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We consider low-dimensional dynamical systems exposed to a heat bath and to additional ac fields. The
presence of these ac fields may lead to a breaking of certain spatial or temporal symmetries, which in turn
cause nonzero averages of relevant observables. Nonlinegediabatic response is employed to explain the
effect. We consider a case of a particle in a periodic potential as an example and discuss the relevant symmetry
breakings and the mechanisms of rectification of the current in such a system.
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[. INTRODUCTION ballistic channels survive in the presence of dissipation. Sec-
tion IV addresses the case of a particle with nonparabolic
Much has been written on noise induced transport, wherdispersion. The addition of a spatial potential allows us to
noise may be colored, or simply white with a time periodic tune the system in such a way that ballistic channels disap-
signal. Arguments include violation of fluctuation-dissipation pear. This will lead to an expected dramatic drop of the di-
theorems, breaking of reflection symmetries of potentials i,!_(ected current value. Conclusions and discussions are given
space, Maxwell's demons, mixing of harmonigs, e.g., a N Se€c. V.
periodic drive, etc. All this applies to both classical and
guantum systems, and extends at least conceptually to sto-

. . II. ADIABATIC RESPONSE TO SLOW ac FIELDS
chastic resonance, quantum stochastic resonance, etc. A re-

cent review on ratchet transport by Reimdrn provides a Consider a certain system in contact with a heat bath. The
lot of theoretical and experimental results, and we refer thesystem is characterized by some inter¢rainlineay dynam-
interested reader to this work. ics, and we will discuss concrete models below. So far we

For a set of related problems, such as directed particléist need to know that its state can be characterized by cer-
current[2,3], directed energy currerid], average magneti- tain variables that are functions of time. These could be func-
zation[5], and nonlinear Hall effecf6], to name a few, a tions qf phase space variables of a classical system, or ex-
recently published symmetry approach was shown to systenfectation value_s of operators for a quantum system. Cpnader
atically account for all relevant symmetries that have to bePn€ of such variables which we denote/ds). The coupling
broken in order to explain the observed rectification effect!© the heat bath will be characterized by at least two
The purpose of this paper is to generalize this approach, artframeters—the temperature of the bawe will use the
to apply it to different physically relevant situations such aantathn of Inverse .temperatu;lé). and some set' of relax-
underdamped, overdamped, or zero temperature cases. on times, in the. simplest c_asejust one re_laxafuon e
also use the nonlinear response arguments to make the r\gll use the notation of the Inverse re!axatlon timg. We
sults of symmetry considerations very transparent. We wiIIalso assume that the chos_en_varlaMt_E) IS €10 oh average.

. . . Let us now apply a static field which couples toA such
argue for a rather minor role of additional fluctuations that = )
are mainly responsible for the area of phase space explorefflat & nonzero averagé=(A(t)), is generated. Its depen-
Although we will discuss mostly the case of time-periodic 4€Nc€ OnE is assumed to be given by some single valued
external fields, we will also show how the nonlinear responséesponse functiod=f(E) [7] (the physical meaning of the
concept can be generalized to fields that are quasiperiodic #i¢sponse function can be different, electric polarization or
time. magnetization, for exampleThe above mentioned symme-

The paper has the following structure. In the following tries will be connected to corresponding symmetries of the
section we discuss the symmetry breaking by considering th&inction f(E). This function will be in general nonlinear, yet
adiabatic limit and making use of some general forms ofin some cases it may be expanded in a Taylor series around
nonlinear response functions. Section Il is devoted to thde=0 and start with a linear terrtthis term describes then
detailed symmetry analysis of a classical particle moving in dhe linear respongeThere are two possibilities: the function
periodic potential under the influence of an external ac drivef (E) is either antisymmetrié(E)=—f(—E) or it is asym-
Symmetry breaking leads to a directed current here. We wilmetric f(E) # — f(—E).
discuss the presence of ballistic channels which provide a Before analyzing the case of adiabatically slow periodic
mechanism of current rectification. We will show that theseac fields, we will more rigorously introduce the notion of
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possible symmetries of an arbitrary periodic function with+n) when it is in addition symmetric and antisymmetric
zero mean. (around different time origins, of course
Next we assume a case when the adiabatic response func-

tion f may be expanded in a Taylor series,
A. Classification of symmetries of a periodic function

with zero mean f(E)=f,E+f,E2+fzE3+ .-, 2

Consider a periodic functiory(z+2m)=9(z) having \yhere the skipping of higher order terms is justified by the
zero mean. First, such functions may be symmetric aroundp,ajiness ofe. For f,#0 the response is asymmetric and
certainz values. Without loss of generality, this point may be consequently any field from EqL) will in general lead to a

set to zero and we find(z) =9(—2). We will use the ab- ,n76r0 average df For f,=0, however, all shift symmet-
bre_vlatlongs_ln such a case. Second, SL_Jch functions may be;. o4 antisymmetricE(t) will yield zero averaged (be-
antisymmetricg(z) = —g(—2) (abbrevationg,). Note that 5 se it leads also to a shift symmetry or antisymmetrf of

the points around which a function is symmetric and anti-i, ime) As an example of mixing of harmonics the leading
symmetric will be different if the function possesses bothnonzero contribution foE,#0, E;=0 equals

symmetries. Finally, the function may possess shift symme-
try (which is also called antiperiodicityg(z+ =)= —g(2) 1T 3
(abbreviationgs;). A zero mean periodic function may pos- f= ff f(E(t))dtsz3E§E2c05a+ R 3
sess none of the above symemtries, precisely one of them, or 0
all three simultaneously. In particulags functions may be
expanded in a pure cosine Fourier serigsfunctions in a
pure sine Fourier series, aggdy, functions show up with zero
even Fourier components in their Fourier series expansio
As a consequence, the simplest functigfz) =cosg+z)
possesses all three symmetries. The functidn) = cosf)
+c0s(Z+27,) does not possess any of the listed symmetrie
except forzo=0,7 (gs), andzo=*=7/2 (g,). A final ex-
ampleg(z) = cosg) +cos(Z+z,) always possesses shift sym-
metry (gsp) and in addition may be symmetrand antisym-
metric for zo=0,7r.
Let us finally note that most cases under consideration use We may even consider quasiperiodic driving here. Sup-
several harmonics contained in the drive. However, it may b@ose that we drive the system with a fiek(t) =e,(t)
also important to use pulse sequences. The symmetry consid-e,(t) where both components, , are time periodic, but
erations can be straightforwardly applied also to such casewith incommensurable periods. The resulting fielqt)
would be then quasiperiodic. If considering low amplitude
B. Periodic ac fields fields and expanding the response function to second or third
order, the full dc average oA(t) will be given by a mere
um of the averages obtained in the presence of only one of

In accordance with the above said, vanishes fora
=(1/2+n). Note that the antisymmetry property &fE)

is linked to some internal symmetries of the dynamical sys-
em under consideration, as will be shown below.

It is important to note that the above is valid for single
valued response functions. If the coupling to a heat bath is
Y00 weak, response functions may contain hysteretic loops.
Such cases need separate discusidn

C. Quasiperiodic ac fields

Let us now assume that the fieldlis slowly varying in
time. Slowly means that the characteristic time scales o R . -
. . “the two periodic fields. Consider, e.gE(t)=e;C0Sw;t
changes oE(t) are much larger than all other time scales N\ C coswt and an asvmmetric response. In lowest order in
the system. Then we are dealing with the adiabatic limit of, © 2 y P '

the response to time-dependent fields. We may use the rg-]e field amplitudes we obtain

sponsef to a static field and simply insert the slow time 1 1 3 3 6
dependencef (E(t)). Consider a time-periodic fieldE(t) f=f, §e§+ Eeg +f, §e‘1‘+ ge‘z‘+ze§e§ .
=E(t+T) with zero averagee=0. In general, the corre- (4)

sponding valué\= 1/T f f (E(t))dt will be nonzero for asym- ) . )
metric f. However, for antisymmetric single valuédhe av-  In higher orders in the response interference effects appear,
erageA will be zero provided the functiofE(t) is either so that products of the field components enter the result. Yet
antisymmetricE(t) = — E(—t) or has shift symmetrE(t) for the lowest order casef ) only the sum appears. .So we
= —E(t+T/2). may assume that further changing the drive by adding more
Consider as an example time periodic fl'elq' components does not change the main
result of a possibility of a nonzero average.
E(t)=E;cost+E,coq2t+a)+Essin(3t+a’). (1) If we consider an antisymmetric response functipwe
need to choose a more sophisticated quasiperiodic drive.
Take, e.g., E(t)=ei(t) +ey(t) with e(t)=¢;1C0Sw;t
For E;=E3=0 Eq. (1) has all three mentioned symmetries +€,Cc0S(2wjt+ ;). Assuming again that the field amplitude is
of periodic functions. FOE;= 0 the function has no symme- small, we obtain in lowest order
tries except forw=n (n integed where it is symmetric, or 3
for «=m(1/2+n) where the function is antisymmetric. For F_ 2 2
E,=0 Eq. (1) has shift symmetry except fo&'=m(1/2 F= 7 a(€11812008a; 15,8005 ). ®)
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Again we find that the periodic components of the quasiperiof friction and external forces,

odic drive contribute additively in lowest order. Note that o

each contribution can be obtained by considering a reduced mx+ yx—f(x)— x(t)=0, 7
drive function consisting only of this part. The corresponding

contribution is clearly related to the symmetry properties ofvheref(x)=—V’(x) andx(t) is zero on average. The mass
this reduced drive. m is assumed to be equal to one if not stated otherwise. If

x(t) is a Gaussian white noise, the particle undertakes diffu-
sion with zero net current, in accord with the fluctuation-
i ) i ) ) . _dissipation theorem. If, howeveg,(t) contains correlations

~ Once a given problem is considered in the adiabatic limitcojop), then it is known that a nonzero nédc) current is
like discussed above, the appearance of nonzero averagggssiple. In order to understand this result, it is appropriate

due to ac fields can be obtained, and further changing of, make the correlations in the noise as transparent as pos-
parameters away from the adiabatic limit will change num-gipje. The easiest way to do so is to choose

bers, but not the fact of nonzero averages. Ratchet transport

in its general form falls into such a class of systems. Indeed x(O)=E&t)+E(t), E(t)=E(t+T), (8)

a particle moving in a periodic potenti®lx) =V(x+\) un-

der the influence of an external colored noise and dissipatiowhere &(t) is a Gaussian white noise and the time-periodic
may be taken into the limit of zero temperature noise, external fieldE(t) has zero mean. A probabilistic description

D. Do we need more?

slow periodic driving, and zero massverdamped cage of the system is then possible using a Fokker-Planck equa-
_ tion (see Appendix
x+V'(xX)+E(t)=0. (6) In a next radical step we skip tht) term. The reason
_ for this is that we will be left with a deterministic equation,
The response ofx) to a corresponding static field is well ~ whose symmetries may be studied. These symmetries involv-

known and has been discussed in connection with Josephsarg operations in time are assumed to hold even in the
current-voltage characteristicdor symmetric potentia)s  presence of a Gaussian white noise, since such a term does
The response is clearly nonlinear, and antisymmetric if thenot contain temporal correlations. Note that the general non-
potential is symmetric in space. In case of asymmetridntegrability of the resulting equations may provide with ir-
ratchet potentials the response is nonlinear but asymmetricegular(chaotig trajectories. Thus we are left with an equa-

In the latter case a simpl&(t)~cost signal with large tion of the form

enough amplitude will generate a nonzero averaged current. o

In case of symmetric potentials a drive which is neither an- mx+ yx—f(x)—E(t)=0. (9)
tisymmetric nor shift symmetric is needed.

Nonadiabatic corrections are of interest and importance.
For example, upon constantly increasing the frequency of a ) .
drive, currents(or other averag@smay change sign, or in-  In order to characterize the symmetries of Ef) we
crease or decrease by orders of magnifi@del (). Especially  remind that the phase space dlmensmn is three. As we look
interesting are cases when certéimnadiabatit parameter ~ for nonzero average currents which are characterized by the
limits give rise to new symmetries. These symmetries mayelocity x, we have to check whether there exist symmetries
be traced back away from the corresponding limits and helphat allow to generate out of a specific trajectory of E3).
understand lots of peculiar features that are observed in su@nother one with reversed velocities. The transformations of

driven systems. interest have to involve a change of sign ioﬂeaving its

If the adiabatic response simply vanishes, nonadiabatigbsolute value unchanged. Thus we look for transformations
response contributions will be not just mere corrections. Inthat leave Eq(9) invariant and(@) either change the sign of
such cases the symmetry considerations of the underlying—, —x and simultaneously shift time—t+t, or (b) invert
equations of motion presented below appear to be the mogime t— —t and shift coordinatec— x+ X,.
direct way to predict rectification effects. One example of The following symmetries can be identifi¢,3]:
such a case is given in R¢b] where the problem of driven
guantum spins in ac magnetic fields is considered. While the - T .
adiabatic limit provides with zero induced magnetization Say X=X, t=t+ o, if {fa.Esn}s
component iny direction there, nonadiabatic response terms

A. The relevant symmetries and ways of violations

make this component nonzero, as expected from symmetry 8, xox, to—t, if {Eq,y=0, (10)
considerations.

. A _
Ill. DIRECTED CURRENTS: THE CASE OF A CLASSICAL Sey  X—X+ > t——t if {fg,Eq,m=0}.

PARTICLE IN A PERIODIC POTENTIAL

In order to make further progress in the understanding oNote thatS, and S; require y=0 (Hamiltonian caseand
rectification it is useful to define a model. Here we will con- m=0 (overdamped cagerespectively. Another observation
sider the case of a particle of the unit mass moving in ds that all symmetries require certain symmetry properties of
space-periodic potentid/(x)=V(x+\) under the influence the external driveE(t), while the properties of the space-
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10

periodic forcef not matter foréb. A proper choice of the
drive may thus break all of the above listed symmetries with
any coordinate dependence of the fof¢g).

It is useful to provide an interpretation of the action of the
above symmetry operations on trajectories of ). If the
equation of motion is invariant under a symmetry, it implies
that a given solution or trajectory, when transformed using
the symmetry operation, yields again a solution or trajectory
of the system. It may be the same trajectory or a different

one. The symmetr, for y#0 transforms an attractor into
an attractor, repellers, into repellers and basins of attraction
into basins of attraction. Thus if an attractor is mapped onto -5
itself, the average velocity on that attractor is zero. If an
attractor is mapped onto another attractor, we find complete
symmetry between the two attractors and their basins of at- FIG. 1. Poincaremap of the main stochastic layer of E)
traction, while the average velocities will be of opposite sign.with y=0 and functiong11) with E;=3.26,E,=1.2, a= /2, and
The Symmetryéb, which is valid for the Hamiltonian case, w=1. The two fi!led circles corre_spc_)nd_to the two _observed_ limit
simply relates two trajectories to each other, both having¥cle atractors in the weakly dissipative case with damping
opposite average velocities. =10

Once we add white noise, we have to consider some way
of weighting different trajectories. In that sense, if two dif-

ferent trajectories are related by a symme®yor S, and

—4 -2 0 2 4
X

Contributions to a nonzero current may come from trajec-
tories inside the stochastic layer as well as from regular un-
. i L ) . e nd motion. B he latter alw xist for motion in
have identical statistical weight, their contributions to a totalggfh ddireoctticz)ns egt?grslg tef?e?ttit\?e iar?g;lgti;:l c())f c(L)Jtrroents
average current YV'"_ annl.hlla.te. o _ takes placg2], while the strongest remaining contribution
~ The symmetryS; is acting in the overdamped limit, yet it again comes from the stochastic layer, which will be consid-
is reverting the sign of time. Thus it maps an attractor on &yred pelow.
repeller and the basin of attraction of an attractor into the | the following we choose the following functions and
basin of repulsion of a repeller. It follows that due to the low parameters:
dimensiond=2 of the phase space of this problem, the com-

pactness of the phase space, and the uniqueness of a trajec- V(X)= —cosX, (11
tory running through a point in it, all trajectories have zero
average velocity whefSC is valid. E(t)=E coswt+E,coq2wt+ ).

In order to correctly incorporate the effects of noise, ki-
netic equations have to be considered. This is done in A
pendix. _ _ _ ken. In Fig. 1 we show the Poincare map of the main sto-

If at least one of the symmetrig40) is valid, we con- chastic layer of our model
clude that the averaged current is zero if an additional white . . . .

Gaussian noise term is added. This noise will simply lead to Points W'th_ coordlnate@=x an(_j xmod 27.7 are drawn
an exploration of the whole phase space and thus realize GH{t€" €ach period of the drive. In Fig. 2 the time dependence
finite times different trajectories of the deterministic system.Of the coordinatex(t) is shown.

Once all of the above symmetries are broken, we may
expect that in general the average current will be nonzero.
The understanding of the mechanisms that will lead to this
current can be best obtained in the absence of noise for the
deterministic system.

PThis choice ensures that the symmeti&sand S, are bro-

8

=)

4 -
»

B. Rectification mechanisms in the Hamiltonian limit ?9 8 [ .

As it was shown in Ref[3], the value of the average 2 ; | 1

current is strongly enhanced for the underdamped case, when I 1

the dissipation rate tends to zero. Thus we start our study of 0 a2l = <6

the mechanisms with the dissipationless case0. This 10% ’
Hamiltonian limit of Eq.(7) is generically characterized by _20 s p p : o

nonintegrable dynamics with a mixed phase space containing
both chaotic and regular are@&l]. A stochastic layer ap-
pears around the separatrix of the integrable nondriven FIG. 2. x(t) of trajectory from Fig. 1. Inset: enlargement of
[E(t)=0], Eq. (7). x(t). Note the axis scales.

107%

041104-4



BROKEN SPACE-TIME SYMMETRIES AND MECHANISNS . . . PHYSICAL REVIEW E 66, 041104 (2002

10’ . . — 10
W
— \\\ Tg 0 oo o 5
§ 10” \ 1
\ 1 1
6
E‘ & 0
glo"‘ 1 -5t
&
-10 : ' -
4990 5000 5010 5020 5030
10° L L t
10 100 1000 100 1000 10000
" & FIG. 4. p(t)=x(t) of both attractors fory=10"* which corre-

o o i spond to the two filled circles in Fig. 1.
FIG. 3. Probability distributions of ballistic flights to the right

(solid line) and left (dashed ling (a) Case with dissipation and 107
noise.(b) Hamiltonian case. Inset: length of ballistic flight vs time <)'(>: _J' xdt= Tw (12)
of ballistic flight for Hamiltonian case. TJo n-

We observe a drift in accordance with the :symmetryWhen further away frpm th_e Hamilt(_)nian_, limit .chaotic at-

. L , . tractors can appear via period-doubling bifurcatiph3].
breaking [2]. The average velocity is approximate{y) A numerical test reveals that in the casejsf 10 # only
~0.85. ) _ two limit cycle attractors appear. Their location in the Poin-

In order to understand the dynamical mechanisms of &atemap is shown in Fig. 1 by two filled circles. The depen-
nonzero dc current in the stochastic layer, we first note tha(% nce of(t) on both attractors is shown in Fig. 4
the stochastic layer is bounded in phase space. The bounda §Note that the attractors are located inside ?égljlar islands
contains of a fractal set of regular islands embedded in thef the corresponding nondissipative system. These islands

stochastic layer. A trajectory from the stochastic layer ma e characterized with nonzero winding numbers. and the
become trapped for quite long times in these boundaries aicking of the chaotic trajectory of the %ondissi a:[ive case
perform ballisticlike (regularlikeé dynamics. The symmetry Ing ot/ jectory o P

breaking of the equations of motion is reflected in a d(_:‘Syr,nprowdes with the above discussed ballistic channels there.

metrization of these fractal boundary structures for the uppe]so we observe that the ballistic channels of the Hamiltonian

and lower boundaries. This in turn leads to a desymmetriza?ﬁjt\?vrgask?r\g\ilsesibétti:/aenig)sr;n'ng into limit cycle attractors of
tion of distribution functions which characterize the prob- As the gttract[c))rs are Ioca{ted inside the stochastic layer of
ability to stick and stay in such a boundary regida]. In the Hamiltonian limit, their basins of attraction are expeycted
Fig. 3(b) the probability distribution functions of the flight to show up with a complex folding structure. This fact is

durations to the left and the rigltfor technical details see . . . . . .
Ref. [12]) are shown. These functions are characterized bma_nlfested beautifully if we add a noise of weak intensity
algebaically decaying tails, and we clearly observe the abov hich corresponds to a small temperaturg20.05,

mentioned desymmetrization.
In the inset of Fig. &) each point denotes the distance

covered in a given flight during the time of ballisticlike mo-

tion. We observe a fine structure with three branches. Twd/? 1S _small (_:ompared to the_ energy barrier of the perioc_jic
: : H)otennal. As it turns out, in this case of strong external driv-

ng the system is so far from the equilibrium case that dif-
erent scales have to be used in order to compare with the
noise intensity. In Fig. 5 we show the corresponding Poin-
caremap over a total time of;=10°. We observe that the
trajectory is sticking for long times to the two attractors. But
o ] ] most importantly we observe frequent escapes from the at-
When dissipation is present in the systéra., y#0), the  ractors basins. Once the trajectory is kicked out of such a
phase space of the system separates into basins of attractigisin, it starts to quickly explore the stochastic layer space,
of different low-dimensional attractors. Close to the Hamil-g,e to the weak damping, weak noise, and the above men-
tonian limit these attractors are limit cycles(t+T)=x(t)  tioned complex folding of the basin boundaries. This results
+2am, x(t+T)=x(t), meZ. These limit cycles are locked in the fact that the probability distribution of the velocities is
to the external periodic drivE(t), therefore their period is  far from being Maxwellian.
characterized by =2nm/w, ne’Z. The average velocity on The dependence aft) for the dissipative case with noise
the limit is given by is shown in Fig. 6. Although the dc current value has

(E(DE(L))=2yIpo(t—t"). (13

opposite velocities while a minor third one corresponds to
channel with smaller negative velocity.

C. Presence of dissipation
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10 ' - : dence orp as for (— cosp), which reminds the consideration
of a quantum particle evolution in one band approximations.

A. Absence of additional potential
Let us first consider the case of a particle with a general
dispersion relation in the presence of additional ac driving,
H=e(p)—xE(t), e(p)=e(—p). (14

If the function e(p) is chosen to be periodic, its period is
defined as\,. Let us first consider the symmetries of the

equations of motion which change the sign of the velogity

-4 -2 0 2 4 . :
x x=€'(p), Pp=E(). (19

FIG. 5. Poincaranap of the dissipative case with weak noise. The following symmetries can be identified:
The two filled circles correspond to the two observed limit cycle
attractors fory=10"%. T .
X——X, p——p, t—=t+ > if {Esnt, (16)
changed compared to the Hamiltonian case, again the evolu-
tion is characterized by sticking to ballistic channels. _ i

An evaluation of the corresponding ballistic flight time t=-t poop it {ES), a7
distributions is shown in Fig.(3). A remarkable similarity to A
the case of the distributions for the Hamiltonian case is ob- X——X, p—p+— if {eint (18)
served. Also we observe that the power law tails of the 2
Hamiltonian case are replaced by exponential ones in the
dissipative case with noise, due to an expected noise-induced
cutoff in the maximum correlation time.

A consequence of the above results is that the loss of .
ballistic channels due to the variation of some parameter maP‘Ote that the last two operatior8), (19) may apply only
lead to a crossoverlike decrease of the current. In the followlor periodic (p) functions. Furthermore, these operations
ing section we will design a model that does possess theddange the energy of the undriven system. If these operations

A
t——t, p—>p+?p if {€l,,Eq. (19)

properties. connect different trajectories, they should not matter at finite
temperatures since different energies contribute with differ-
IV. DIRECTED CURRENTS: THE CASE ent weights. _ , ,
OF NONPARABOLIC DISPERSION Choosing the free particle casép) = p</2 we may arrive

at the conclusion that both relevant symmetrigg), (17)

So far we have discussed the case of a classical partickean be violated by a proper choiceBft). Yet, as shown in
with parabolic dispersion, i.e., a kinetic energy quadratic inRefs.[2,14], the expected dc current should be zero in such a
the momentunp. What happens if we consider nonparabolic case, in fact independent of the strength of some additionally
dispersion? A prominent example would be a periodic depenapplied dissipation and noise. The cases(h) = —cosp is

more involved. On one side it is well known that the kinetic
8 ' y Boltzmann equation solution provides with a nonzero dc cur-
rent if both symmetrieg16), (17) are broken[3]. On the
other side this dc current tends to zero as the dissipationless
] Hamiltonian case is approached. We will show in the follow-
ing that the reason for that is an additional symmetry of the
solutionsof Eq. (15) due to the integrability of Eq.14).
_ Indeed, integration of Eq15) yields

P(t)=9(t;Po,to) =Po+E (1) —Ei(to), (20)

107

whereE, (t)=E(t). The functiong has the property

51
g(x;y,2)=—9(z,—Y,X). (21)

15 This symmetry operation relates points on a given trajectory

to points on aset of other trajectories. Such a symmetry
FIG. 6. x(t) of trajectory from Fig. 5. Inset: enlargement of cannot be derived from the equations of motion. It rather is a
x(t). Note the axis scales. result of the integrability and reflects the symmetry of the

107t
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solutions i.e., of the phase space flofin contrast symme- 4
tries of equations of motion relate two trajectories to each
othep.

The symmetry(21) is in place independent of the choice 2y
of the functionse(p) andE(t) and provides with the follow-
ing consequences. If we consider a corresponding kinetic
equation with finite dissipation, the loss of correlations im- & or
plies an averaging over the initial phatgeof the fieldE(t).
This averaging persists in the dissipationless limit, while on
the other side we recover the above considered Hamiltonian 27
properties. The averaging oviyleads to an enforcement of
the symmetry(21), which in turn by changing the sign gf

changes the sign of. Thus a vanishing dc current is ex- '4_4 5 0 5 4
pected in that limit, in accordance with numerical and ana- X/E

lytical analysis of kinetic equations. This result can also be

obtained from Eqs(20) and (15) if an averaging with a FIG. 7. Poincaramap of Eqs(24) and(25) for £=0.35.
distribution function, which is symmetric ipg and indepen-

dent ofx andt,, is performed, shift symmetry of the kinetic energy is brokém terms of

electrons this implies loss of the particle-hole symmete
can identify the following symmetry operations which lead

=0 22 to a change of sign of:

-Po

T T T T
Jdtf dtoxp+J dtf dtgx
0 0 o Jo 0
T

To detect a dc current carried by the electrons in a single X— =X, p——p, t—=t+ - if {Egp}, (26)
band one has to break the integrability of the semiclassical 2
equations of motion. We consider this case in the next sec- )
tion. An alternative way is a much more careful treatment of t——t, p——p if {Eg. (27)
the quantum mechanical problefsee, for example, Ref.
[15]), which is, however, far beyond the scope of the presen
paper.

kn the following we chooséE(t) from Eg. (11) which en-
sures that both symmetries are broken.

For £<1 the phase space of E@®3) is characterized by
the presence of two disconnected stochastic layers. One of
them corresponds to the layer in Fig. 1. In Fig. 7 we show

Things change drastically if we add an external spacethe Poincaremap of Egs.(24) and (25) for é=0.35. Note
periodic potential to Eq(14). Such a system is in general that the central layer is the one which continuously trans-
nonintegrable, and we may expect the additional symmetrjorms into the layer in Fig. 1 whe&—0. An increasing o&

(21) to be absent. To be precise, we choose the followingwill lead to a merging of the layers, which is followed by
model here: losses(closings of ballistic channels that are located near

the boundaries of the central stochastic layer. The Poincare
_ EXE('{) 23) map foré=1 is shown in Fig. 8.

3 ' Let us discuss a trajectory with initial conditioms=0
and x= &, which ensures that we always start in the sto-

B. Presence of additional potential

1 £ [x
H=—cosp—§cos{2p)—§co z

The corresponding equations of motion read chastic layer which corresponds to Fig. 1 in the limit of small
x=sinp+sin(2p), (24) 4
: & [x| &
p——§sm(g)+§E(t). (25 5 |
The free parametef can be used to reach the limit of Eq.
(9). Indeed foré—0, p—0. Choosing a small value ¢p| & 0

<1 will keep the momentum small. This allows for an ex-
pansion of the right hand side of E4) to first order.

Additional rescalingx—x/¢ and p— (3/£)p transforms the =2 r
problem exactly to Eq9) (with y=0). On the other side, a
choice of a finite value op may lead to trajectories that are

not contained in Eq9). In addition, Eq(23) is periodic inp, -4_4 ) P 5 4
so the phase space is compact. XfE

Let us discuss the relevant symmetries of E@«) and
(25). Due to the presence of the cogf2erm in Eq.(23) the FIG. 8. Poincarenap of Eqs.(24) and(25) for ¢=1.
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1.2 ‘ ‘ \ ‘ \ vides average velocities that quantitatively agree with our
7 observations. A consequence of the sum rule is that a non-
1} zero directed current may appear only in systems with a
mixed phase space. This result correlates with our discussion
0.8 of the mechanisms of directed currents in terms of ballistic
channels, which may appear only if the stochastic layer has
0.6 some bounds with regular phase space regions, and the bal-
- listic channels occur precisely in the ng_ighborhood of these
0.4 bounds. Open questions are the followilgls there purely
diffusive (chaotig directed motion besides transport through
0.2 ballistic channels?ii) When can one of these two mecha-
) nisms prevail?
It was shown that the symmetry properties of the Fokker-
0 Planck equation match the symmetries of the corresponding
deterministic equations of motion in the absence of noise.
=02, 02 04 06 08 y Similar results hold for a Boltzmann equatifi.

3 Our symmetry considerations may be as well used to ex-
plain rectifications in such diverse situations (@sthe di-
FIG. 9. j as a function of. Note that the error in determining rected motion of particles in non-Newtonian liquids], (ii)
the current value is of the order of 10%. A fine structure of pro-the appearance of ring currents for particles moving in a
nounced peaks is connected with the opening of new ballistic chantwo-dimensional space-periodic potentfdl8,19, (iii) the
nels due to the overlap of the stochastic layer with high-order resogppearance of directed heat flux currents in systems of inter-
nances. acting particled4], (iv) the appearance of a nonzero dc po-
larization,(v) quantum ratchetl0], to name a few. Symme-
¢. The dependence of the scaled dc currppt(x)/¢ is  try analysis is also instructive in the case of less conventional
shown in Fig. 9 as a function @& Specifically its values for models, like systems with built-in asymmetf20—-23,
the presented Poincareaps arej~0.63 for £=0.35 and Wwhere the asymmetry is hidden in a many body system’s
js~0.002 for é&=1. We observe indeed that the currentinternal interactions.
variations correspond to a closing or opening of ballistic
channels. ACKNOWLEDGMENTS
The above results support the general expectation that in . . N
the Hamiltonian limit a mF;f()ed phas% space ispneeded, so that _We thank T. Dittrich, M. V. Fistul, P. Haggi, R. Ketzm-

the current vanishes both in the case of an integrable systeﬁ{'Ck’ A: qushnlchenko, P. Re'”f‘a””' _and H. Schantz fqr
as well as in the case of a fully chaotic one. stimulating discussions, and A. Miroshnichenko for numeri-

cal help with solving Fokker-Planck equations.

V. CONCLUSIONS APPENDIX:

We presented a symmetry approach to the effect of recti- The Fokker-Planck equation for the probability distribu-

fication due to external ac fields applied to a low- g, W(x,p,t) with p=x of Egs.(7),(8) reads[1]
dimensional dynamical system with optional contact to a " o

heat bath. The nonlinegnonadiabatic response is used to W W 1 y 9
explain the effect. We explained the mechanisms of such a -~ =-pP——+ a0l f(x)—E(t)+ yp+ mgB ap W.
rectification for different cases. In the case of a particle mov- (A1)

ing in a space-periodic potential the explanation is given in

terms of desymmetrization of ballistic channels which corre-This equation is linear iW, preserves the norfiwdx dp
spond to motion in different directions. While this explana-and is dissipative. For a fixed norm any initial condition will
tion starts from the case of a nondissipative Hamiltoniarconverge to a single attractor solutidN,. For the case
limit, we showed that the ballistic channels are robust withg(t)=0 it is easy to see that the attractor is the Gibbs dis-
respect to adding dissipation and fluctuations. The mecharibution. For nonzerdE(t) the attractor solutioW, will be

nism of the directed current in the presence of dissipation igeriodic inx andt. The average current is given by
hidden in the desymmetrization of the basins of attraction of
previously symmetry-related limit cycles with oppositely di-
rected velocities. (p)= | pPWdxdpdt (A2)

A recent geometric approach by Schatzl. in Ref.[16]
provides an elegant way to account for the average drift velt follows that Eq. (A1) is invariant under the following
locity in the Hamiltonian case. The basic ingredient of thistransformations:
approach is the assumption of an invariant density distribu- T
tion in a stochastic layer being constant inside the layer. The 2 -

. X— —X - += if {f,, E

resulting sum rule, when evaluated for concrete cases, pro- Sas X=X p=op, ot 2 {fa, Esnh,

041104-8
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S,, x—X, t——t, p——p if {Es, y=0}. (A3)
At the same time EqA2) is changing sign. Since the solu-
tion Wg is unique, the conclusion is thgp)=0.

The overdamped limin=0 is described by the following
Fokker-Planck equatiofi]:

w_2 f E(t W+1 i Ad
Yo Taxl T fO-EOWEZ o2 (A9

The average current is given by
<p)=f f(X)Wdx dt. (A5)

The symmetryS, again holds. However, the symmetry

A
Sey X—X+ =,

5. t=—t if {fo, Eq,m=0}

does not follow from Eq(A4) in a similar way. It is inter-
esting to note that Reimar{23] considered the symmetries
of the original stochastic differential equatiof®),(8) and
argued tha®, holds for nonzero noise intensities. Fisf2#]
showed tha; connects the original Fokker-Planck equation
(A4) with its conjugated counterpart.

PHYSICAL REVIEW E 66, 041104 (2002

0.04

002 |

<p>

o
FIG. 10.(p) as a function ofx (see text

Expanding Eq(A7) in a formal series irf(x) we obtain

We=1+ 21 [TFx)]"

(A9)
With Eqg. (A5) we obtain for the average current
(P=2 f F()[TF(x)]"dx dt (A10)
n=1

Since all terms in Eq(A10) are real valued, we conclude

Here we will use a related approach and prove the vanthat all integrals with evenn vanish because of ()

ishing of Eq.(A5) whenS, holds. First we remind that the
distribution Wy is periodic inx andt. Next we note that the

operatorsd/ gt and g/ dx are anti-Hermitian on the space of
X,t-periodic functions. Let us define the operaloas

g
X
T= - (A6)
AN
Yot gax? Ulew

Then Eq.(A4) can be rewritten as a Lippmann-Schwinger
type integral equation,

W=1+Tf(x)W. (A7)

Provided the conditions fofsC hold, i.e., E(t)=E4(t), the
operatorT has the property

Th=—T(—1), T(x+Xo)=T(x). (A8)

=f,(X) and these terms contain odd powersf.oAll inte-
grals with oddn vanish because of EGA8), since they con-
tain odd powers off. Thus we find that indeed the average
current exactly vanishes whe holds.

We also performed a numerical solution of Eé4) for
T=vy=1 andf(x)=sinx, E(t)=sin(wt)+sin(2wt+«) with
»=0.8. The functiorWW was expanded in a Fourier series in
x and twenty Fourier harmonics have been taken into ac-
count. The resulting coupled ordinary differential equations
were simply integrated until the system reached the final
attractorWs.

For the above choice of functiori$¢x) andE(t) the sym-

metry S, is violated becausE(t) is not shift symmetric. At
the same time the symmet@ is violated for all values ofy
except fora=0,=7,*=2, .... InFig. 10 the dependence
of the average currerp) (A5) on « is shown. We observe
that for «=0,7,27 the symmetryéC is restored and the

current is vanishingthe absolute numerical value is less than
10719,

[1] P. Reimann, Phys. Ref61, 57 (2002.

[2] S. Flach, O. Yevtushenko, and Y. Zolotaryuk, Phys. Rev. Lett.
84, 2358(2000.

[3] O. Yevtushenko, S. Flach, Y. Zolotaryuk, and A.A. Ovchinni-
kov, Europhys. Lett54, 141 (2001).

[4] S. Flach, Y. Zolotaryuk, A. Miroshnichenko, and M. V. Fistul,
Phys. Rev. Lett88, 184101(2002.

[5] S. Flach and A.A. Ovchinnikov, Physica292 268(200J); S.

Flach, A. Miroshnichenko, and A.A. Ovchinnikov, Phys. Rev.
B 65, 104438(2002.

[6] A.A. Ovchinnikov, e-print cond-mat/0110616.

[7] Underdamped systems often display hysteretic dependence on
external fields, which leads to multivalued response functions.
In that case the overall symmetry of a response function is not
sufficient to conclude about the current rectification. The case
of Egs.(9) and (11) in the adiabatic limit is a nice example.

041104-9



S. DENISOVet al. PHYSICAL REVIEW E 66, 041104 (2002

For a= /2 the ac drive is antisymmetric, yet a nonzero rec-[15] M. Vavilov, V. Ambegaokar, and I. Aleiner, Phys. Rev.@3,

tification will take place, in full accord with the symmetry 195313(2001).

analysis of the underlying equations of motion. [16] H. Schanz, M.-F. Otto, R. Ketzmerick, and T. Dittrich, Phys.
[8] R. Bartussek, P. Haygi, and J.G. Kissner, Europhys. Le28, Rev. Lett.87, 070601(2001).

459 (1994. [17] AK. Vidybida and A.A. Serikov, Phys. Lett108A, 170
[9] M. V. Fistul, Phys. Rev. B65, 046621(2002. (1985.

[10] S. Scheidl and V.M. Vipokur, e-print F:ond-m._slt/02_01008. [18] A.W. Ghosh and S.V. Khare, Phys. Rev. L&, 5243(2000.
[11] G. M. Zaslavsky,Physics of Chaos in Hamiltonian Systems [19] D. del-Castillo-Negrete, Phys. Fluid®, 576 (1998.

(Imperial College Press, London, 1998 _ [20] S. Denisov, Phys. Lett. 296 197 (2002.
[12] S. Denisov and S. Flach, Phys. Rev6E 056236(200)); S. [21] Z. Zheng, G. Hu, and B. Hu, Phys. Rev. L&6, 2273(2001.

Denisov, J. Klafter, M. Urbakh, and S. Flach, Physicd 70 [22] S. Cilla, F. Falo, and L.M. Floria, Phys. Rev. &3, 031110
131 (200). (2000,

[13] J. Mateos, Phys. Rev. Le®4, 258 (2000. :
[14] O. Yevtushenko, S. Flach, and K. Richter, Phys. Re\61E [23] P. Re'”_‘a””’ Phys. Rev. Leﬂ@, 4992(2003'
7215 (2000. [24] M. V. Fistul (private communication

041104-10



