PHYSICAL REVIEW E 66, 041101 (2002
Solutions of a class of non-Markovian Fokker-Planck equations
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We show that a formal solution of a rather general non-Markovian Fokker-Planck equation can be repre-
sented in a form of an integral decomposition and thus can be expressed through the solution of the Markovian
equation with the same Fokker-Planck operator. This allows us to classify memory kernels into safe ones, for
which the solution is always a probability density, and dangerous ones, when this is not guaranteed. The first
situation describes random processes subordinated to a Wiener process, while the second one typically corre-
sponds to random processes showing a strong ballistic component. In this case the non-Markovian Fokker-
Planck equation is only valid in a restricted range of parameters, initial and boundary conditions.
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Many physical phenomena related to relaxation in com-eigenvalug otherwise it is a nonproper probability density
plex systems are described by non-Markovian Fokker-PlanckP(x,t)=0 and[P(x,t)dx<1].
equations in a form Many special forms of memory kernels are of interest. We
note that fractional Fokker-Planck equations widely dis-
cussed as a relevant mathematical tool for the description of
many complex phenomen&] belong just to the class de-
scribed by Eq.(3) with K(t) being a power function of:
where K(t) is a memory kernel and wherg is a linear K(t)ot™ ¢, and that the so-called distributed-order fractional
operator acting on variall® x. Such equations are often equations, introduced on the phenomenological basis in Ref.
postulated on the basis of linear-response considerations fp4] and describing slow processes lacking scalibpcorre-
different physical situations and in several cases can be mogpond to related kernels in a fork(t)« [ f(a)t™“da. On
or less rigorously derived based on a microscopic descripthe other hand, much less exotic exponential kernels, de-
tion. In the symmetric case, the usual form of the operdtor scribing the rather fast memory decay, are ubiquitous. More

aP _fK "YLP "ydt’ 1
E (X!t)_ (t_t )‘C (X,t) t, ()

reads: complex kernels are encountered when describing reactions
( | in polymer system$6,7].
LP(X.1)=D P(x H+AP(X) |, 2 The subdiffusive processes described by fractional

Fokker-Planck equations with<dla<<2 are known to be sub-
ordinated to a Wiener proce$8,9], so that the solution of
where D is the diffusion coefficienthere supposed to be this equation can be obtained through an integral transforma-
coordinate independentind f(x) = —VU(x) is a potential tion of the solution of a usualMarkovian FPEs with the
force. Depending on boundary conditions, the operatosame potential, initial and boundary conditions. As we pro-
Eqg. (20 may or may not possess an equilibrium stateceed to show, some analogue statements can be done also for
P(x,t)=W(x), which corresponds to the solution of the the general version of the non-Markovian FPE. The proper-
equation — (kgT) "M (X)W(x) + VW(x)=0, so thatW(x) ties of such a transform and some important consequences of
=exgd—U(X)/kgT] is a Boltzmann distribution. If any equi- its existence will be discussed in what follows.

librium state exists, Eq.2) can be rewritten in the form Let us show that the formal solution of the non-
POX.) Markovian Fokker-Planck equation can be obtained in a
d P(xt form of an integral decomposition
LP(xH=D2 7 vv( Yax; W) (3
which is known to appear naturally when describing thermo- P(x,)= fo F(x,n)T(rt)dr, 4

dynamics of complex systems when reducing their behavior
to a few relevant variablegthermodynamical observables
X,) as is done, e.g., in the Zwanzig's approddh Com-
pared to the general form of Rdfl], Eq. (1) lacks the drift
term; in some cases this general form can be reduced to Eq.
(1), say by a Galilean transformation, see, Rg2s3]. iF(x t)=LF(x,t) (5)

The Eq. (1) with a &-functional memory kerneK(t) ’ Y
= §(t) corresponds to a usual Fokker-Planck equatieE)
describing Markovian processes. The solution of this equaand for the same initial and boundary conditions, and the
tion is known to be a proper probability densitgo that function T(r,t) is connected with the memory kerni(t)
P(x,t)=0 and [P(x,t)dx=1] if the stationary state exists [8,9]. Parallel to Ref[8] we shall callr the internal variable
(i.e., whenever the Fokker-Planck operator possesses a zewb decomposition, and andt its external variables. More-

where F(x,7) is a solution of a Markovian FPE with the
same Fokker-Planck operatgs
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over, we show that the Laplace transfofirr,u) of T(r,t) not known analytically, a numerical procedure based on Eg.

in its external variable‘T(T,u)zfg"T(T,t)e*“‘dt reads (4) can be much simpler than the direct solution of Eq.
Moreover, in many cases the non-negativity of the solution
~ 1 u
T(r,u)==z——expg —7=——

of a non-Markovian FPEassumed to be a probability den-
T= , (6)  sity) can be easily provedithout solving the equatiorThis
K(u) K(u) is true for a wide class of relaxation processes subordinated
to a Wiener process, i.e., for the equations with “safe” ker-
nels (vide infra).
Note thatF(x,t) is for eachx a non-negative function of
t, since it is a(possibly, nonproperprobability density func-
- 3 o tion (pdf) in x. A function f(u) is a Laplace transform of a
P(x,u)= fo dte*‘“fo drF(x,7)T(7.t) non-negative function defined §0) if and only if f(u) is
completely monotone, i.ef(0)>0 and (—1)"f(W(u)=0,
. ~ see, Chap. XlII of Ref[10]. Remember now, thaP(x,u)
= JO d7F(x, ) T(7,u) =F(x,u/K(u))/K(u), where the functiorF(x,s) is com-
pletely monotone in its second variable. This allows us to
classify all kernels into the “safe” ones, for whid(x,u) is
completely monotone faany completely monotone function

F(x,u), and the “dangerous” ones, when this is not the case.

whereK(u) is a Laplace transform of the memory kernel
K(t). Eqg.(6) means that the Laplace transformRfx,t) in
its temporal variable reads

o 1 u
=J d7F(X,7) = exr{—r~—
0 K(u) K(u)

1 y Noting that the product of two completely monotone func-
=—F| x, ~_) ' (7)  tions is a completely monotone function and that a function
K(u) K(u) of the typef(g(u)) is completely monotone, if(s) is com-

5 pletely monotone and if the functiog(u) is positive and
whereF(x,u) is a Laplace transform d#(x, 7) in its second possesses a completely monotone derivafil@, we can
variabler. Let us now note that the Laplace transform of theeasily formulate a sufficient condition for safety. It is the

non-Markovian FPE, Eq(1) reads case if both functionsK(u) and u/K(u) are positive and
~ ~ possess completely monotone derivatives. As we proceed to
uP(x,u) = P(x,00=K(u) LP(x,u), (8 show, in this casd(r,t) is a pdf in its first variable. The

kernels for which this is the case are “safe” in the sense that
whatever the Fokker-Planck operatoiis (i.e., whatever the
potential, the initial and the boundary conditions )arthe

whereP(x,0) is the initial condition. Inserting the form, Eq.
(7), into (8) one gets

u u u solutions of the non-Markovian FPE will be non-negative
—T:(x,— - P(x,o)zzflf(x,— ) (9) and physically sound. The dangerous kernels correspond to

K(u) K(u) K(u) the situations when the physical solutions of the non-

Introducing a new variable=u/K(u) we rewrite Eq.(9) in Markovian Fokker-Planck equations exist only in the re-

stricted domain of parameters.
The functionT(7,t) is always normalized to unity with
SE(x,s)— P(x,0) = LF(x,S), (10) respect to variabler. To see this, let us considgl(t)
= [odrT(7t). Its Laplace transform is J(u)
in which one readily recognizes the Laplace transform of an- ;2477 (r,u)=K ~1(u) fZd exd — /K (U)]=1/u, so that
ordinary, Markovian FPE, Ed5), with the same initial con-
dition P(x,0). This completes our proof. Thus, the solution
of a non-Markovian Fokker-Planck equation of the type of
Eqg. (1) in the Laplace domain is connected with the solution
of the regular Fokker-Planck equation through

a form

J(t)=1. On the other handl(7,t) may or may not be a
probability density ofr on[0,), depending on whether this
function is non-negative or may take negative values. For all
safe kernelsT(r,t) is a probability densityT(7,u) has just
the formT(r,u) =exd — ruw/K(u)J/K(u), i.e., corresponds ex-
- 1 u actly to the form mentioned above where we take exp
P(xu)= m':( X'm (—7u) instead of functior. The non-negativity of the solu-
tions of the non-Markovian FPEs then immediately follows
In the time domain this corresponds to Ed), whereT(7,t)  from the fact that the integrand in E@) is a product of two

. (12)

is given by Eq6). non-negative functions.
The existence of the formal solution of the non- Letus now consider a few examples. _
Markovian FPE in form of Eq(11) brings several advan-  Example 1 As a simplest example let us consider

tages. It gives an analytical tool to express the solution of théhe Markovian situation, in whichK(t)=4(t), so that
non-Markovian problem through the solution of the Markov-K(u)=1. The function T(7,u)=K(u) texd —uw/K(u)]
ian one, which is often knowtat least for simple potentials =exd —7u], so thatT(7,t)=4&(t—7), and the decomposi-
and simple boundary conditionsEven if the solutions are tion, Eq.(4), is an identity transform.
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Example 2 An example of a safe kernel is a power-law (here we took/>0, so that the overall distribution moves to
kernelK(t)=t~* with 1<a<2, both its Laplace transform the righ. The oscillations occur initially at smal\|, corre-
K(u)=T(1—a)u*"* and the functioru/K(u)=u?"*/T(1 sponding to the initial position. Since the maximum of the
—a) are positive and have a completely monotonic derivafdf moves to the right, they occur at the left flank of the
tive. Note that such power-law kernels just correspond to thélistribution, and for{>¢.=r/2. Thus, if the forcef is
fractional Fokker-Planck equatioif@ith the additional frac-  strong enoughf> y2rD/u, the solution of non-Markovian
tional derivative of the ordey=a—1 in their right-hand FPE ceases at long times to be a probability density, except
side, i.e., with 6<y<1), which got now to be popular tools for the Markovian case&—c«. On the other hand, for the
in describing slow relaxatiofi3]. These equations are abso- force-free case of pure diffusiof £ 0) we have
lutely safe[8,9]. The same is valid for the kernels of the

distributed-order equations(t)= [f(a)t “da, as long as ~ 1 N(utn)lr B —
the functionf(«) vanishes outside of the interval (1,2), Ref. P(x.u)= 2\/5 \/G exil —2[x|yu(u+r)/r],
[5]. (15

Example 3As an example of a dangerous kernel we con-
sider a simple exponentially decaying on&t)=r exp  which is a completely monotonic function defining a pdf. For
(—rt) (the form is taken to be normalized in a way that for u small (t large this function tends to a form corresponding
r—o it tends to as function). The Laplace transform of this to a Gaussian

kernel reads K(u)=r/(u+r), so that u/K(u)=(u?

+ru)_/r. Here the first and th_e_seco_nd derivat_iv_e of the last E’(x,u): L iex;:[—2|)\|\/a], (16)

function have the same positive sign; thus it is not com- 2\/5 u

pletely monotone. Let us show that the non-Markovian FPE

with such a kernel may lead to negative solutions. which is our Eq.(12) with f=0, while for largeu (smallt)
This really is the case if the system’s behavior in a con-we have

stant field is considered. In what follows we restrict our-

selves to a one-dimensional situation. The Green’s function ~ 1

solution of the FPE in a constant fieldnitial condition P(x,u—0)= zﬁexq—zl)\lu/\/ﬁ (17)

F(x,0)=6(x)] reads
corresponding to

Four) 1 r{ (x—ufr)? 12
X, 7)= exg——=—
' 4D ! 1 2|\ 1
2ymD7 7 P(x,t):z\/—D_é(%—t>=§5(|x|—\/Drt). (18)
r r
with u=D/kgT, so that its Laplace transform in its temporal
variable is At early times an initial pulse propagates as a wave, while at

later times the propagation gets diffusive, Rgf2]. Note
that Dr has a dimension of velocity squarédo thatD
=v?/r, wherev is the typical velocity andr,=1/r is the
correlation tim¢. Thus, at short timesP(x,t)=3&(|x
4 | —vt), and the overall equation describes the transition from
Xt— gt |dt a ballistic to a diffusive propagation, i.e., a kind obaude
mti/(ﬂThe mean-free path in the model is exactly,
expi2ZN) 1 =D/r. The breakdown of the physical solution for larger
- oxpe exd —2V(#+s)\°] (13 forces gets now a clear physical meaning. The case

2
N+ S
2\ s f>\2rD/u corresponds to the situation when the mean ve-

[see, 2.3.16.2 of Refl1]], where the variables =x/2\/D Ioc!ty gain on the mean free pa_th is !arger thgn tr_me rms ve-
_ . .~ . locity v = Dr, clearly the case in which the diffusion coef-
and = f/2\/D are introduced. The functioR(x,u) is ob- . : )
) ~ o ~ . ficient D can no more be considered as force-independent
tained fromF(x,s) by multiplying by 1K(u) and by substi-  yhich is only possible fopf<v where the force enters as

- exp( ufx/2D © ] 2§2
F(X,S)=LXJ'O Wexr{—(ﬂ +s

2\ 7D 4D

X2

tution s=u/K(u), so that a perturbation
Thus, our analysis shows that the transition to nonpositive
~ _exp(2{N) (u+n)ir solutions denotes leaving the region of physical validity of
P(x,u)= 2D Vlruurnir the model; the fact that the kernel is “dangerous” shows, that

corresponding equations are only reasonable in a restricted
XeXF[—2|7\|‘/§2+ u(u+r)/r]. (14) domain of parameters, initial and boundary conditions, and
that other conditions are unphysical.
This function is not completely monotonic. Its first derivative  The behavior oP(x,t) for the exponential kernel and for
(which always has to be negative in the case of a) pdff=0 is shown in Fig. 1, where the results of numerical in-
changes sign, gettingfor small u, i.e., in the long-time version of Eq.(14) are shown fot=0.5, 1, 2, and 3. Here
asymptotig positive for ¢>(2r) " X(|n|r?+ \Zr¥+2r3) only the part forx>0 is shown sinceP(x,t) is an even
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1.0 is again not a completely monotonic function; its second
derivativeP,,,(x,u) (which is essentially a quadratic form in
0.8 IN|) possesses a positive root for alt>2. Thus, the set of
kernels which correspond to physical behawior a force-
0.6- free casg consists of kernels that behave at sniadk K(t)
P(x) =t~ * with O<a=<2. All other kernels can be considered as
approximations which are not valid at short times.
fes j Let us make some notes about the long-time asymptotic
—— \4 | behavior. Fort large all integrable kernels correspond to the
0.2 I behaviorkK (u)—1 with | = [{K(t)dt, and thus lead to
0.0
0 1 X 2 3 ~ 1 1
FIG. 1. The time evolution of the Green’s function solution of a Pixu)= 2D \/mexq 2N urm,

non-Markovian diffusion equationf&0), see text for details. The
parameters arB = r=1, so that the peaks move with the velocity
v=1. The curves correspond te=0.5, 1, 2, and Jfrom left to

right) i.e., to the Gaussian behavior. All these kernels correspond

essentially to the processes that can at longer times be ap-
function of x. The overall form of the distribution with the prOXIma.ted by a Markowan.process. The kernels Whose.m-
two side peaks is typical for systems showing random-walk€9ra! diverges are exemplified by the safe power-law-like
behavior with strong ballistic component, such asvye Kkernels K(t)=t™* with 1<a=<2, where the divergence
walks. At difference with the Ley-walk situation, the overall stems from the short-time behavior, and the dangerous
weight of the peaks decays very fast. Thus, tfe0.5 they ~ power-laws (6s <1), where the integral diverges at infin-
absorb more than one half of the overall probability, whileity. Both of them correspond to nondecoupling memory. The
for t=3 the most of the probability lies in the central part of Situations are considered in detail in R¢f8]. The growing

the distribution, whose form slowly tends to a Gaussian. kernels are definitely unphysical.

Note that the situation when the short-time behavior is Whenever the kernel is safe, the variablean be inter-
ballistic and corresponds to the distribution with pronouncedpreted as an operational time, afdr,t) is a pdf of the
side peaks(stemming essentially from the solution of the operational timer at physical time, and our integral decom-
Liouville equation is typical (as a short-time behavipfor  position corresponds to subordination WheneverT(r,t)
all kernelsK (t) which tend to a constant value®t-0; For  can be considered as pdf resulting from a random process
all of them K(u)=K(0)/u for u large, so that Eq(17)  with non-negative increments, we have to do with a
asymptotically holds. Turning to kernels behaving at shoricontinuous-time random walk situati¢g@TRW) or its con-
times as a power-lawK(t)=t"“ [corresponding taK(u)  tinuous limit. The corresponding solutions of the non-
=I'(1-a)u* '], we note that the kernels with<0o<1  Markovian FPES(including the Green’s function solutions
lead to the similar kind of behavidbimodal pdj, see Ref.  can then be represented as the solutions of the ordinary FPE
[13], where the peaks are the less pronounced the larger is corresponding to different final operational times; these so-
On the other hand, safe power-law kernels witid<2  |ytions are weighted with the distribution of this final opera-
lead to pdf's showing a single peak at zero. It is also interyjgng) time, which is given by the pdT(r,t). Thus, the
gsting to discuss the two other situa.tions: The kernels starnsemple of the sample paths corresponding to a random
ing from zero and the strongly decaying power Iavxés. NOW, 8yrocess described by the non-Markovian FPE with a safe
situation of a kernel starting at zero, i.e., l&ét) =t* with kernel can be visualized as an ensemble of péatasdom

B>0, corresponds t&(u)=u"""# and therefore to walks) of a process described by a corresponding Markovian
812 equation, taken not at a given tintebut having different
ﬁ(x,u)= u exp[—2|)\|u1+f”/2] temporal “lengths”(duratior). _ _
2\/5 The dangerous kernels correspond to the situation when

some of these paths enter with negative weight, so that the
which is not a completely monotonic functidits first de-  gverall positiveness of the solution cannot in general be
rivative changes sign ai=[2|\[(2+8)/8] ?**#)), and  guaranteed. We note that the case of the exponential kernel
thus is not a Laplace transform of a pdf. The same is the casgor which the non-Markovian FPE can be rewritten in the
for the kernels with stronger divergenck(t)=t"“ with  form of the telegrapher’s equatipoan be considered as an

a>2. Here approximation for a CTRW with the waiting-time distribu-
a2 tion being a difference of two exponentidl2]. However,
BP(x,u)= exd — 2|\ |ut~ 2] neglecting higher terms in such an approximation leads to
2D the fact that the exponential kernel is dangerous, and that the
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positiveness of the solution is not always guaranteed. range of parameters, or under special initial and boundary
Let us now summarize our findings. We considered a forconditions. The examples of the non-Markovian FPE with

mal solution of a rather general form of a non-Markoviandangerous kernels considered render clear that such equa-

Fokker-Planck equation and have shown that this can be regions describe the processes with strong ballistic component.

resented in a form of integral decomposition. This allows us

to classify the memory kernels into safe ones, for which the

solution of the non-Markovian FPE is always a probability =~ The author is grateful to Yossi Klafter for valuable discus-

density, and dangerous ones, when this is not guaranteed. &ions and to the Fonds der Chemischen Industrie for partial

this case the non-Markovian FPE is only valid in a restrictedfinancial support.
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