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Solvablen-species aggregation processes with joint annihilation

Jianhong Ke* and Zhenquan Lin†

Department of Physics, Wenzhou Normal College, Wenzhou 325027, China
~Received 16 May 2002; published 14 October 2002!

We study the kinetic behavior of the aggregation-annihilation processes of ann-species (n>3) system, in
which an irreversible aggregation reaction occurs between any two clusters of the same species and an
irreversible complete annihilation reaction occurs only between one certainAn species and each of the other
Am species (m51,2, . . . ,n21). Based on the mean-field theory, we investigate the rate equations of the
processes to obtain the asymptotic solutions of the cluster-mass distributions in several different cases. The
results show that the evolution behavior of the system depends crucially on the ratios of the equivalent
aggregation rate ofAm species and the aggregation rate ofAn species to the annihilation rate. The cluster-mass
distribution of each species always obeys a conventional scaling law or a modified one, and the scaling
exponents depend only on the reaction rates for most cases. However, when both the equivalent aggregation
rate ofAm species and the aggregation rate ofAn species are twice as large as the annihilation rate, the scaling
exponents depend on the reaction rates as well as the initial concentrations.

DOI: 10.1103/PhysRevE.66.041105 PACS number~s!: 82.20.2w, 68.43.Jk, 05.70.Ln, 89.75.Da
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I. INTRODUCTION

Aggregation is a fundamental kinetic phenomenon a
underlies a wide variety of nonequilibrium processes in
ture, such as colloid science, aerosol formation, drop
growth, and so on@1–4#. Typically, irreversible aggregation
processes are described by the reaction schemeAi1Aj
→Ai 1 j . Here, Ai denotes a cluster consisting ofi mono-
mers. The clustersAi and Aj can bond spontaneously an
result in a larger clusterAi 1 j . The kinetics of these aggre
gation processes has been well understood since the 1
@4–12#. In the past decade, much interest was also devote
understanding the kinetics of another basic bimolecular
nihilation reactionA1B→product@13–17#, which stemmed
from the discovery of its fluctuation-dominated kineti
@18,19#. The examples of this reaction scheme are electr
hole, soliton-antisoliton, and defect-antidefect recombinat
processes. Recently, Krapivsky first investigated the com
tition between aggregation and annihilation processes
two-species system, in which an irreversible aggregation
action occurs only between any two clusters of the sa
species and an annihilation reaction occurs between the
ferent species@20#. In a spirit close to this work, many stud
ies were also focused on the competition between aggr
tion and annihilation processes@21–25#. It is of interest that
for some special initial cases the evolution behaviors of
aggregates may obey a scaling law in the long-time limit.
these works, there are two types of annihilation react
schemes. The first one is the partial annihilation, where
larger cluster is conserved with the monomer differen
number of the two reactants after the reaction@20,21,24#.
The second one is the complete annihilation, where the
nary annihilation between the two different species alw
produces the inert aggregate independent of the reac
masses@23,25#. However, there are a few studies concern
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the aggregation-annihilation system with multispeci
Zhang and Yang found that the evolution of an aggregati
annihilation close-chain model with multispecies is quite d
ferent from that of an open-chain model@24#. In our
aggregation-annihilation chain model, it was found that
evolution behavior of the system depends crucially on
number of the species@26#. These indicate that the kinetic
of the multispecies cases may be very rich.

The goal of this work is to investigate the competitio
between aggregation and complete annihilation processe
n types of species,Al ( l 51,2, . . . ,n, n>3). We assume tha
an irreversible aggregation occurs between any two clus

of the same species,Ai
l1Aj

l →
Kl ( i , j )

Ai 1 j
l , and an irreversible

complete annihilation reaction occurs simultaneou
between the clusters of the different specie

Ai
l1Aj

l 8 →
Jll 8( i , j )

inert (l ,l 851,2, . . . ,n,lÞ l 8), where Ai
l de-

notes a cluster consisting ofi-mers ofAl species. The rate o
the aggregation betweenAi

l and Aj
l clusters equalsKl( i , j ),

and that of annihilation betweenAi
l and Aj

l 8 clusters is
Jll 8( i , j ). In general, the annihilation reaction may occur b
tween any two different species@23,25#. In this model, we
consider an interesting simple case: the complete annih
tion reaction occurs only between a certainAn species and
any otherAm species (m51,2, . . . ,n21), namely,An clus-
ters are annihilated jointly by all the otherAm clusters.

We study our model in the mean-field limit. The mea
field assumption neglects the spatial fluctuation of the re
tant densities and therefore typically applies to the case
which the spatial dimensiond of the system is equal to o
greater than a critical dimensiondc @20,23#. The investiga-
tion of the aggregation process can also be based on
particle coalescence model~PCM! in the diffusion-controlled
limit @7,23#. For pure aggregation processes, the PCM fou
that dc52 @7#. For the general aggregation-annihilation sy
tem ~here, complete annihilation occurs between any t
different species!, Ben-Naim and Krapivsky proposed tha
the critical dimension isdc52 and also confirmed the mean
©2002 The American Physical Society05-1
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field predictions above this critical dimension numerica
@23#. Since our model interpolates between the pure ag
gation and the general aggregation-annihilation processe
is natural to expect that for our model the critical dimens
is the same,dc52. On the other hand, Sokolov and Blume
also found that the marginal dimension for the irreversi
two-species coagulation model with partial annihilation is
@21#. This may confirm the above expectation of the critic
dimension of our model, although for the puren-species an-
nihilation processes the critical dimension isdc54(n
21)/(2n23) @27#. We defer the numerical confirmation o
the critical dimension of our system to a future work. In o
investigation, we assume that the spatial dimensiond of our
system is greater than 2 and therefore the mean-field th
is valid.

We believe that our aggregation-annihilation model m
mimic a wide variety of physical, biological, and social ph
nomena. For example, in a multicomponent chemical s
tem, the aggregations of the clusters of the same kind
duce open-chain polymers, which have energetic reac
edges and therefore can continue participating in the reac
processes. The annihilation reactions between two diffe
species produce inert closed polymers, which lose their re
tive edges and then withdraw from the reaction proces
On the other hand, we assume that only a certain species
the cohesive affinity for all the others while the others e
clude one another, thus only certain species can cohere
each of the other species and then produce the inert cl
polymers, namely, the annihilation reactions occur only
tween the certain species and any other species. In the s
sciences, an army fighting with its allied forces against
enemies in the war may be regarded as a joint annihilatio
is also believed that the irreversible multispec
aggregation-annihilation processes are of interest in stud
the scaling properties of their evolution behaviors. Accord
to this work, it is found that the evolution kinetics of th
system depends strongly on the ratios of the aggrega
rates to the annihilation rate. Meanwhile, the initial conce
trations also play an important role in some special cases
observe unusual behaviors of this model in several differ
cases, such as the breakdown of the conventional sca
law, modified scaling with nonuniversal exponents, and
on.

The paper is organized as follows. In Sec. II, we descr
an irreversible n-species (n>3) aggregation-annihilation
model with constant reaction rates and give the correspo
ing mean-field rate equations. Then we derive the asympt
solutions of the cluster-mass distributions in several differ
cases as illustrated in Table I. Finally, a brief summary
given in Sec. III.

II. MODEL OF n-SPECIES AGGREGATION PROCESSES
WITH JOINT ANNIHILATION

In our investigation, the theoretical approach to the agg
gation processes is based on the mean-field rate equat
which assumes that the reaction proceeds with a rate pro
tional to the reactant concentrations. In thisn-species model,
the concentrations ofAl clusters ofk-mers are denoted a
04110
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alk , l 51,2, . . . ,n. For simplicity, we consider a model with
constant reaction rates, and set all the annihilation reac
rates equal toJ. In order to investigate thoroughly the kinet
evolution of this irreversible aggregation-annihilation sy
tem, we assume that the aggregation rates ofAl species have
different constant valuesI l . By generalizing the rate equa
tions of the aggregation-annihilation processes given by B
Naim and Krapivsky@23#, we then write out the governing
rate equations for this system

damk

dt
5I mS 1

2 (
i 1 j 5k

amiam j2amk(
j 51

`

am jD
2Jamk(

j 51

`

an j , m51,2, . . . ,n21,

dank

dt
5I nS 1

2 (
i 1 j 5k

anian j2ank(
j 51

`

an jD 2Jank (
m51

n21

(
j 51

`

am j .

~1!

As we aim to find out the analytical solutions of the ev
lution behaviors of the clusters and investigate their lon
time scaling properties, we assume that for each species t
only exist the monomer clusters att50 and the concentra
tions of Al monomers are equal toAl0 , l 51,2, . . . ,n. Then
the monodisperse initial conditions are

alk~0!5Al0dk1 , l 51,2, . . . ,n. ~2!

Under the above initial conditions, Eqs.~1! can be solved
by the help of ansatz@20#

alk~ t !5Al~ t !@al~ t !#k21, l 51,2, . . . ,n. ~3!

Substituting Eq.~3! into Eqs.~1!, we transform them into the
following differential equations:

dam

dt
5

I mAm

2
,

dAm

dt
52

I mAm
2

12am
2

JAmAn

12an
,

m51,2, . . . ,n21,

TABLE I. Organization of Sec. II, whereI n is the aggregation
rate ofAn species,J is the annihilation rate, andI e is the equivalent
aggregation rate ofAm species (m51,2 . . . ,n21).

Case Title of section

A In.2J and I e,2J
B In.2J and I e52J
C In.2J and I e.2J
D I n52J and I e,2J
E In5I e52J
F I n52J and I e.2J
G In,2J and I e>2J
H I n,2J and I e,2J
5-2
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dan

dt
5

I nAn

2
,

dAn

dt
52

I nAn
2

12an
2JAn (

m51

n21
Am

12am
. ~4!

Correspondingly, the initial conditions of Eqs.~4! are

al50, Al5Al0 , l 51,2, . . . ,n at t50. ~5!

Introducing new variablesa l(t),

a l5~12al !
21, l 51,2, . . . ,n, ~6!

we can recast the differential equations~4! to the following
equations:

d2am

dt2
52

2J

I nan

dam

dt

dan

dt
,

d2an

dt2
52

dan

dt (
m51

n21 S 2J

I mam

dam

dt D , ~7!

where m51,2, . . . ,n21. The corresponding initial condi
tions become

a l51,
da l

dt
5

I lAl0

2
, l 51,2, . . . ,n at t50. ~8!
04110
One can determine the following integrals of Eqs.~7!:

dam

dt
5

I mAm0

2
an

22J/I n ,
dan

dt
5

I nAn0

2 )
m51

n21

am
22J/I m , ~9!

wherem51,2, . . . ,n21. From Eqs.~9!, we then obtain

1

I mAm0
~am21!5

1

I 1A10
~a121!, ~10!

S dam

dt D 2I n/2J d2am

dt2
52JAn0S I mAm0

2 D 2I n/2J

)
m851

n21

3a
m8

22J/I m8
dam

dt
,

m51,2, . . . ,n21. ~11!

Substituting Eq.~10! into Eq. ~11!, we derive the following
equations:
l

c

S dam

dt D 2I n/2J d2am

dt2
52JAn0S I mAm0

2 D 2I n/2J

)
m851

n21 S 12
I m8Am80

I mAm0
1

I m8Am80

I mAm0
amD 22J/I m8 dam

dt
, m51,2, . . . ,n21.

~12!

For convenience, we set(1<m<n211/I m51/I e . Here, I e can be considered as the equivalent aggregation rate of alAm

species (m51,2, . . . ,n21). Then we discuss the solutions of Eqs.~9! in several different cases.

A. I nÌ2J and I eË2J case

We assume that the system reaches its steady state att→` and its conditions are then given as follows:

dal

dt
5

1

a l
2

da l

dt
50,

dAl

dt
5

2

I la l
2

d2a l

dt2
2

4

I la l
3 S da l

dt D 2

50, l 51,2, . . . ,n. ~13!

Thus we can conclude that eithera l→` or da l /dt→0 at t→`. From Eq.~12!, we know that for the case ofI n.2J, am
→` (m51,2, . . . ,n21) at t→`. Thus,am@1 at t@1. In the long-time limit, Eq.~12! reduces to the following asymptoti
equation:

S dam

dt D 2I n/2J d2am

dt2
.2JAn0S I mAm0

2 D 2I n/2J

)
m851

n21 S I m8Am80

I mAm0
D 22J/I m8

am
22J/I e

dam

dt
, m51,2, . . . ,n21. ~14!
e
One can then obtain the integral of Eq.~14! in the case of
I e,2J,

dam

dt
.~c1m2c2mam

122J/I e!2J/(2J2I n).c1m
2J/(2J2I n) ,

m51,2, . . . ,n21, ~15!
wherec1m and c2m are integral constants. In the long-tim
limit, the asymptotic solution ofam(t) can be derived from
Eqs.~12! as follows:

am~ t !.C1,mt, m51,2, . . . ,n21, ~16!

where
5-3
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C1,m5F ~ I n22J!An0

2 S I mAm0

2 D 2I n/2JE
1

`

)
1<m8<n21

S 12
I m8Am80

I mAm0
1

I m8Am80

I mAm0
xD 22J/I m8

dx1S I mAm0

2 D 12I n/2JG2J/(2J2I n)

.
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In the symmetrical initial case,I mAm05I 1A10 for all m
51,2, . . . ,n21, C1,m can be given in explicit form

C1,m5F ~ I n22J!I eAn0

2~2J2I e!
~ I mAm0/2!2I n/2J

1~ I mAm0/2!12I n/2JG2J/(2J2I n)

.

Substituting Eq.~16! into Eqs.~9!, we derive the asymptotic
solution ofan(t) in the long-time limit

an~ t !.C1,n2C2,nt122J/I e, ~17!

where C1,n5(I 1A10/2C1,1)
I n/2J and C2,n5@ I nI eAn0/2(2J

2I e)#)m51
n21 C1,m

22J/I m . We then obtain the asymptotic solu
tions of the cluster-mass distributions ofAm andAn species
in the long-time limit,

amk~ t !.
2

I mC1,m
t22~12C1,m

21t21!k21, m51,2, . . . ,n21,

ank~ t !.
2~2J2I e!C2,n

I nI eC1,n
2

t22J/I eS 12
1

C1,n2C2,nt122J/I e
D k21

.

~18!

Further, the mass distributions of the larger clusters can
rewritten in the following forms:

amk.
2

I mC1,m
t22exp~2xm!, m51,2, . . . ,n21, ~19!

ank.
2~2J2I e!C2,n

I nI eC1,n
2 S C1,n21

C1,n
D k

t22J/I eexp~2xn!, ~20!

which are valid in the regions k@1, t@1, xm
5(k/C1,m)t215finite and xn5@C2,n /C1,n(C1,n
21)#kt2(2J2I e)/I e5finite.

Equation~19! indicates that for the monodisperse initi
cases the cluster-mass distribution ofAm species comes in a
scaling regime. In general irreversible aggregation proces
the average mass of the clusters increases indefinitely
time. Thus, one may assume that this typical mass pla
role analogous to that of correlation length in ordinary cr
cal phenomena. Introducing such characteristic massS(t),
one can write the mass distribution of the clusters in
following conventional scaling form@20#:

ck~ t !.t2wF@k/S~ t !#, S~ t !}tz. ~21!

The total numberN(t) and the total massM (t) of the clus-
ters can also be expressed in the power-law forms@20#
04110
e

s,
ith
a

e

N~ t !5 (
k51

`

ck~ t !}t2l, M ~ t !5 (
k51

`

kck~ t !}t2m.

~22!

It is not difficult to obtain the scaling exponent relations

l5w2z, m5w22z. ~23!

For Am species (m51,2, . . . ,n21), the scaling function is
exponential,F(x)5exp(2x), and the typical mass isS(t)
;t. From Eq. ~19! we obtain all these exponents forAm

species,

w52, z51, l51, m50, ~24!

which are independent of the reaction rates and of the in
concentrations.

From Eq.~20!, we find that the conventional scaling de
scription ~21! of the cluster-mass distribution breaks dow
for An species. One can modify the conventional scaling
scription ~21! as follows@20#:

ck~ t !.bkt2wF@k/S~ t !#, S~ t !}tz, ~25!

where b is a constant and 0,b,1. Correspondingly, the
exponent relations~23! become

l5w, m5w. ~26!

Thus, we obtain the exponents forAn species

w5l5m5
2J

I e
, z5

2J2I e

I e
, ~27!

which are not universal constants and depend on the equ
lent aggregation rate ofAm species (m51,2, . . . ,n21) and
on the annihilation rateJ. The modified scaling form~25!
indicates that two different mass scales are associated
An species. One is a growing scaleS(t);t (2J2I e)/I e, which is
forced byAm species. Another is a time-independent sc
S5C1,n , which dominates the behavior of theAn species in
the long-time limit. Ben-Naim and Krapivsky also found th
this nonuniversal phenomenon exists in the irreversi
aggregation-annihilation processes@20,23#.

In this case, we find that the total cluster number of ea
species decreases with time becausel.0 for all species.
Moreover, comparison between the total mass

Mm~ t !.
2C1,m

I m
for Am species, m51,2, . . . ,n21,

Mn~ t !.
2~2J2I e!C2,n

I nI e
t22J/I e for An species ~28!
5-4
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shows that all theAm species can survive att→` while An

species is annihilated completely byAm species. This is in-
dependent of the initial data ofAl0 ( l 51,2, . . . ,n). For ex-
ample, even in the case withAn0.(1<m<n21Am0, the rate
of light An clusters with small size bonding to form the larg
ones is greater than that of the correspondingAm clusters
because ofI n.I e , and therefore the large clusters ofAn

species are readily annihilated by the light clusters ofAm

species. This implies that the mass decay rate ofAn species
caused by the complete annihilation is greater than tha
Am species. In this case, the results indicate thatAm species
(m51,2, . . . ,n21) can survive in the end.

B. I nÌ2J and I eÄ2J case

In this case, we also find thatam@1 (m51,2, . . . ,n
21) at t@1. We can obtain the asymptotic integral of E
~12! as follows:

dam

dt
.C3,m~ ln am!2J/(2J2I n), m51,2, . . . ,n21, ~29!

where

C3,m5F ~ I n22J!An0

2 S I mAm0

2 D 2I n/2J

)
m851

n21

3S I m8Am80

I mAm0
D 22J/I m8G 2J/(2J2I n)

.

We integrate Eq.~29! and then derive the solution ofam(t)
at t@1 in the implicit form

(
i 51

` F ~21! i)
j 51

i

@ I n /~ I n22J!2 j #am~ ln am!2 i 12J/(I n22J)G
1am~ ln am!2J/(I n22J).C3,mt, m51,2, . . . ,n21.

~30!

Here, if there exists an integralN meeting the equation
2J/(I n22J)2N50, the infinite sum in Eq.~30! will reduce
to the finite terms ofi 51;N. In the long-time limit, the
summation in Eq. ~30! is by far smaller than
am(ln am)2J/(In22J) and is then negligible. Thus Eq.~30! re-
duces to

am~ ln am!2J/(I n22J).C3,mt, m51,2, . . . ,n21. ~31!

In the long-time limit, the asymptotic solution ofam(t) can
be given as

am~ t !.C3,mt~ ln t !2J/(2J2I n), m51,2, . . . ,n21.
~32!

Substituting Eq. ~32! into Eqs. ~9!, we determine the
asymptotic solution ofan(t),

an~ t !.C3,n~ ln t ! I n /(I n22J), ~33!
04110
of

whereC3,n5@(I n22J)An0/2#)m51
n21 C3,m

22J/I m . Thus we obtain
the asymptotic descriptions of the cluster-mass distributi
for all the species,

amk~ t !.
2

I mC3,m
t22~ ln t !22J/(2J2I n)exp~2xm!,

m51,2, . . . ,n21,

ank~ t !.
2

~ I n22J!C3,n
t21~ ln t !2(2I n22J)/(I n22J)exp~2xn!,

~34!

which are valid in the scaling regionsk@1, t@1; xm
5(k/C3,m)t21(ln t)22J/(2J2In)5finite and xn5(k/C3,n)
3(ln t)2In /(In22J)5finite.

Equations~34! indicate that for this case the convention
scaling description~21! breaks down for each species. Th
evolution of cluster-mass distribution of any species h
rather peculiar scaling behavior. We can modify the abo
scaling description~21! further into @25#

ck~ t !.C0hk@g~ t !#2w1@ f ~ t !#2w2F@k/S~ t !#,

S~ t !}@g~ t !#z1@ f ~ t !#z2, g8~ t !, f 8~ t !.0, ~35!

where C0 and h denote two constants, and 0,h<1. g(t)
and f (t) are unusual functions of time, such aset, ln t, 2t,
and so on. The total number and the total mass of the clus
can be rewritten as

N~ t !5 (
k51

`

ck~ t !}@g~ t !#2l1@ f ~ t !#2l2,

M ~ t !5 (
k51

`

kck~ t !}@g~ t !#2m1@ f ~ t !#2m2. ~36!

From Eqs.~35! and ~36!, we obtain the following exponen
relations:

l15w12z1 , m15w122z1 , l25w22z2 ,

m25w222z2 for h51;

l15m15w1 , l25m25w2 for 0,h,1. ~37!

In this case, we find all the scaling exponents by letti
g(t)5t and f (t)5 ln t:

w152, w25
2J

2J2I n
, z151, z25

2J

2J2I n
, l151, l250,

m150, m25
2J

I n22J
for Am clusters,

m51,2, . . . ,n21,

w151, w25
2I n22J

I n22J
, z150, z25

I n

I n22J
,

5-5
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l151, l251,

m151, m25
2J

2J2I n
for An clusters, ~38!

which indicate that the exponents depend on the aggrega
rate ofAn species and on the annihilation rateJ. Comparison
between the total mass ofAm species (m51,2, . . . ,n21)
and that ofAn species,Mm(t)}(ln t)22J/(In22J) and Mn(t)
}t21(ln t)2J/(In22J), shows thatAm clusters always dominat
overAn clusters in the long-time limit. This is independent
the initial concentrations. In this case, both the total num
and the total mass of each species decrease with time, an
species can survive att→`.

C. I nÌ2J and I eÌ2J case

For this caseam@1 (m51,2, . . . ,n21) at t@1, which
is similar to that in Sec. II A. Thus, we can obtain th
asymptotic integral of Eq.~12! as follows:

dam

dt
.C3,m@ I e /~ I e22J!#2J/(2J2I n)am

2J(I e22J)/I e(2J2I n) ,
ot

04110
on

r
no

m51,2, . . . ,n21. ~39!

In the long-time limit, the asymptotic solution ofam(t) is
then obtained,

am~ t !.C4,mtI e(I n22J)/(I eI n24J2), m51,2, . . . ,n21,
~40!

where

C4,m5@~ I eI n24J2!C3,m /I e~ I n22J!# I e(I n22J)/(I eI n24J2)

3@ I e /~ I e22J!#2JIe /(4J22I eI n).

Substituting Eq.~40! into Eqs.~9!, we determine the follow-
ing asymptotic solution ofan(t):

an~ t !.C4,nt I n(I e22J)/(I eI n24J2), ~41!

where C4,n5@(I eI n24J2)An0/2(I e22J)#)m51
n21 C4,m

22J/I m .
Thus, we obtain the conventional scaling descriptions of
cluster-mass distributions in the long-time limit,
amk~ t !.
2I e~ I n22J!

I m~ I eI n24J2!C4,m

t2(2I eI n22I eJ24J2)/(I eI n24J2)exp~2xm!, m51,2, . . . ,n21,

ank~ t !.
2~ I e22J!

~ I eI n24J2!C4,n

t2(2I eI n22I nJ24J2)/(I eI n24J2)exp~2xn!, ~42!
ega-

e
ime

ng

-

with scaling variables

xm5C4,m
21t2I e(I n22J)/(I eI n24J2),

xn5C4,n
21t2I n(I e22J)/(I eI n24J2). ~43!

The scaling exponents are then obtained,

w5
2I eI n22I eJ24J2

I eI n24J2
, z5

I eI n22I eJ

I eI n24J2
, l51,

m5
2I eJ24J2

I eI n24J2
for Am clusters, m51,2, . . . ,n21,

w5
2I eI n22I nJ24J2

I eI n24J2
, z5

I eI n22I nJ

I eI n24J2
, l51,

m5
2I nJ24J2

I eI n24J2
for An clusters. ~44!

The results show that both the total number and the t
mass of each species decrease with time becausel,m.0 for
al

each species. Hence, no species can survive att→`. In this
case, the exponents depend on the annihilation and aggr
tion rates. WhenI e.I n , the value ofm for An species is less
than that forAm species, thusAn clusters dominate over th
corresponding clusters of the other species in the long-t
limit. This is independent of initial concentrations. WhenI e
,I n , it is quite the contrary to the case ofI e.I n . In the
special case ofI e5I n , all the species have the same scali
evolution of the cluster-mass distribution.

D. I nÄ2J and I eË2J case

It is obvious that for this caseam@1 (m51,2, . . . ,n
21) at t@1. Thus, we obtain the following asymptotic in
tegral of Eq.~12! in the long-time limit:

dam

dt
.c3mexpF 2I eJAn0

~2J2I e!I mAm0
)

m851

n21 S I m8Am80

I mAm0
D 22J/I m8

3am
122J/I eG , m51,2, . . . ,n21, ~45!

where c3m are integral constants. Sinceam
122J/I e!1 at t

@1, we obtain
5-6



ic

.

th

tri-

on-

of

e

otal
cies

gral
.

SOLVABLE n-SPECIES AGGREGATION PROCESSES . . . PHYSICAL REVIEW E 66, 041105 ~2002!
dam

dt
.c3m , m51,2, . . . ,n21. ~46!

From Eqs.~9! and ~12!, we then determine the asymptot
solutions ofam(t) andan(t) in the long-time limit,

am~ t !.C5,mt, m51,2, . . . ,n21,

an~ t !.C5,n2C6,nt122J/I e, ~47!

where

C5,m5
I mAm0

2
expF2

2JAn0

I mAm0
E

1

`

)
1<m8<n21

3S 12
I m8Am80

I mAm0
1

I m8Am80

I mAm0
xD 22J/I m8

dxG ,

C5,n5I 1A10/2C5,1,

and

C6,n5@ I eI nAn0/2~2J2I e!# )
1<m<n21

C5,m
22J/I m .

Under the symmetrical initial conditions,I mAm05I 1A10 for
m51,2, . . . ,n21, the constantC5,m has the explicit value
C5,m5(I mAm0/2)exp@2IeJAn0 /(2J2Ie)ImAm0#. It is shown that
the asymptotic solutions~47! of this case are similar to Eqs
~16! and ~17! in Sec. II A. By substituting C1,l ( l
51,2, . . . ,n) and C2,n in Eqs. ~19! and ~20! with C5,l and
C6,n , respectively, we can obtain the modified equations~19!
and~20! of the cluster-mass distributions for this case. So
results of this case are identical with those in Sec. II A.

E. I nÄ2J and I eÄ2J case

Sinceam@1 (m51,2, . . . ,n21) at t@1, we derive the
following asymptotic integral of Eq.~12! for this case:

dam

dt
.

I mAm0

2
am

2b , m51,2, . . . ,n21, ~48!

where b52JAn0)1<m8<n21(I m8Am80)22J/I m8. From Eq.
~48!, we obtain the asymptotic solution ofam(t) in the long-
time limit,

am~ t !.C7,mtg, m51,2, . . . ,n21, ~49!
04110
e

whereg5(11b)21 and C7,m5(I mAm0/2g)g. The solution
of an(t) can then be determined from Eqs.~9! as follows:

an~ t !.C7,nt12g, ~50!

whereC7,n5I 1A10/2gC7,1. In the long-time limit, we obtain
the conventional scaling solutions of the cluster-mass dis
butions

amk.
2g

I mC7,m
t212gexp~2xm!, xm5C7,m

21kt2g,

m51,2, . . . ,n21,

ank.
2~12g!

I nC7,n
t221gexp~2xn!, xn5C7,n

21kt211g.

~51!

For this case, the scaling exponents are

w511g, z5g, l51, m512g

for all the Am clusters, m51,2, . . . ,n21,

w522g, z512g, l51, m5g for An clusters.

~52!

The results show that the scaling exponentsw, z, andm are
dependent both on the reaction rates and on the initial c
centrations. Moreover, when 2JAn0
.)1<m<n21(I mAm0)2J/I m, the value ofm for each ofAm

species (m51,2, . . . ,n21) is larger than that forAn species
and thereforeAn clusters may dominate overAm clusters at
t@1, and it is quite the contrary in the reverse case
2JAn0,)1<m<n21(I mAm0)2J/I m. When 2JAn0
5)1<m<n21(I mAm0)2J/I m, all the species have the sam
constant exponentsw53/2, z51/2, l51, andm51/2. In
this case, we also find that both the total number and the t
mass of any species decrease with time. Hence, no spe
can survive in the end.

F. I nÄ2J and I eÌ2J case

In this case, we can obtain the same asymptotic inte
~45! from Eq. ~12! in the long-time limit. We integrate Eq
~45! and then derive the solution ofam(t) in the implicit
form
(
i 51

` F ~21! i 11C8,m
2 i )

j 50

i 21 S I e

I e22J
2 j Dam

2iJ/I e2 i 11exp~C8,mam
122J/I e!G.c3mt, m51,2, . . . ,n21, ~53!
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where

C8,m5@2I eJAn0 /~ I e22J!I mAm0# )
1<m8<n21

3~ I m8Am80 /I mAm0!22J/I m8.

Here, if there exists an integralM satisfying the equation
2MJ/I e2M1150, the infinite terms in Eq.~53! would re-
duce to the finite terms ofi 51;M . In the long-time limit,
Eq. ~53! can be approximately rewritten as

C8,m
21 I e

I e22J
am

2J/I eexp~C8,mam
122J/I e!.c3mt,

m51,2, . . . ,n21. ~54!

We then determine the asymptotic solution ofam(t) from
Eq. ~54! as follows:

am~ t !.C8,m
I e /(2J2I e)

~ ln t ! I e /(I e22J), m51,2, . . . ,n21.
~55!

Substituting Eq.~55! into Eqs.~9!, one can obtain the solu
tion of an(t) in the long-time limit,

an~ t !.C8,mt~ ln t !2J/(2J2I e), ~56!

whereC8,n5@ I 1(I e22J)A10/I e#C8,1
I e /(I e22J) . In this case, the

conventional scaling description~21! also breaks down for
each species, and we obtain the peculiar scaling descrip
for the mass distributions as follows:

amk~ t !.
2I e

I m~ I e22J!
C8,m

I e /(I e22J)t21

3~ ln t !2(2I e22J)/(I e22J)exp~2xm!,

xm5C8,m
I e /(I e22J)k~ ln t !2I e /(I e22J), m51,2, . . . ,n21,

ank~ t !.
2

I nC8,n
t22~ ln t !22J/(2J2I e)exp~2xn!,
04110
ns

xn5
k

C8,n
t21~ ln t !22J/(2J2I e). ~57!

By letting g(t) and f (t) in Eq. ~35! equal tot and lnt, re-
spectively, we obtain the scaling exponents for this case

w151, w25
2I e22J

I e22J
, z150, z25

I e

I e22J
,

l151, l251,

m151, m25
2J

2J2I e
for Am clusters,

m51,2, . . . ,n21,

w152, w25
2J

2J2I e
, z151, z25

2J

2J2I e
,

l151, l250,

m150, m25
2J

I e22J
for An clusters. ~58!

These indicate that the exponents depend on the equiva
aggregationI e of Am species and on the annihilation rateJ.
In this case,An species dominates over theAm species in the
long-time limit, which is just contrary to that in Sec. II B
Moreover, both the total number and the total mass of e
species decrease with time. Hence, no species can survi
the end.

G. I nË2J and I eÐ2J case

We can conclude from Eq.~12! that for this caseam
→C9,m (C9,m are finite constants,m51,2, . . . ,n21) at t
→` and the implicit expressions forC9,m are
I mAm0

~2J2I n!An0
5E

1

C9,m

)
m851

n21 S 12
I m8Am80

I mAm0
1

I m8Am80

I mAm0
xD 22J/I m8

dx, m51,2, . . . ,n21. ~59!
n

f

For the special case ofI mAm05I 1A10 (m51,2, . . . ,n21),
one can easily derive the explicit expressions forC9,m as
follows:

C9,m5exp@ I mAm0 /~2J2I n!An0# for I e52J,

C9,m5@ I m~ I e22J!Am0 /I e~2J2I n!An011# I e /(I e22J)

for I e.2J. ~60!
From Eqs.~9!, we obtain the following asymptotic solutio
of an(t) in the long-time limit:

an~ t !.C9,nt, ~61!

where C9,n5(I nAn0/2))1<m<n21C9,m
22J/I m . Substituting Eq.

~61! into Eqs.~9!, we determine the asymptotic solution o
am(t) as follows:
5-8
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TABLE II. Summary of the results in different cases.

Case Summary of the results

I n>2J ~i! Am species (m51,2, . . . ,n21) obey the conventional scaling law~21!;
~ii ! An species obeys the modified scaling law~25!.

I e,2J ~iii ! All Am species can survive in the end.
I n.2J ~i! All species obey the further modified scaling law~35!;

~ii ! Am clusters dominate overAn clusters in the long-time limit.
I e52J ~iii ! No species can survive in the end.
I n.2J ~i! All species obey the conventional scaling law~21!;

~ii ! the governing exponents depend on the reaction rates.
I e.2J ~iii ! No species can survive in the end.
I n52J ~i! All species obey the conventional scaling law~21!;

~ii ! the exponents depend on reaction rates as well as initial concentrati
I e52J ~iii ! No species can survive in the end.
I n52J ~i! All species obey the modified scaling law~35!;

~ii ! An clusters dominate overAm clusters in the long-time limit.
I e.2J ~iii ! No species can survive in the end.
I n,2J ~i! All Am species obey the modified scaling law~25!;

~ii ! An species obeys the conventional scaling law~21!.
I e>2J ~iii ! Only An species can survive in the end.
I n,2J ~i! If h.1, this case is equivalent to the case ofI n>2J and I e,2J;

~ii ! if h51, this case is equivalent to the case ofI n.2J and I e.2J.
I e,2J ~iii ! If h,1, this case is equivalent to the case ofI n,2J and I e>2J.
e

-

de

t

-

re-
r

ns
cial
am~ t !.C9,m2C10,mt122J/I n, m51,2, . . . ,n21,
~62!

where C10,m5@ I mI nAm0/2(2J2I n)#C9,n
22J/I n . In the long-

time limit, the conventional scaling description of th
cluster-mass distribution forAn species is then obtained,

ank~ t !.
2

I nC9,n
t22exp~2xn!, xn5

k

C9,n
t21, ~63!

with the scaling exponents~24!. The conventional descrip
tion ~21! breaks down forAm species (m51,2, . . . ,n21)
and its mass distribution satisfies the modified scaling
scription

amk~ t !.
2~2J2I n!C10,m

I mI nC9,m
2 S C9,m21

C9,m
D k

t22J/I nexp~2xm!,

xm5
C10,m

C9,m~C9,m21!
kt2(2J2I n)/I n, ~64!

with the exponents

w5l5m5
2J

I n
, z5

2J2I n

I n
. ~65!

These indicate that the exponents forAm species (m
51,2, . . . ,n21) depend on the annihilation rateJ as well as
the aggregation rate ofAn species, while those forAn species
are constant values independent of the reaction rates. In
case, the mass scaleS(t) of An species grows ast. For allAm

species, their growing scales are the same,S(t)
04110
-

his

;t(2J2In)/In, which is forced byAn species, and their time
independent scales are different values,Sm8 5C9,m , which are
dependent on the details of the reaction conditions. Mo
over, the results also imply thatAn clusters dominate ove
Am clusters in the long-time limit and onlyAn clusters can
survive in the end.

H. I nË2J and I eË2J case

In this case, it is difficult to determine the exact solutio
of the cluster-mass distributions. Now, we consider a spe
case, i.e.,I mAm05I 1I 10 for m51,2, . . . ,n21. We conclude
from Eq. ~10! that am(t)5a1(t), m51,2, . . . ,n21. Equa-
tions ~9! then reduce to

da1

dt
5

I 1A10

2
an

22J/I n ,
dan

dt
5

I nAn0

2
a1

22J/I e. ~66!

We can obtain the following equations from Eqs.~66!

da1

dt
5@b1a1

2(2J2I e)/I e1b2#2J/(2J2I n), ~67!

dan

dt
5@b3an

2(2J2I n)/I n1b4#2J/(2J2I e), ~68!

where

b15@~2J2I n!I eAn0/2~2J2I e!#~ I 1A10/2!2I n/2J,

b25$@~2J2I e!I 1A102~2J2I n!I eAn0#/2~2J2I e!%

3~ I 1A10/2!2I n/2J,
5-9



in

d
bed

ec.

JIANHONG KE AND ZHENQUAN LIN PHYSICAL REVIEW E 66, 041105 ~2002!
b35@~2J2I e!I nI 1A10/2~2J2I n!I e#~ I nAn0/2!2I e/2J,

and

b45$I n@~2J2I n!I eAn02~2J2I e!I 1A10#/2~2J2I n!I e%

3~ I nAn0/2!2I e/2J.
When (2J2I e)I 1A10.(2J2I n)I eAn0 , b2.0, and b4

,0. Under these conditions,a1→` and an→C (C is a
finite constant! at t→`. In the long-time limit, Eq.~67! can
be approximately rewritten as

da1

dt
.C11,1, ~69!

whereC11,15b2
2J/(2J2I n) . This directly yields

a1~ t !.C11,1t. ~70!

One can then determine the asymptotic solution ofan(t) in
the long-time limit,
h
dis
e

ts

r
II C

-

04110
an~ t !.C11,n2C12,nt122J/I e, ~71!

where C11,n5(I 1A10/2C11,1)
I n/2J and C12,n5@ I eI nAn0/2(2J

2I e)#C11,1
22J/I e . Equations~70! and ~71! are similar to Eqs.

~16! and ~17! in Sec. II A, respectively. Thus, we can aga
obtain the description~19! for the cluster-mass distribution
of Am species (m51,2, . . . ,n21) in the long-time limit,
whereC1,m in Eq. ~19! is substituted byC11,1 in this case.
Meanwhile, the evolution ofAn species satisfies the modifie
scaling law and its cluster-mass distribution can be descri
by Eq. ~20!, whereC1,n in Eq. ~20! is substituted byC11,n .
Thus, for this case, we find the similar results to those in S
II A.

When (2J2I e)I 1A105(2J2I n)I eAn0 , b25b450. We
obtain the exact solutions ofa1(t) andan(t),

a1~ t !5C13,1t
I e(2J2I n)/(4J22I eI n),

an~ t !5C13,nt I n(2J2I e)/(4J22I eI n), ~72!

where
C13,15$@~4J22I eI n!/I e~2J2I n!#b1
2J/(2J2I n)

% I e(2J2I n)/(4J22I eI n)

and

C13,n5$@~4J22I eI n!/I n~2J2I e!#b3
2J/(2J2I e)

% I e(2J2I n)/(4J22I eI n).
e-

ose

ion
he
ate
le
n.

all

f
hat
the

nct
ble
It is obvious that Eqs.~72! are similar to Eqs.~40! and ~41!
in Sec. II C, respectively. Thus, we find that each species
the conventional scaling description for its cluster-mass
tribution in the long-time limit. One can easily obtain th
same conventional scaling descriptions~42! for this case,
where the constantsC4,m andC4,n in Eqs.~42! are substituted
by C13,1 and C13,n , respectively. Meanwhile, the exponen
are the same as Eqs.~44!. However, whenI e.I n , Am clus-
ters (m51,2, . . . ,n21) dominate overAn clusters in the
long-time limit, and whenI e,I n , An clusters dominate ove
Am clusters. These are just the contrary to those in Sec.

When (2J2I e)I 1A10,(2J2I n)I eAn0, we find that an
→` at t→`. From Eq.~68!, we obtain the asymptotic so
lution of an(t) in the long-time limit,

an~ t !.C14,nt, ~73!

whereC14,n5b4
2J/(2J2I e) . The asymptotic solution ofa1(t)

can then be determined,

a1~ t !.C14,12C15,1t
122J/I n, ~74!

where C14,15(I nAn0/2C14,n) I e/2J and C15,15@ I 1I nA10/2(2J
2I n)#C14,n

22J/I n . Equations~73! and ~74! are similar to Eqs.
~61! and~62! in Sec. II G, respectively. Thus,An species has
as
-

.

the conventional description~63! for its cluster-mass distri-
bution, where the constantC9,n in Eq. ~63! is substituted by
C14,n for this case. Meanwhile, we obtain the modified d
scription~64! for Am species (m51,2, . . . ,n21), where the
constantC9,m and C10,m are substituted byC14,1 and C15,1,
respectively. The results of this case are identical with th
in Sec. II G.

III. SUMMARY

We have studied an irreversible aggregation-annihilat
model with n types of distinct species on the basis of t
mean-field theory. Considering the constant-reaction-r
model, we analyze the kinetic behavior of the irreversib
aggregation processes with jointly complete annihilatio
Here,An species is assumed to be annihilated jointly by
the otherAm species (m51,2, . . . ,n21). We introduce an
equivalent aggregation rate for allAm species, I e

5((1<m<n21I m
21)21, which represents the contributions o

all Am species to the kinetics of the processes. It is found t
the evolution behavior of the system depends crucially on
ratios of the ratesI n and I e to the annihilation rateJ. In
several cases with different rate ratios, we obtain disti
evolution results of the system, which are illustrated in Ta
II. Here, it is noted thath5(2J2I e)I 1A10/(2J2I n)I eAn0.
5-10
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In short, the evolution behavior of then-species aggrega
tion process with joint annihilation always obeys a conve
tional scaling law or a modified one. The governing exp
nents depend strongly on the reaction rates for most ca
and for some special cases the initial concentrations also
an important role in the exponents. Moreover, there is
o

e

04110
-
-
es,
ay
t

most one class of the species (An species orAm species! that
can survive finally in the steady state.
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