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Solvable n-species aggregation processes with joint annihilation
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We study the kinetic behavior of the aggregation-annihilation processesmfpacies ((=3) system, in
which an irreversible aggregation reaction occurs between any two clusters of the same species and an
irreversible complete annihilation reaction occurs only between one céfaspecies and each of the other
A™ species (n=1,2,...n—1). Based on the mean-field theory, we investigate the rate equations of the
processes to obtain the asymptotic solutions of the cluster-mass distributions in several different cases. The
results show that the evolution behavior of the system depends crucially on the ratios of the equivalent
aggregation rate A™ species and the aggregation rateA8fspecies to the annihilation rate. The cluster-mass
distribution of each species always obeys a conventional scaling law or a modified one, and the scaling
exponents depend only on the reaction rates for most cases. However, when both the equivalent aggregation
rate of A™ species and the aggregation rateA8fspecies are twice as large as the annihilation rate, the scaling
exponents depend on the reaction rates as well as the initial concentrations.
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[. INTRODUCTION the aggregation-annihilation system with multispecies.
Zhang and Yang found that the evolution of an aggregation-
Aggregation is a fundamental kinetic phenomenon andannihilation close-chain model with multispecies is quite dif-
underlies a wide variety of nonequilibrium processes in naferent from that of an open-chain mod24]. In our
ture, such as colloid science, aerosol formation, droplehggregation-annihilation chain model, it was found that the
growth, and so ofl-4]. Typically, irreversible aggregation evolution behavior of the system depends crucially on the
processes are described by the reaction schémeA;  number of the specig®6]. These indicate that the kinetics
—Aij. Here, A; denotes a cluster consisting bfmono-  of the multispecies cases may be very rich.
mers. The clusteré; andA; can bond spontaneously and  The goal of this work is to investigate the competition
result in a larger cluste . j. The kinetics of these aggre- between aggregation and complete annihilation processes of
gation processes has been well understood since the 197R$ypes of speciedd' (I=1,2, ... n, n=3). We assume that
[4-12]. In the past decade, much interest was also devoted tgn irreversible aggregation occurs between any two clusters
understanding the kinetics of another basic bimolecular an- Ki(i.j)
nihilation reactionA+B— product{ 1317, which stemmed Of the same species{+A] — Aj,;, and an irreversible
from the discovery of its fluctuation-dominated kinetics complete annihilation reaction occurs simultaneously
[18,19. The examples of this reaction scheme are eIectronbetWeer} (itjf;e clusters of the different species,
hole, soliton-antisoliton, an_d defe_ct-a_ntldefc_act recomblnatlo%JrAy ”_} inert (I,1'=1,2,...n,1#1"), where A de-
processes. Recently, Krapivsky first investigated the compe-' " N | . !
tition between aggregation and annihilation processes of otes a cIustgr con5|st|ng| Dfnersl OfA” species. The .ra.te of
two-species system, in which an irreversible aggregation re'¢ @ggregation betweely and A; clusters equali (i, ),
action occurs only between any two clusters of the sam@nd that of annihilation betweeA| and A} clusters is
species and an annihilation reaction occurs between the dif(i,j). In general, the annihilation reaction may occur be-
ferent specie§20]. In a spirit close to this work, many stud- tween any two different specid¢23,25. In this model, we
ies were also focused on the competition between aggrega&onsider an interesting simple case: the complete annihila-
tion and annihilation processg®1—24. It is of interest that  tion reaction occurs only between a cert#ih species and
for some special initial cases the evolution behaviors of theny otherA™ species (h=1,2, ... n—1), namely,A" clus-
aggregates may obey a scaling law in the long-time limit. Inters are annihilated jointly by all the othAf™ clusters.
these works, there are two types of annihilation reaction We study our model in the mean-field limit. The mean-
schemes. The first one is the partial annihilation, where théield assumption neglects the spatial fluctuation of the reac-
larger cluster is conserved with the monomer differencgant densities and therefore typically applies to the case in
number of the two reactants after the reactj@®,21,24.  which the spatial dimensiod of the system is equal to or
The second one is the complete annihilation, where the bigreater than a critical dimensia, [20,23. The investiga-
nary annihilation between the two different species alwaygion of the aggregation process can also be based on the
produces the inert aggregate independent of the reactaparticle coalescence mod&CM) in the diffusion-controlled
masse$23,25. However, there are a few studies concerninglimit [7,23]. For pure aggregation processes, the PCM found
thatd,=2 [7]. For the general aggregation-annihilation sys-
tem (here, complete annihilation occurs between any two
*Electronic address: kejianhong@163.com different species Ben-Naim and Krapivsky proposed that
Electronic address: linzhenquan@yahoo.com.cn the critical dimension isl.=2 and also confirmed the mean-
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field predictions above this critical dimension numerically TABLE I. Organization of Sec. Il, wherg, is the aggregation
[23]. Since our model interpolates between the pure aggreate of A" species,] is the annihilation rate, and is the equivalent
gation and the general aggregation-annihilation processes,adggregation rate oA™ species 1=1,2... n—1).
is natural to expect that for our model the critical dimension : :
is the samed.=2. On the other hand, Sokolov and Blumen Case Title of section
also found that the marginal dimension for the irreversible |.>23 andl.<2J
. . . . S . . n e
two-species coagulation model with partial annihilation is 2 |.>2] andl.=2J
[21]. This may confirm the above expectation of the critical |”>2J and|e>2J
dimension of our model, although for the purespecies an- |n:2J and|e<2J
nihilation processes the critical dimension th.=4(n " = =2‘3J
—1)/(2n—3) [27]. We defer the numerical confirmation of | =2”J a;dl ~23
the critical dimension of our system to a future work. In our n €
investigation, we assume that the spatial dimensiaf our ly=2J andl¢=2J
system is greater than 2 and therefore the mean-field theory In<2J andl<2J
is valid.
We believe that our aggregation-annihilation model may

mimic a wide variety of physical, biological, and social phe- a, 1=1.2,.. - For simplicity, we conS|der_g m_odel W'th.
constant reaction rates, and set all the annihilation reaction

nomena. For example, in a multicomponent chemical sys- ) A o
tem, the aggregations of the clusters of the same kind prc{_ates equal td. In order to investigate thoroughly the kinetic

duce open-chain polymers, which have energetic reactivSVOIUtion of this irreversible aggregation-annihilation sys-

edges and therefore can continue participating in the reactioﬁm' we assume that the aggregation rateb cipecies have

processes. The annihilation reactions between two differerﬁIfferent constant valuek . By generalizing the rate equa-

species produce inert closed polymers, which lose their reatil—‘or_'S of the aggregation-annihilation processes given by Ben-
tive edges and then withdraw from the reaction processe yam and Krapivsky 23], we then write out the governing

On the other hand, we assume that only a certain species hERd
the cohesive affinity for all the others while the others ex- -
clude one another, thus only certain species can cohere with M—I 1 S aan-anS
each of the other species and then produce the inert closed dt M 2 5L, Tmimi Smkey Ami
polymers, namely, the annihilation reactions occur only be-
tween the certain species and any other species. In the social
sciences, an army fighting with its allied forces against the _Jamkzl &y, m=12,...p-1,
enemies in the war may be regarded as a joint annihilation. It .
is also believed that the irreversible multispecies - =1 oo
aggregation-annihilation processes are of interest in studyin§ﬂ<:I } 2 aa.—a 2 a -3 2 2 o
the scaling properties of their evolution behaviors. According dt M2if5e ™™ “kj:1 nl 8nk =R
to this work, it is found that the evolution kinetics of the 1)
system depends strongly on the ratios of the aggregation
rates to the annihilation rate. Meanwhile, the initial concen- As we aim to find out the analytical solutions of the evo-
trations also play an important role in some special cases. Wation behaviors of the clusters and investigate their long-
observe unusual behaviors of this model in several differentime scaling properties, we assume that for each species there
cases, such as the breakdown of the conventional scalingnly exist the monomer clusters &0 and the concentra-
law, modified scaling with nonuniversal exponents, and sajons of A' monomers are equal ty,, 1=1,2,...n. Then
on. the monodisperse initial conditions are

The paper is organized as follows. In Sec. Il, we describe
an irreversible n-species (=3) aggregation-annihilation a(0)=Adq, 1=1,2,...n. 2)
model with constant reaction rates and give the correspond-
ing mean-field rate equations. Then we derive the asymptotic \ynqer the above initial conditions, Eq4) can be solved
solutions qf the clustgr—mass dlstrl_butlons in geveral d|ffere.n[3y the help of ansatf20]
cases as illustrated in Table I. Finally, a brief summary is

T OTMOO >

e equations for this system

o0

iven in Sec. Il -
given in Se a =AMLY 1=12,...0. @
Il. MODEL OF n-SPECIES AGGREGATION PROCESSES  Substituting Eq(3) into Egs.(1), we transform them into the
WITH JOINT ANNIHILATION following differential equations:
In our investigation, the theoretical approach to the aggre- 2
. - ) . I WA
gation processes is based on the mean-field rate equations, %: ImAm, dAm _ __mm_ JAmA”,
which assumes that the reaction proceeds with a rate propor- dt 2 dt 1-a, 1-a,
tional to the reactant concentrations. In thispecies model,
the concentrations oh' clusters ofk-mers are denoted as m=12,...n—1,
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da, I1,A, dA, | AZ n-1 One can determine the following integrals of E¢8:
dr 2 dt:_l— ”211 a ¥
c dinalv. the initial diti f Eqal dOém_ I'mAmo -2/, day nO 72J/Im
orrespondingly, the initial conditions of Eq4l) are a9t 2 % , d—— , (9
=0, A=A, 1=12,...n att=0. (5)
a=(1-a)" % 1=1,2,...n, (6) 1 1
we can recast the differential equatio@s to the following ImAmo(am_ b= IlAlo(al_l)’ (10
equations:
d2am:_ 2] dam dan (dam)ln/ZJdZQm:_ (lmAmO)lnIZJ n—-1
d lha, dt dt’ dt de2 o 2 iy
d2a, da, 1l 55 da,, , o g~ e dapy
dt? Todt &) | may, dt @) m dt
wherem=1,2,... n—1. The corresponding initial condi- m=12 n—1 (11)
tions become Y '
b Ju Ao =12, .. natt=0. (g Substituting Eq(10) into Eq.(11), we derive the following
5 dt 2 equations:
|
day| ='W o2 Ao ~'W2 lmAmo  TmAmo |2V d
(ﬂ) am:—JAno(m—mo> (1_ mAm'o  fm moam ﬂ’ m=12. . n—1.
dt dt2 2 m' =1 ImAmO ImAmo dt

(12

For convenience, we s&;<<n-11/1,=1/.. Here,l, can be considered as the equivalent aggregation rate éf"all
species h=1,2, ... n—1). Then we discuss the solutions of E(®. in several different cases.

A. 1,>2J and | .<2J case
We assume that the system reaches its steady statecatand its conditions are then given as follows:

da| 1 da| dA| 2 d2a| 4 dCY| 2
=0, I=1,2,...n. (13

Thus we can conclude that eithef—« or da,/dt—0 att—c. From Eq.(12), we know that for the case df>2J, a,
—oo (m=1,2,...n—1) att—w. Thus,a,>1 att>1. In the long-time limit, Eq(12) reduces to the following asymptotic
equation:

(%)'"mdzam =12 ...n-1 (14)

_ -1 - '
ImAmO) 1,/2] ri_[ ( Im’Am’O) 23 a—ZJlledam
dt dt?

Z—JAnO(T w g M

m' =1 ImAmO

One can then obtain the integral of Ed4) in the case of wherec;,, andc,,, are integral constants. In the long-time
<23, limit, the asymptotic solution of,(t) can be derived from
Egs.(12) as follows:
dap,

5 (Clm Come 1- 2J/Ie)23/(23 |n)~CZJ/(2J 1)
t

* am(t)=Cypt, M=12,...n-1, (16)

m=12,...n—1, (15 where
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Im!AmIO

Im™—

(In_ZJ)AnO ImAmO /2 e H
2 2

li<m/<n-1 (

In the symmetrical initial casel,Amng=11A1o for all m
=1,2,...n—1, Cyp, can be given in explicit form

(In_ZJ)IeAnO —1./23
1m= [Z(T—Ie)(l mAmo/2)

23/(23—1y)
+(ImApo/2) 2

Substituting Eq(16) into Egs.(9), we derive the asymptotic

solution of a,(t) in the long-time limit

an(t)zcl,n_cz,ntliz‘lllea (17)

where Cln (11A102C1 )'"? and Cyp=[1nl Ane/2(23
TS 2J/I
()

tions of the cluster-mass distributions Af" and A" species
in the long-time limit,

am )= 5 t"2(1-Cpt H* Y m=12,...p-1,
m-~1m
k—1
2(23—1,)C 1
ank(t):ﬂ "Ml 1 1230
nI eC Cl,n_ C2,nt €
(18)

Further, the mass distributions of the larger clusters can be

rewritten in the following forms:

t%exp(—Xy), mM=12,...n-1, (19

Amk=
ImCim

2(2J—1¢)Cy(Cyp—1
Api=

k
t=2eexp( —x,,), (20)
InlC2 ) P

C1,n

which are wvalid in the
= (kICy )t~ t=finite and
—1)]kt™ (271 le=finite.

regionsk>1, t>1, X,
Xn= [Cz,n /Cl,n(cl,n

I mAmo

2

=23/l gy | A\ 1-10/2371200(23-1)
x) dx+( m mO) }

I mAmo

©

N<t>=2l C(t)oct ™,

M(t)= >, Kkey(t)oct ™~
k=1
(22)
It is not difficult to obtain the scaling exponent relations

A=W—2Z, u=wW-—2z (23

For A™ species ih=1,2, ... nh—1), the scaling function is
exponential,®(x) =exp(—x), and the typical mass iS(t)
~t. From Eg.(19) we obtain all these exponents f&™
species,

w=2, z=1, A=1,

w=0, (24)

. We then obtain the asymptotic solu- which are independent of the reaction rates and of the initial

concentrations.

From Eq.(20), we find that the conventional scaling de-
scription (21) of the cluster-mass distribution breaks down
for A" species. One can modify the conventional scaling de-
scription(21) as follows[20]:

cu()=b"t "O[k/IS(t)], S(t)et?, (25)
whereb is a constant and ©b<<1. Correspondingly, the
exponent relation§23) become

A=W, u=w. (26)
Thus, we obtain the exponents faF species
2] 2J-1¢
W=A=u=-—, z= : (27
le le

which are not universal constants and depend on the equiva-
lent aggregation rate cA™ species (h=1,2,...n—1) and

on the annihilation rate. The modified scaling forn§25)
indicates that two different mass scales are associated with
A" species. One is a growing scé@g)~t(?~'d/le which is
forced by A™ species. Another is a time-independent scale

Equation(19) indicates that for the monodisperse initial 5= Cy,,, Which dominates the behavior of thé species in
cases the cluster-mass distribution St species comes in a the long-time limit. Ben-Naim and Krapivsky also found that
scaling regime. In general irreversible aggregation processeshis nonuniversal phenomenon exists in the irreversible
the average mass of the clusters increases indefinitely withggregation-annihilation proces4€®,23.
time. Thus, one may assume that this typical mass plays a In this case, we find that the total cluster number of each
role analogous to that of correlation Iength in ordinary criti- species decreases with time becawuse0 for all Speciesl

cal phenomena. Introducing such characteristic n&(s¥,

Moreover, comparison between the total mass

one can write the mass distribution of the clusters in the

following conventional scaling formi20:
C ()=t "D[k/S(t)], S(t)ect”

The total numbeN(t) and the total mashi(t) of the clus-
ters can also be expressed in the power-law foraQ$

(21)

2C1m

M(t)= for A™ species, m=1,2,...n-1,

Im

2(2J—1,)C
M, (t)= ( o) 2N¢-2)le for AN species (28)

Inle
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shows that all théA™ species can survive &t while A" WhereC3yn=[(|n—ZJ)Ano/Z]HﬂgllC;riJ”m. Thus we obtain

species is annihilated completely By" species. This is in-  the asymptotic descriptions of the cluster-mass distributions
dependent of the initial data @ (1=1,2,...n). Forex-  for all the species,
ample, even in the case wil,g>2>1-<n—1Amo, the rate

of light A" clusters with small size bonding to form the large

) - -2 —231(23-1y) _
ones is greater than that of the correspondhf clusters am(t)= |mC3mt (Int) Vexp( —Xm),
because ofl,>1., and therefore the large clusters Af '

species are readily annihilated by the light clustersAff m=1,2,...n—1,

species. This implies that the mass decay ratd"o$pecies

caused by the complete annihilation is greater than that of 4 (21— 20)/(1—23)

A™ species. In this case, the results indicate fiAtspecies ~ ank(t)= mt (Int)=*n = Vexp(—Xn),
(m=1,2,...n—1) can survive in the end. ' (34)

B.1,>2J and I ,=2J case which are _vlalid i_an/tg(il scqling regionk>1, t>1; Xq
_ . =(kICyp)t Y(Int) 2@ WW=finite  and  x,=(k/Cs,)
In this case, we also find thatp>1 (M=12,...n  x(Int) 2 =finite.
—1) att>1. We can obtain the asymptotic integral of Eq.  Equations(34) indicate that for this case the conventional
(12) as follows: scaling description(21) breaks down for each species. The
evolution of cluster-mass distribution of any species has

%:Cgm(m a2/ m=12,...n—-1, (29 rather peculiar scaling behavior. We can modify the above
t scaling descriptior{21) further into[25]
where c(t)=Coh*[g(t)] ™[ f(t)]~"2®[k/S(1)],
c _{(IH—ZJ)AnO<ImAm0)'n’2J nt S(ty=<[g(t) ][ f(H]2, g'(V), f'(H)>0, (39
3m—
2 2 m'=1 where Cy and h denote two constants, and<h=<1. g(t)
123231, and f(t) are unusual functions of time, such és Int, 2,
( Im’Am’O) " and so on. The total number and the total mass of the clusters
I mAmo can be rewritten as
We integrate Eq(29) and then derive the solution of,(t) N(t) = cu(t 1M F(1)] N2
att>1 in the implicit form ® I(Zl (O=Lg®T O]
igl |:(_1)ij1:[1 [In/(ln—ZJ)—j]am(ln am)—i+2J/(|n_2J)} M(t):gl kck(t)oc[g(t)]fl"l[f(t)]fﬁz (36)
+tap(Inay)?n=2)=Cy t, m=12,...p-1. From Egs.(35) and (36), we obtain the following exponent

(30) relations:
Here, if there exists an integrdl meeting the equation M=Wi=2Zy, i =Wi=2Z;,  Ap=Wo— 2o,
2J/(1,—2J)—N=0, the infinite sum in Eq(30) will reduce
to the finite terms ofi=1~N. In the long-time limit, the
summation in Eqg. (30) is by far smaller than M= =W A= o= W
ay(In ay)?n~2) and is then negligible. Thus E30) re- 1A 2T e =2
duces to In this case, we find all the scaling exponents by letting
g(t)=t andf(t)=Int:

,LL2:W2_222 fOI’ h:].,

for O<h<1. (37

am(In @)@/ h=2V=Cy t, m=12,...n-1. (3D

In the long-time limit, the asymptotic solution af(t) can ~ W1=2, Wo=53—, Z1=1, Zp=55—~, M=1 A=0,
be given as " "

) 23
am(t)=Cypt(Int)2/@~1) m=12 .. . p-1 p1=0, pp=7—7 for A" clusters,
n

(32)
Substituting Eq.(32) into Egs. (9), we determine the m=12,...n-1,
asymptotic solution ofy,(t),
o2
arn(1)=Cyp(Int)'n/(1n=29), (33) Wims Wemh oy ATh 2T Ty
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AN=1, No=1, m=12,...n—1. (39)

In the long-time limit, the asymptotic solution af,(t) is
then obtained,

2J
wi=1, u,= for A" clusters, (39
2J-1,

which indicate that the exponents depend on the aggregation _(t)~ Cypt'elln ZJ)/(leln_AJz), m=1.2,...n—1,
rate of A" species and on the annihilation rateComparison (40)
between the total mass &™ species h=1,2,...n—1)

and that of A" species,Mm(t)oc(lnt)*zj’('n*ZJ) and Mp(t)  where

ot~ 1(In )= shows thatA™ clusters always dominate

overA" clusters in the long-time limit. This is independent of Cum=[(lel y—43%)Cysp/l 1 n_23)]le(ln*2J)/(leln*4J2)
the initial concentrations. In this case, both the total number ' ’

and the total mass of each species decrease with time, and no X[l (Ig—23)]2e/ 43~ Teln)

species can survive at-w,

Substituting Eq(40) into Egs.(9), we determine the follow-

C.1,>2J and | ;>2J case ing asymptotic solution of,(t):
For this casex,,>1 (m=1,2,...n—1) att>1, which (2 (1432
is similar to that in Sec. IlA. Thus, we can obtain the an(t)=Cypt!nllem2)eln=49, (41)
asymptotic integral of Eq(12) as follows:

where  Cyp=[(leln—432)Ang/2(le— 23) 111 5C, 20,
dam:C (/1 _2\])]2‘]/(2\]7|n)a2J(I872J)/Ie(2J7In) Thus, we obtain the conventional scaling descnptlons of the
dt 3m e m ' cluster-mass distributions in the long-time limit,

)= 2|e(|“_22‘]) t—(2IeIn—2IeJ—4J2)/(IeIn—4J2)qu_Xm)’ m=12....n-1
Im(leln_4J )C4,m

ank(t)=zue—_zzJ)tf(z'E'”72'nJ*“JZ)/('e'“*"’JZ)exq_xn)' (42)
(Ieln_4‘:J )C4,n

with scaling variables each species. Hence, no species can survive-at. In this
case, the exponents depend on the annihilation and aggrega-
tion rates. When.>1,, the value ofu for A" species is less
than that forA™ species, thu&\" clusters dominate over the

Xy = C;nlqt—Ie(ln—ZJ)/(IeIn—4J2),

Xn:C;nlrIn(le*ZJ)/(lelnﬂuz)_ (43 corresponding clusters of the other species in the long-time
’ limit. This is independent of initial concentrations. Whign
The scaling exponents are then obtained, <l,, it is quite the contrary to the case bf>1,. In the
special case of,=1,, all the species have the same scaling
2l |, — 21, J—4J? ol —21d N—1 evolution of the cluster-mass distribution.
w= 7= — =
_ 2 il _ 2 ) ]
leln—4J leln—4J D.1,=2J and | .<2J case
21 ,J—4J2 It is obvious that for this case,,>1 (m=1,2,...n
u=————— for A" clusters, m=1,2,...n—-1, —1) att>1. Thus, we obtain the following asymptotic in-
lelq—4J tegral of Eq.(12) in the long-time limit:
2l el — 21,3437 . leln—21,J dap, 21 JAN -t (Im'Am'o)ZJ“m,
= il = o = ) _:C eX N
lel =43 lelq— 43 dt M (20— 1) mAmom 1 | TnAmo
21,J—47? ~ 231
n= ﬁ for A" clusters. (44) Xalm 2lel m=1,2,...n-1, (45)
eln™

The results show that both the total number and the totalvhere cs,, are integral constants. Smael 290

mass of each species decrease with time becayse 0 for  >1, we obtain

f<1 att
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dap, where y=(1+8) " and C; = (I nAne/2y)”. The solution
gt ~Cams mM=12,...n-1 (46)  of ay(t) can then be determined from Ed8) as follows:
From Egs.(9) and (12), we then determine the asymptotic an(t)=Cqntt?, (50

solutions ofa,(t) and a,(t) in the long-time limit,
whereC;,=1,A;¢2yC7 ;. In the long-time limit, we obtain

an(t)=Csnt, m=1,2,...n—1, the conventional scaling solutions of the cluster-mass distri-
butions
an(t):CS,n_ C6,nt1_2J/Ie! (47)
where Ami= t 2 7%exp( —Xy),  Xm=Crakt™?,
ImC7,m
I WA 2JA »
sm=—exg — nof 11 m=1,2,...n—1,
’ 2 ImAmoJ 1 1=miZn-1
2(1-y)

ImrAmro Im’Am’O ~ 20y
1- X dx
ImAmo  ImAmo

t2"%exp( —X,), Xp=Crakt 1.

(51

) A=
1nC7n

Csn=11A102Cs.1, For this case, the scaling exponents are

and
Cﬁ,n:[IeInAnOIZ(ZJ_|e)]l<H C72‘]“m.

<msn-1 oM for all the A™ clusters, m=1,2,...n—1,

Under the symmetrical initial condition$,,A,0=11A, for
m=12,...n—1, the constanCs, has the explicit value w=2-y, z=1-y, A=1 pu=y for A" clusters.
Csm= (I mAmo/2) exf 2l JA /(23— 1)l Aro]- It is shown that (52

the asymptotic solutiong}7) of this case are similar to Eqs. )

(16) and (17) in Sec. IIA. By substituting C;, (I  The results show that the scaling exponemts, andu are
=1,2,...n) andC,,, in Egs.(19) and (20) with Cs,|‘ and dependent both on the reaction rates and on the initial con-

Cen. respectively, we can obtain the modified equaticigy ~ centrations. %I/cl)reover, when Jz‘nrg
and(20) of the cluster-mass distributions for this case. So the” l1=m=n-1(ImAmo) =™, the value ofu for each ofA

results of this case are identical with those in Sec. 1A, SPeciesfi=1,2,... n—1) is larger than that foA" species
and thereforeA" clusters may dominate ové™ clusters at

t>1, and it is quite the contrary in the reverse case of
E.1,=2J and | ;=2J case 2‘]An0<H1SmSn71(ImAmO)ZJ“m- When A,
=1 =men—1(ImAmo)?'m, all the species have the same
constant exponentw=3/2, z=1/2, A\=1, andx=1/2. In
this case, we also find that both the total number and the total
mass of any species decrease with time. Hence, no species
can survive in the end.

Sincea,,>1 (m=1.2,...n—1) att>1, we derive the
following asymptotic integral of Eq(12) for this case:

dam  mAmo
M -B = —
T 5 ®m m=1,2,...n—1, (48

= >
where B=2JA o1l 1< <n—1(lmAmo) 27'm. From Eq. F-1,=2J and I >2]J case

(48), we obtain the asymptotic solution af(t) in the long- In this case, we can obtain the same asymptotic integral
time limit, (45) from Eq. (12) in the long-time limit. We integrate Eq.
(45 and then derive the solution af,,(t) in the implicit
ap(t)=Copt”, m=12,...n-1, (49 form
|
o i—1 | . .
> (-1t T ( : —i)aﬁf”e"”exchmalm‘”"e) ~Cant, mM=12,...n—1, (53
=1 Mo \1e—2J ’
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where

[1

l=m’sn-1

X (I Amro /N mAmo) 2

C8,m: [21edAn0/(1e—=23)1 nAmo]

Here, if there exists an integrdll satisfying the equation
2MJ/l,—M+1=0, the infinite terms in Eq(53) would re-
duce to the finite terms daf=1~M. In the long-time limit,
Eq. (53) can be approximately rewritten as

I

—1 e 2 1-2J/1

CS’m| 53 %m cexp(Cgma,,
e

e)z C3mt1

m=12,...n—1. (54

We then determine the asymptotic solution @f(t) from
Eq. (54) as follows:
am(t):C|e/(2J*|e)(|nt)le/(lefz\])’

8m

m=12,...n—1
(59

Substituting Eq(55) into Egs.(9), one can obtain the solu-

tion of a,(t) in the long-time limit,
an(t)=Cgpt(Int)?Z1e), (56)

whereCg,=[1(l¢— ZJ)Alolle]C;ell('e_ZJ) . In this case, the
conventional scaling descriptiof21) also breaks down for

PHYSICAL REVIEW E 66, 041105 (2002

t=1(Int)~29/(23-10),

(57)

X, =
" Cgn

By letting g(t) and f(t) in Eq. (35) equal tot and Int, re-
spectively, we obtain the scaling exponents for this case,

21— 2 lo
Wil Wem g oy am0 2T )
e e
)\1:1, )\2:1,
2] m
m=1, M2=537 for A™ clusters,
e
m=1,2,...n—1,
_, _ 2] B 2J
W1=2, Wz—m, Z;3=4, ZZ_Z]——IE’
)\1:1, )\2:0,

2]
u1=0, M2=1 53 for A" clusters. (58
e

These indicate that the exponents depend on the equivalent

each species, and we obtain the peculiar scaling descriptiorn.asggregaﬂoﬂe of A™ species and on the annihilation rake

for the mass distributions as follows:

_ e le/(lg—23), —1
ani(t) =29 1.=20) Cem t

X (ln t)—(ZIe—ZJ)/(Ie—ZJ)qu _Xm)!

Xm=Cgn'e Pk(Int)~le/lem2)  m=12 .. . p-1,

anK(t)= t72(Int) 2@ dexp( —x,),

I nCS,n

n—1

In this caseA" species dominates over th&' species in the
long-time limit, which is just contrary to that in Sec. IIB.
Moreover, both the total number and the total mass of each
species decrease with time. Hence, no species can survive in
the end.

G. 1,<2J and | &=2J case

We can conclude from Eq(12) that for this caseq,
—Cgm (Coy are finite constantsm=1,2,...n—1) att
—oo and the implicit expressions f&g , are

|m/Am/0 _2\]/Im'

Ao jcg,m

_ (1_ Im’Am'O
(23=1n)Ano

1 m =1 I mAmO

For the special case df,Ano=11A1;p (M=1,2,...n-1),
one can easily derive the explicit expressions @y, as
follows:

Com=eXH I mAmo/ (23— 1) An]  for 1,=23,
C9,m:[I m(le_ 2‘])AmO/I e(z‘J_ I n)An0+ 1]|e/(|e_23)

for 1,>2J. (60)

dx, m=12,...n—-1. (59

l mAmO

From Egs.(9), we obtain the following asymptotic solution
of a,(t) in the long-time limit:

ap(t)=Cgqpt, (61)

where Cgﬁnz(lnAno/Z)ngmgn_lcgf”m. Substituting Eq.

(61) into Egs.(9), we determine the asymptotic solution of
am(t) as follows:
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TABLE Il. Summary of the results in different cases.

Case Summary of the results
1,=2J (i) A™ species (h=1,2, ... n—1) obey the conventional scaling lai@1);
(i) A" species obeys the modified scaling 1626).
1.<2J (ii ) Al A™ species can survive in the end.
1,>2J (i) All species obey the further modified scaling 148b);
(i) A™ clusters dominate ovek" clusters in the long-time limit.
le=2J (iii) No species can survive in the end.
1,>2J (i) All species obey the conventional scaling |621);
(i) the governing exponents depend on the reaction rates.
1.>2J (iii) No species can survive in the end.
1,=2J (i) All species obey the conventional scaling 1424);
(i) the exponents depend on reaction rates as well as initial concentrations.
1.=2J (iii) No species can survive in the end.
1,=2J (i) All species obey the modified scaling 1d85);
(i) A" clusters dominate ove&k™ clusters in the long-time limit.
>2J (iii) No species can survive in the end.
1,<2J (i) Al A™ species obey the modified scaling 1426);
(i) A" species obeys the conventional scaling (@d).
1.=2J (ii ) Only A" species can survive in the end.
1,<2J (i) If »>1, this case is equivalent to the casel g&2J andl,<2J;
(i) if »=1, this case is equivalent to the casd gf2J andl.>2J.
1.<2J (iii) If »<<1, this case is equivalent to the casel p£2J andl,=2J.
am()=Com—Ciomt 2, m=12,...n—1 ~t@=1 which is forced byA" species, and their time-

’ (62)  independent scales are different valugis= Cq,, Which are
dependent on the details of the reaction conditions. More-

—21
where Ciom=[ImlnAmo/2(2J=15)]Cy ;" . In the long-  over, the results also imply th&" clusters dominate over
time limit, the conventional scaling description of the A™ clusters in the long-time limit and onlj" clusters can
cluster-mass distribution foh" species is then obtained, survive in the end.
-2 k -1 H. 1,<2J and | .<2J
an(t)= t exp—X,), Xp= t™t (63 y and |, case
InCQ,n CQ,n

In this case, it is difficult to determine the exact solutions
with the scaling exponent®4). The conventional descrip- ©f the cluster-mass distributions. Now, we consider a special
tion (21) breaks down forA™ species fh=1,2,...n—1)  case, i.e.JyAme=I1lofor m=12,... n—1. We conclude
and its mass distribution satisfies the modified scaling defrom Eq. (10) that () = a4(t), m=1,2,... n—1. Equa-

scription tions (9) then reduce to
2(2J=1)Crn [ Cam 1\ K da; 1A _py, dan_1hAno oy,
A= 221 ( = ) t 2 nexp — X, TR i T T e (66
Il nCém Com
c We can obtain the following equations from E¢86)
Xm:C ClOm 1 kt_(zj_ln)“”, (64) da
om(Com—1) d_tl:[blaI(ZJ—Ie)/Ie+b2]2J/(2J—In)’ 67)
with the exponents
da (23—
W:)\I,u=E z= 2371 (65) dtn:[baan @Il g 122023710, (68)
Iy’ Iy

These indicate that the exponents f&™ species Kn where

=1,2,...n—1) depend on the annihilation ralas well as by =[(23= 1) Af2(2]—1 [ AL J2) /2
the aggregation rate &" species, while those fak" species [« n)leAAno/2( o) ](11A102) :
are constant values independent of the reaction rates. In this b= {1 (23— 1) Asn (2] | 12(23— |
case, the mass scagt) of A" species grows as For allA™ 2=l e)l1A10~( n)leAnol/2( e}
species, their growing scales are the sam®(t) ><(|1A10/2)*'n/23,

041105-9
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ba=[(23— 1)l 1l 1A102(23— I )1 ] (1 hAR/2) ',
and
ba={1,[ (23— 1)1 eAno— (23— 1)1 1A0]/2(2]— 1)1 o}

X (1/Anf2) ~'¢2,

When (20—1¢)11A15> (23— 1)1Ang, b,>0, and b,
<0. Under these conditiongy;—o and a,—C (C is a
finite constantatt— . In the long-time limit, Eq(67) can
be approximately rewritten as

dal

at Cu1s (69)
whereCy; ;=b2"® ™' This directly yields

ay()=Cyq 1. (70)

One can then determine the asymptotic solutiorxgft) in
the long-time limit,

PHYSICAL REVIEW E 66, 041105 (2002

ap()=Cyy = Cppptt e, (71)

where Cyy,=(11A,92Cy; 9)'"? and Cypp=[lel 1An/2(2J
—Ie)]C;fl/'e. Equations(70) and (71) are similar to Egs.
(16) and (17) in Sec. Il A, respectively. Thus, we can again
obtain the descriptioril9) for the cluster-mass distribution
of A™ species h=1,2,...n—1) in the long-time limit,
whereC, , in Eq. (19) is substituted byC, ; in this case.
Meanwhile, the evolution oA" species satisfies the modified
scaling law and its cluster-mass distribution can be described
by Eq. (20), whereC,, in Eq. (20) is substituted byC,y,,.
Thus, for this case, we find the similar results to those in Sec.
ITA.
When (20—1)11A10=(2J—1,)1A0, b,=b,=0. We
obtain the exact solutions @f;(t) and a,(t),
al(t)=Clg'lt'e(ZJ"ﬂ)’(“z"e'"),
an(t)=Clgnt'n(ZJ"e)/(“JZ"E'n), (72)

where

Cia1={[(43%— 1l )/1(23— 1) ]b27 I W12 -10)/(43° el

and

Crgn={[(41 =1l )1(20 1 ]p3" 171 eI 1dl),

It is obvious that Eqs(72) are similar to Eqs(40) and (41)

the conventional descriptio(63) for its cluster-mass distri-

in Sec. Il C, respectively. Thus, we find that each species hasution, where the constafl , in Eq. (63) is substituted by
the conventional scaling description for its cluster-mass dis€y,, for this case. Meanwhile, we obtain the modified de-
tribution in the long-time limit. One can easily obtain the scription(64) for A™ species h=1,2, ... n—1), where the

same conventional scaling descriptio@2) for this case,
where the constants,, andCy,,, in Egs.(42) are substituted

constantCgq,, and Cyp, are substituted by, ; and Cys 4,
respectively. The results of this case are identical with those

by Cy13, andC,3,, respectively. Meanwhile, the exponents in Sec. Il G.

are the same as Eqggl4). However, when .>1,, A™ clus-
ters (m=1,2,...n—1) dominate overA" clusters in the

IIl. SUMMARY

long-time limit, and wher <1 ,, A" clusters dominate over ) . ) . o
A™ clusters. These are just the contrary to those in Sec. IIC. We have studied an irreversible aggregation-annihilation
When (2—1)1;A10<(23—1,)1An, We find thate,  Model withn types of distinct species on the basis of the

— att—co. From Eq.(68), we obtain the asymptotic so- mean-field theory. Considering the constant-reaction-rate

lution of a,(t) in the long-time limit,

an(t):CM,nta (73

whereCl4,n=ij/(2J7'e). The asymptotic solution of4(t)

can then be determined,

ay(t)=Cyg— Cys 2", (74)

Where C14 1= (l nAno/2C14’n)|eI2‘] a.nd C15’1: [l 1| nA]_(/Z(ZJ
—In)]Cl_fn“”. Equations(73) and (74) are similar to Egs.
(61) and(62) in Sec. Il G, respectively. Thu#&\" species has

model, we analyze the kinetic behavior of the irreversible
aggregation processes with jointly complete annihilation.
Here, A" species is assumed to be annihilated jointly by all
the otherA™ species ;n=1,2,... n—1). We introduce an
equivalent aggregation rate for alA™ species, |,
=(21<m<n_1lr;1)‘1, which represents the contributions of
all A™ species to the kinetics of the processes. It is found that
the evolution behavior of the system depends crucially on the
ratios of the rated,, and |, to the annihilation ratel. In
several cases with different rate ratios, we obtain distinct
evolution results of the system, which are illustrated in Table
II. Here, it is noted thaty=(2J— 1)1 1A10/ (23— 1)1 Ano-
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In short, the evolution behavior of thespecies aggrega- most one class of the species’(species 0A™ speciegthat
tion process with joint annihilation always obeys a conven-can survive finally in the steady state.
tional scaling law or a modified one. The governing expo-

nents depend strongly on the reaction rates for most cases,
and for some special cases the initial concentrations also play The project was supported by Zhejiang Provincial Natural
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