by a factor of 3 at each step. In additiondiverse collection of jammed packings.
the Speedy configurations each contained 4000 spheres ver- Focusing on the region in whickh~0.63, an apparent
sus the 500 sphere present in all other configurations. Faninimum in both order metrics can be seen. The identifica-
local measures of order, however, the larger system siz&on of this region as the MRJ state, however, is problematic
should not play a significant role. Finally, a set of configu-for a number of reasons. Foremost, it is clear that for either
rations based on the fcc lattice was also generated and isetric it is possible to generate configurations with a lower
labeled “fcc.” These configurations were generated by ranvalue of the metric than even the lowest-order configurations
domly deleting spheres from the full fcc lattice such that thewith ¢~0.63. The types of configurations that result in the
final configuration was still strictly jammed, yielding lower- lowest values of each order metric are instructiQg oca iS
density structures. Using this protocol it proves feasible taninimized for the configurations that resulted from initializ-
reduce the packing fraction to the neighborhood @f ing the sphere positions according to the simple cubic lattice.
=0.52. This indication of disorder, however, is spurious, as can be
Comparing Fig. 2 and Fig. 3 yields a number of interest-seen from the high value 4f for the same set of configura-
ing observations. Perhaps the first point worth mentioningions. Similarly, configurations that result from simply delet-
regards the neighborhood in whiah~0.64 (i.e., near the ing spheres from the fcc lattice can produce extremely low
traditional packing fraction of random close packintpde-  order as measured Bl Again, however, this small amount
pendent of the choice of order metric, this neighborhoodf order indicated is contradicted by the significant amount
does not indicate any unique point in the ordering “phase”of orientational order revealed by tii ;oco Values for these
diagram. Increases in packing fraction can be obtained at theonfigurations. In fact, these extreme cases are not the only
cost of increasing order and decreases in order can be obnes in which translational and bond-orientational order are
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not directly related. Shown in Fig. 4 is a plot @fversus value for ideal gas systems of 500 particles is shown as a
Qs 0cal fOr the packings. Note that, while there is a generaldashed line in Fig. 5. Note that a number of jammed systems
trend in which both of these order metrics are directly re-have Q4 values below that of the ideal gas. Naturally, it is
lated, there are several exceptions. Most readily visible is th@ot possible for a system with hard-sphere constraints to be
inverse relation between the order metrics for packings thais disordered as the ideal gas, so we can conclude that at low
were based on the simple cubic lattice. In addition, it can bgaluesQg is not sensitive to changes in order. However, the
observed that there is a nonunique relationship bet#een consistency of the estimate of the packing fraction of the
and Qg joca for the fcc lattice with different numbers of de- maximally random jammed statexcluding those packings
letions. The lack of a monotonic relationship between thenat are clearly indicated as ordered by any mgfsavorth

problematic. In particular, we have not identified any con-jgentified using an improved order metric.

figuration that minimizes botfi and Qs oc4. IN Other words,
configurations with the least order as measure@pyq are
not the same as the configurations with the least order mea-
sured byT. Thus, among the configurations shown here, it is
not possible to uniquely identify a single state as having We have generated a large database of strictly jammed
being the most random based on these order metrics. configurations and calculated several order metrics for each
In addition to these local measures of order, we have alspacking intended to categorize this diverse set. In doing so,
calculated the global bond-orientational ord@g for each  we have shown that there is a wide range of densities over
configuration. Figure 5 shows a plot §fs versus packing which strictly jammed systems can be created, namely, from
fraction. Becaus&)g tends to decrease with increasing sys-¢~0.52 to the fcc limit ¢p~0.74). Importantly, this range is
tem size(going roughly as N?), the 4000 sphere packings at most weakly dependent on system size. Thus, jammed
based on the Speedy configurations are not included. A feward-sphere packings can be generated at will in this allow-
features of this plot are particularly notable. The first is thatable density range, independent of the system size. Further-
the structures based on both the simple cubic laiticen-  more, we have demonstrated that at a fixed packing fraction,
pressed to meet the strict jamming crit¢@ad the fcc lattice  the variation in the order can be substantial, indicating that
with deletions are properly recognized as having high dethe density alone does not uniquely characterize a packing.
grees of order. While this suggests tliaf may be the most This proves once again that the RCP state is not a meaningful
broadly applicable order metric for the configurations con-concept. On the other hand, this weakness is not shared by
sidered here, its inability to properly identify order in poly- the MRJ state, which is defined independently of density and
crystalline systems excludes it as a universal metric. In adis specified by a collection of relevant structural properties
dition, the global Qs measure is relatively insensitive that serve to distinguish it from among the entire diverse
between different random systems. While the range of packesollection of jammed packings. It is noteworthy that each
ing fractions that produce the lowest valuesf gives evi-  order metric evaluated yielded a relatively consistent esti-
dence for this observation, a comparison with ideal gas sygnate for the packing fraction of the maximally random
tems offers a more concrete illustration. The averge jammed state ¢yry~0.63).

V. DISCUSSION AND CONCLUSIONS
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The difficulties encountered in applying any of the com-perfect crystals, crystals with defects, dense amorphous sys-
monly employed order metrics to our jammed configura-tem, ideal gas. Within any of these broad categories there
tions, however, suggest that the problem of creating a metrimay be many types of systems, each with different degrees
that can be applied to a broad range of configurati@mrs of order. Though it is tempting to create a more stringent test
even one that is effective for the much smaller set of jammedby expanding the hierarchy in each categteyy., demand-
configurationg is extremely challenging. Based on the fail- ing that the fcc lattice be identified as more ordered than the
ings of the commonly employed order metrics that we havesimple cubic latticg it is difficult to do so without biasing
evaluated, however, it is possible to begin to construct somthe test toward a specific type of order or reference structure.
requirements that any order metric should meet and a set df is important, however, to ensure that all structures that fall
guidelines for developing better metrics: within a given category are properly identified by the order

We begin with some fundamental mathematical propertiesnetric. For example, a good metric should be able to identify
that define an order metri;. both crystals with point defects and polycrystals as less or-

(1) The order metriay is a well-defined scalar function of dered than any perfect crystal, but more ordered than any
the coordinates, . . . ,ry for any N-particle system. amorphous system. The global bond-orientational order met-

(2) ¢ is subject to the normalization<9¢y<1. For any ric fails to meet this criterion irfat leas} two ways. First, it
two statesA andB, #(A)> (B) implies that staté\ is to be  cannot distinguish many jammed configurations from the

considered as more ordered than stte ideal gas. Second, it incorrectly identifies polycrystalline sys-
(3) ¢ is invariant to spatial reflections and to translationtems as highly disordered.
or rotation of the system as a whole. The example of polycrystalline systems is useful to dis-

Naturally there is an enormous family of scalar functionscuss the third criterion for good order metrics. Specifically,
that possess these three properties. While by our definitio®g fails to identify this system as ordered because it is only
all such functions could be considered order metrics, they areensitive to order at the length scale of the system. A good
not necessarily good order metrics. For example, a functiowrder metric should be sensitive to order at any length scale.
that is minimized for the simple cubic lattice should be rec-Meeting this condition is likely to require that an order met-
ognized as a poor description of order. To distinguish befic use correlation information from all length scales. This is
tween good order metrics and poor ones, some additionaih contrast to the bond-orientational order metrics, which
properties of good metrics must be specified. Based on ownly rely on nearest neighbor information, or the transla-
experiences with bond-orientational and translational ordetional order metric, which only uses a fixed number of coor-
metrics, some of these properties are listed below. dination shells. Of course, to produce a single scalar from

(1) A good order metric should be sensitive to any type ofsuch information will require that it be integrated in some
ordering in a system and should not be biased toward anfashion. The related fourth criterion is that an order metric
reference system. should be sensitive to the different local coordinations

(2) A good order metric should reflect the hierarchy of present in a systerfi.e., the number of different arrange-
ordering between prototypical systems given by commomments of a sphere and its first coordination shéf particu-
physical intuition. lar, a good order metric should reflect the variety of local

(3) Order at any length scale should be detected. coordinations present as well as the manner in which they are

(4) Both the variety of local coordination patterns and thedistributed throughout the system. Any spatial correlations
spatial distribution of such patterns should affect the amounbetween distinguishable “phasesi'e., pattern segregatipn
of order measured in a system. should increase the order of the system.

In considering the first criterion listed above, it is useful ~ Along with these criteria that a good, broadly applicable
to begin by noting that the failures in the translation orderorder metric must meet, there are several features that the set
parameter and in the local bond-orientational order paramef order metrics useful for identifying the MRJ state should
eter are related to the use of a reference system in theadditionally satisfy. Because any search for the MRJ state
design. The bond-orientational order metrics are designed twill be based on finite systems; should be effective for
find signatures of icosahedral order in a packing, but arsuch packings. The identification of the MRJ state requires
insensitive to the presence of other types of order. This ishat for any jammed particle packing,<Q/i,.<t, where
manifested most dramatically in the failure@§ o5 to iden- ¢y, is independent of the size of the configuration. The
tify structures which resemble the simple cubic lattice asminimum valuey,, should be realized at only a single sta-
ordered. A more fundamental problem with the order metricgistical state for each class of jamming. The state that realizes
discussed previously in this work is that each is sensitiveahis minimum is the MRJ state. Ideally, the same statistical
only to translational or orientational order; none picks upstate will realize the minimum value for all good metrics.
signatures of both types of order. Thus we can conclude that Although our efforts indicate that it is necessary that an
a good order metric should not be biased toward any singlerder metric conform to all of the above conditions to be
reference structure or type of order. useful in identifying the MRJ state, they do not speak to the

Although using any specific configuration as a referencesufficiency of this list. It is an open question whether other
state is unlikely to result in a universally useful metric, thecriteria on order metrics are important in the search for the
output of a good metric should still generally conform to our MRJ state. In addition, the actual design and application of
intuitive notions of order. Specifically, it should be able to an order metric that follows these guidelines remains to be
reproduce an intuitive hierarchy of order for systems such ademonstrated. Although it may not be possible to define a
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metric that meets all of the above conditions in a closed ACKNOWLEDGMENTS

mathematical form, an acceptably close approximation in

closed form may be attainable. Finding such a metric, how- The authors would like to thank Vincent Shen for kindly
ever, is a necessary step in the effort to understand the fuproviding the code for generating the Voronoi tesselation.
damental character of “randomness” in hard-particle sys-S.T. was supported by the Petroleum Research Fund as ad-
tems. ministered by the American Chemical Society.

[1] P.J. Steinhardt, D.R. Nelson, and M. Ronchetti, Phys. Rev. §10] A. Zinchenko, J. Comput. Phy414, 298 (1994).

28, 784(1983. [11] R.J. Speedy, J. Phys.: Condens. Matt@r4185(1998.
[2] H. Reiss and A.D. Hammerich, J. Phys. Che8@, 6252 [12] D.W. Cooper, Phys. Rev. 88, 522(1988.

(1986. [13] S. Torquato and F.H. Stillinger, J. Phys. Chet05 11 849
[3] A. Mehta and G.C. Barker, Phys. Rev. Ledf, 394 (1991). (200). Note that the maximally random jamm¢RIRJ) state
[4] O. Pouliguen, M. Nicolas, and P.D. Weidman, Phys. Rev. Lett. (defined in[6]) will depend on the jamming categofiocal,

79, 3640(1997). collective, or strict of interest. The packing fraction corre-
[5] D.B. Chrisey, Scienc@89, 879 (2000. sponding to the MRJ state will take on the smallest value for
[6] S. Torquato, T.M. Truskett, and P.G. Debenedetti, Phys. Rev.  the least restrictive categoijocal jamming and the largest

Lett. 84, 2064 (2000. value for the most restrictive categofstrict jamming.

[7] S.F. Edwards, inGranular Matter, edited by A. Mehta [14] A. Donev, S. Torquato, F. H. Stillinger, and R. Connellyn-

(Springer-Verlag, New York, 1994 published.

[8] T.M. Truskett, S. Torquato, and P.G. Debenedetti, Phys. Rev. E15] A.R. Kansal, T.M. Truskett, and S. Torquato, J. Chem. Phys.

62, 993(2000. 113 4844(2000.

[9] B.D. Lubachevsky and F.H. Stillinger, J. Stat. Ph§6, 561 [16] A. Okabe, B. Boots, and K. Sugihar&patial Tesselations

(1990. (John Wiley and Sons, New York, 1992

041109-8



