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Based on a relaxation equation for the second rank alignment tensor characterizing the molecular orientation
in liquid crystals, we report on a number of symmetry-breaking transient states and simple periodic and
irregular, chaotic out-of-plane orbits under steady flow. Both an intermittency route and a period-doubling
route to chaos are found for this five-dimensional dynamic system in a certain range of paréshei@rsate,
tumbling parameter at isotropic-nematic coexistence, and reduced temperAtlink to the corresponding
rheochaotic states, present in complex fluids, is made.
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A nematic liquid crystalLC) subjected to a steady shear  The molecular orientation is characterized by the second
flow can either go to a stationary flow aligned state or re-rank alignment tensor aoc(l'ﬁ'l), where u is a unit vector par-
spond with a time dependent molecular orientation depencallel to the figure axis of an effectively uniaxial particle, or to
ing on the magnitude of the tumbling parametef1-3|. a straight segment of a polymer chain or of a wormlike mi-
Both flow alignment and time dependent orientation, fre-celle. The symbol ". .. refers to the symmetric traceless part
quently referred to as “tumbling” behavior are observed inof a tensor and the brackets (- - -) indicate an average to be
thermotropic, lyotropic, and polymeric LC[g}] In the tum-  evaluated with an orientational distribution function. Bire-
bling regime, however, the dynamics are more complex thafringence, i.e., the dielectric tensor is linked with a, having
the Ericksen-Leslie director theory can describe. The seconsymmetry properties of a quadrupole moment tensor. For a
alignment tensor is needed to characterize the molecular orfluid subjected to a shear flow with the velocity gradient Vv,
entation. Detailed theoretical studiEs), based on the solu- Where @=(1/2)V Xv is the vorticity of the flow, the equa-
tions of a generalized Fokker-Planck equafiérv], revealed tion of change for the alignment tensor to be studied here is
that in addition to the tumbling motion, wagging and kayak- Ta(é'a/é't—Za')T‘a)-l-(I)(a): — \/ETap'V_",_ (1)
ing types of motions, as well as combinations thereof occur.

_ . . The quantity @, specified below, is the derivative of a
Recently, also chaotic motions were inferred from a momenf_andau-de Gennes free enerdywith respect to the align-

approximation to the Fokker-Planck equation leading t0 gnent tensor, it contains terms of first, second, and third order
65-dimensional dynamical systef8] for uniaxial particles. i, 3 The equation stated here was first derived within the
While we consider uniaxial particles in this note, one maysamework of irreversible thermodynami€&6], where the
notice that for long triaxial ellipsoidal non-Brownian par- rejaxation time coefficients,>0 andr,, are considered as
ticles chaotic behavior had also been predicted in RHf.  phenomenological parameters. It had been shown in Refs.
Here we report on our discovef$0] that a closed nonlinear [g,17] that r, and 7,, are proportional to the Ericksen-Leslie
relaxation equation for the alignment tensor, being equivayiscosity coefficientsy; and y,, respectively. The basic
lent to a five-dimensional dynamical system and stronglyequation used here can also be derived, within certain ap-
related to the full Fokker-Planck equation, leads to a chaotiproximations, from a Fokker-Planck equation for the orien-
behavior for particular values of the tumbling parameter andational distributions function that contains a torque associ-
in certain ranges of the shear rate. Both the frequency dowated with the molecular field proportional €§6,7,18. Then
bling route, as in Ref[8], and the intermittency route to 7, and the ratio— 7,,/7, can be related to the rotational
chaos are found for the simpler system. Due to the couplingliffusion coefficent and to a nonsphericity parameter associ-
between the alignment and stress ten&orrelationship is ated with the shape of a particle. Equati@his applicable to
given below, one may attempt to model the time dependentboth the isotropic and the nematic phases. Limiting cases
and also chaotic rheological behavior seen in the recent exthat follow from this equation are the pretransitional behav-
periments on micellar materiald41], dense lamellar phases ior of the flow birefringencd19,2Q in the isotropic phase
[12], and dense suspensiofit3]|—and discussed in more [®(a) is approximated by its term linear in] and the
general theoretical considerations on rheochpb$—by  Ericksen-Leslie theory in the uniaxial nematic phase. In the
variants of the dynamic system to be characterized in thifatter case, the Ericksen-Leslie viscosity coefficieptsand
paper. An illustrative example is given in R¢i5], where vy, are proportional tor, and 7., respectively, and
equations similar to the one to be discussed below were used= — y,/vy,. Equation(1) has been applied to the study of
to describe the effect dhonchaoti¢ shear thickening. the influence of a shear flow on the isotropic-nematic phase

transition[19,20, and discussed intensively in recent, in par-

ticular, experimental works, see e.g., Rdf3,4] and refer-

*Corresponding author. ences cited therein.
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To proceed, we consider a plane Couette flow with the
shear rate y, where velocity is in the x direction and gradient
is in the y direction, i.e., Vv=ye'e’ and w=(— ¥/2)¢". The
alignment tensor a is expanded with respect to a complete set
of five orthonormal basis tensors defined by T°= \/%e'ﬁ',
Tl=1/2(efe*—e'e"), T2=\2¢%¢, T3= 2¢%, T*
= \/Ee':y_eZ: ie, T:T/=6Y, as a=3,q;T" with a’=a:a
=2 iaiz. In the following, the components a; are expressed
in units of the magnitude \/§ Sk of the equilibrium alignment
at the temperature T (or concentration cy), where the nem-
atic phase of a lyotropic LC coexists with its isotropic phase,

Sk stands for the Maier-Saupe order parameter at coexisty

ence. The pseudo-critical value where the term linea; iim
the expression fofP, vanishes is denoted by* (or c*).
One hasT* <Tg (or c*>ck). The quantitydy=1—T*/Tg

(or 6x=1—ck/c*) is typically of the order of 1/10-1/100.

It sets a reference scale for temperat(gencentratio dif-
ferences. A dimensionless relative temperat(gencentra-
tion) variable is defined byd=(1—-T*/T)/é¢ or 9=(1

—cl/c*)/ 6. Then the Landau-de Gennes free energy as-
sumes a simple form involving just the one model parameter

9, viz., 2b=9a?-21C)+a* Herel® =6 tr(a-a-a) is

the third-order scalar invariant. The scaled equilibrium align-

ment in the nematic phase, far<1, is as=ac{¥)=[3
+(9—89)?)/4. Clearly,as,=1 at9=1, corresponding to

the equilibrium coexistence state point. The nematic and th

isotropic phases are metastable in the intervatsyk 9/8

and 0<9<1. Times are expressed in units of the relaxtion
time 7= 7,/ of the alignment in the isotropic phase at the
coexistence state or, equivalently, are related to the viscosity ,

coefficient y; of the nematic phase at coexistence hy

=yll(15nkBTKSﬁ5K), where n denotes number density.

Shear rates are in units 0{1. Then Eq.(1) is equivalent to

a=—®,+ya,, az=—d3+3ya,, (2

YA/3

2

éoz _(Do,

32:_(132_.731_ ©)

— 1
a=—0,u— 3vas.
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FIG. 1. Solution phase diagram of the steady and transient states
of system(2), (3) for =0. The solid line is the border between the
-plane orbitsT, W, and A; the dashed line and the dotted line
delimit the regions where the out-of-plane orbits KT and KW, re-
spectively, exist. Herey, Negs @ndX, denote dimensionless shear
rate, tumbling parameter of the Ericksen-Leslie theory, and
ePeq [SEE text part close to EQR)].

tion (2) with a3 ,=0 decribes correctly the flow aligned state
as well as the tumbling and wagging behavior of the full
system for certain ranges of control parameters. In this paper,
we report on the symmetry-breaking solutions wih 4

#0, which exist in some specific ranges of the control pa-
rameters. These solutions are associated with kayaking types
of motions, but also rather complex and chaotic orbits are

The derivatives of the potential function with respect to thefound.

components of the alignment tensor
®o=99ay+3(a+a3)—(3/2)(as+a3), ®,=9,a,
—(3/2)V3(a3—aj), ®,=0,3,-33a534, P3=Voas
—3\3(a;az+aza,), and ®,=90a,—3V3(aa3—a,a,),
where the abbreviatiod;= 9+ (9i —3)a,+2a (i=0,1) is
used. The dynamical systef®),(3) contains three control

are given by Results are presented for=0, for 0.8<\K<1.8(corre-

sponding to 0.58\¢<1.2) and 0. y=<10. To obtain an
overview of the possible orbits, the systéR), (3) was inte-
grated numerically using a fourth-order Runge-Kutta method
with fixed time step, starting from at least 10 random initial
values ofag, . ..,a, for each combination of parameters.

parameters two of which are determined by the state poiriVhen the system had reached an asymptotic diatet

and the material chosen, Vviz,4 and N\=

cycle or attractor, the domain of stability of this state in the

— 2374/ (VBS¢72), which is the value of the tumbling pa- parameter space was obtained by changing one parameter (
rameter at phase coexistence. The actual tumbling parametgf \,) in small steps and continuing the integration.

at a state point with} <1 is Ngq= N /aeq. The third control
parameter is the shear rate

The componentsy ; , are linked with symmetry of the
plane Couette flow. According to E@3), az4 remain zero
when they are zero initially. It seemed sufficigh®—22 to

The following types of orbits, cf. Fig. 1, have been found
tumbling (T): in-plane tumbling withas,=0; wagging
(W): in-plane wagging withag 4= 0; aligning (A): in-plane
flow alignment withag 4= 0; kayaking tumblingKT): a pe-
riodic orbit with az;,#0, where the projection of the

study the smaller systef@) involving three components just director—the principal axis of associated with the largest
as one deals with three components of shear stress tenseigenvalue—onto the shear plane describes a tumbling mo-
viz., the shear stress and two normal stress differences. Equien; kayaking wagging(KW): a periodic orbit withag 4
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#0, where the projection of the director onto the shear plane®% T T T T T T
describes a wagging motion, and compl&€X) { periodic or- 004 |- -
bits composed of sequences of KT and KW motion as well asoo - oo | 41
aperiodic and chaotic orbits. The first three orfitaV, and
A were identified in Ref[21]. The kayaking orbit§5] KT oo |
and KW are distinguished from each other according to Ref.
[23]. Because Eq<2),(3) are invariant under the transforma- o2 |
tion ag ,— —az 4, two equivalent kayaking states exist.

A solution phase diagram of the various in-plane and out-
of-plane states is drawn fo#=0 in Fig. 1. Though a de-
tailed discussion about stability, coexisting, and transition  /
states will have to be given elsewhere, we focus our attentior |
to the regionC, i.e., \K~1.2—1.3 andy~3.6—4.2. The sys-
tem shows rather complicated dynamical behavior in region”'
C of the solution diagram, where neither one of the simple
periodic states nor an aligning state is stable. The specific
orbit depends on the parameters and the initial conditions, FIG- 2. The two largest Lyapunov exponerts, A, (solid and
We are able to classify four categories of attractors: dashed lingof system(2), (3) for 9=0, \=1.275 as a function of

(1) Periodic KT/KW composite state denoted by ¥ T_he inset shows the beginning of the chaotic region in greater
KTn/Wm: a state composed of periods kayaking tumbling 9%l
and m periods kayaking wagging, whemre=0.5,1,1.5. .. )
andm=1,2,3, etc. For higher shear rates, the KW sequencei§tegration time(shear straipwas yt=50 000, the transients
tend to be highly damped; up to yt=1000 were ignored._ If one estimates a kayaking-

(2) Irregular KT or KT/KW state: a chaotic orbit consist- tumbling period to be of ordeyt~50, the integration time
ing of either irregular KT oscillation or sequences of KT-type corresponds to 1000 characteristic oscillation periods. The
oscillation, irregularly interrupted by unsteady KW oscilla- parallelepiped of perturbations was reorthonormalized every
tions. The largest Lyapunov exponent is of order 0.01-0.0520 integration steps, and the temporary Lyapunov exponents

(3) Intermittent KT state: At the threshold to the irregular A;(t) were recorded periodically every 1000 shear strain
state for lowh, andy, one has a large number of KT periods units. The last value ayt=50000 was taken as the result.
between the interruptions. Despite the limited exactness of their determination, the

(4) Period-doubling KT states: Generally, the system ex-qualitative behavior of the largest Lyapunov exponeft (
hibits a lot of more or less complicated periodic /W KWm >0 or A;=0) has been verified by testing the periodicity of
states which are stable only within very small parameter inthe orbits at the selected shear rates.
tervals. The higher the values nfandm, the smaller is the A selected Lyapunov spectrum faK =1.275 is shown in
stability interval. For certain values of the parameters, mordig. 2. The error of the Lyapunov exponent; was esti-
than one Kh/KWm state exists. Between the stability re- mated to beSA ;= *+0.002= =6%. The occurrence of tran-
gions of the periodic states, the behavior is chaotic, indicated
by a positive largest Lyapunov exponekt. In many parts
of the spectra, the chaotic regions are highly fragmented.
which coincides with the observation of a large amount of ,,
periodic orbits spreading over the whole range of shear rates

We observe that the route to chaos for increasing shea
rates depends on the parameXét: For A\ <1.25, one finds
intermittent behavior fory at the lower bound of region C.

For AK=1.26, the KT state becomes metastable jat
=3.7016, where it coexists with a periodic KT3/KW1 or . |
KT3.5/KW1 composite state, and chaos emerges either di-
rectly from the KT state afy=3.7025 or from one of the
above KT/KW composite states ay=3.7023. For \y 015
=1.27 and greater, chaos emerges via a period-doubling
route. When the flow-alignet®) phase is approached from

the complex(C) regime, the oscillation period grows infi-
nitely high, in contrast to the behavior at the KWA tran- FIG. 3. Feigenbaum diagram of the period-doubling route of
sition, where the amplitude of the oscillation gets dampedsystem(2), (3) for 9=0, \,=1.275, andy=23.74-3.75. Plot of the
But also in the latter case, the startup transients are modyoincaremapay(t;) for i=1-82 ataz=0 vs the “control param-
lated with a large-period oscillation. In order to determineeter” y, the dimensionless shear rate. The inset shows the shear
the Lyapunov exponents, Eq®),(3) and their linearizations  stress vs time for two fixed shear rates= 3.778 (thin line), and
were integrated from random initial variables and perturba-y=3.776 (thick line), where the latter case exemplifies transient,
tion vectors using a fourth-order Runge-Kutta method. Theheochaotic behavior. All quantities in dimensionless units.
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sient chaos for asymptotically periodic trajectories someseparated fory<3.748 and mix fory>3.748. To test the
times makes the analysis time consuming. Long transientlgimilarity of the period-doubling routes, the valugswhere
chaotic behavior was found within the integration time only 3 period of order 2 emerges and the value, for the begin-
8 of 351 times for the particular set of parameters. For th'%ing of chaos were calculated for= 15 Like for the logis-
selected value fox,, the system evolves towards chaos viatjc map, they, scale according to a law, = y..—Cd " for
successive period-doubling steps. At the first step, only th@s 1 with the Feigenbaum constafitA nonlinear fit yields

period ofag, ...,a, is doubled. Then, with increasing, C=(0.0190+7)x10 ° and §=4.83-0.02, The value
the periods of all components are doubled. A bifurcation diaggrees qualitatively with that for the logistic mag

gram, cf. Fig. 3, was constructed by computing the Poincare-4 @ ... and asimilar value had been reported in Ref.
map ataz=0 for y varied from 3.74 to 3.75 with step size [g]. The Poincarenap in the chaotic regime foy=3.7455 is

5x 10 °. The componena, at the timed; wherea; crosses  not shown here, but the plot af(t,. 1) versusay(t,) has a
zero is plotted in the diagram against the shear rate. Theingle quadratic maximum, indicating the universal behavior.
corresponding diagram fa, is very similar. Since the com- So the presence of the period-doubling route and the quali-
plex states always contain KT sequences with changing tative agreement of the value of the Feigenbaum constant
their sign twice every oscillation period, the hyperplane ~ '€C€ives an explanation. However, a side structure in the map

— 0 was taken as the Poinéaserface of section. The system growing with increasing shear rate prevents an oversimpli-

) S : . fied view of a full analogy.
was integrated up to,t=6000 and the transients foyt In order to provide a link to rheological properties, we

<3000 were skipped. As initial condition for the first value pote that the symmetric traceless part of the stress tensor [16]
of v, a uniaxiala with equilibrium order parameter and the associated with the alignment is ‘o= nkzT G2, with a dimen-
director given by the spherical anglés=0, §=5/187 was  sionless shear stress EOC)\gl(IJ and a dimensionless shear
used. For the (emaining points, the integration was continuemodulus G « )\ﬁéKSIZ(. Irregular behavior of the alignment
with increasedy using the end values of the preceding inte-tensor a will therefore immediately convert into irregular
gration as initials. This was done to ensure that the systerbehavior for rheological properties, cf. Fig. 3, for an ex-
remains in the same oscillation state as long as possible: ttample. Based on the findings reported here, the inhomoge-
states @3 o) and (—as o) are chosen by the system dependingneous extension [17,24,25] of the present model can be ex-
on the initial conditions and lead to different Poincataps. pected to be of relevance in describing experimentally

The resulting bifurcation plot has a striking similarity to observed instabilities, and irregular banded and striped tex-
the Feigenbaum diagram of the logistic mag, ;=rx,(1 tures [11—14].
—Xp). The distance between successive period-doubling This research was supported in part by the National Sci-
steps in Fig. 3 shrinks rapidly with the order of the period asence Foundation under Grant No. PHY99-07949 via the pro-
in the Feigenbaum diagram. Even the chaotic region exhibitgram “Dynamics of complex and macromolecular fluids” at
the same type of banded structure and has windows of perihe ITP, Santa Barbara, and it has been performed under the
odic behavior. However, ay~3.748, the chaotic band en- auspices of the Sonderforschungsbereich 448 “Mesosko-
larges abruptly. The reason for this behavior is the equivapisch strukturierte VerbundsysteméDeutsche Forschungs-
lence of the states;, and —ag,: both attractors were gemeinschajt
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