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Stochastic unraveling of time-local quantum master equations beyond the Lindblad class
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A method for stochastic unraveling of general time-local quantum master equé@ds) which involve
the reduced density operator at tifmenly is proposed. The present kind of jump algorithm enables a numeri-
cally efficient treatment of QMEs that are not of Lindblad form. So it opens large fields of application for
stochastic methods. The unraveling can be achieved by allowing for trajectories with negative weight. We
present results for the quantum Brownian motion and the Redfield QMEs as test examples. The algorithm can
also unravel non-Markovian QMEs when they are in a time-local form like in the time-convolutionless for-
malism.
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Quantum master equatiof®@MES) are frequently used to properties of this approach need to be explored. Bretat.
describe time-independent as well as time-dependent phgl5] extended a scheme that they had used to calculate the
nomena in chemical physics, quantum optics, solid statenultitime correlation functiond19] to the unraveling of
physics, biological physics, ettsee Ref[1] for a number of QMEs. Their technique is based on doubling the Hilbert
typical examples These QMEs describe the time evolution space. Instead of a single stochastic wave function one has a
of density matrices, which are used in order to represent thBair of them[15]. This scheme conserves Hermiticity of the
mixed nature of the states. Stochastic unraveling is an efffRDM only on an average and not for every single realization.
cient numerical tool for solving such equations. This methodT hus, the deviation from Hermiticity is a quantity with sta-
allows one to simulate much larger and more complex Systjstical error and one has to perform a huge number of real-
tems with many degrees of freedom. It can, for example, pézations in order to achieve a good convergence. Since sta-
used to accurately describe femtochemical experiments iRility and efficiency are crucial issues for unraveling
the liquid phase whose description has been limited untiflgorithms we propose in this paper an alternative approach
now, to models with one or two effective interaction coordi- that fulfills these criteria.
nates. In the unraveling scheme one considers an ensemble The aim is to represent, in terms of quantum trajectories,
of stochastic Schidinger equationsSSE$ which in the the solutionp(t) of a generalized time-local Hermiticity-
limit of a large ensemble resembles the respective QME. Theonserving QME
numerical effort scales much more favorably with the size of

the basis since one is now dealing with wave functions and  dp(t) : M .

not with density matrices anymoxéor a comparison of di- gt - ADp(O+p(DA ('f)+k21 {Cu(t)p(DEL(L)
rect integrators, see RdR]). Another aspect of the stochas- -

tic methods is the possible physical interpretation of experi- + Ek(t)P(t)Cl(t)} )

ments detecting macroscopic fluctuatiorie.g., photon
counting in various quantum systen8]. Most of the un-
raveling scheme$3—8] have been restricted to QMEs of
Lindblad form[9] that ensures that the reduced density ma

with the total numbeM of dissipative channels and arbitrary
operatorsA(t), C(t), andEy(t). Examples for these opera-

. o e . tores are given below. Here we restrict the operators in such
trix (RDM) stays positive semidefinite for all times and aI_I a way that the norm of the solution stays conserved. For
parameters. Neverthgless t_h'ere are many physical m?.an'nl%'adability we shall omit the time arguments in the follow-
ful QMEs that result in positive-definite or almost positive- ing.
definite RDMs although they are not of Lindblad form. The

) o7 : 7 . In order to approach the problem let us define a state
increasing interest in descriptions beyond the Lindblad Clas§ector (#),]#))T spanning a doubled Hilbert space as pro-

such as the quantum Brownian motifitD, 11, the Redfield posed in Ref[15]. Unlike Ref.[15] the RDM shall be repro-

formalism[12], non-Markovian schemelsl3-13, etc., re- duced by an ensemble avera¢genoted by overbarsof
sulted in various efforts to develop stochastic Wave—functionOuter products of the vectots)) and| )

algorithms.
Strunzet al. [10,11] developed the non-Markovian quan- S —
tum diffusion model. In general, this method can also be p=|)(d|+|)(yl. ()

applied to QMEs in Markov approximation even though they

might not preserve positivitysee also Ref{16]). A similar A particular realization of the stochastic process will be de-
approach was also proposed by Gaspard and Nadddka noted by the pair |¢),|#)). The averaging is performed
Very recently Stockburger and Grabdit8] developed a over all trajectories possibly including a weighted sum over
method on how to exactly represent the RDM of a systenpure initial states. A vantage of this averaging is the conser-
coupled to a linear heat bath in terms of SSEs. The numericafation of Hermiticity for every single trajectory in contrast to
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Ref.[15]. We note that this small modification improves the

numerical efficiency significantly. dly)y=
For the SSEs let us consideiM2independent possibly

complex noise variablest,(t). The superscripts denote

which of the two terms from the Hermitian pair in the sum in +

Eq. (1) is taken and subscripts denote the various dissipative

channels. All stochastic differentiatk, (t) are assumed to

have zero mean, to be normalized and uncorrelg26¢
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dg=0, d&r dél= 5 sqdt. (3)

Next, as an ansatz we construct a SSE that propagates the +

pair (|¢).|))

Mo2 , The jump ratep;i andp? still remain as free parameters.
dly)=D4|ypydt+ > > Sy lude, (48 In the statistical limit their values have no influence on any
k=11l averaged physical quantity. Nevertheless, it turns out that
M2 they can strongly influence the convergence behavior of the
_ i i jump algorithm, i.e., they determine the statistical error of
de)= D2|¢>dt+l<§=:1 Z’l Saul &) déic (4b) !the I2)bsgrvables calculat)éd. A detailed discussion of this in-
fluence and utilization of such free parameters can be found
The operator®; and D, govern the deterministic and the in Ref.[22].
operatorsS'jk govern the stochastic part of the evolution. In  To ensure an efficient scheme with fast convergence one
general, they may depend on the state vector and explicitipas to require that the norm of every single trajectory is
on time. After differentiating Eq(2), neglecting all terms constant in time. Asking fo{¢|¢), (¥|¢), etc., being con-
higher than first order irdt, and assuming that ensemble stant in time does not create a stable scheme but the condi-

averages always factoriz@1] one obtains tion of norm preservation df)( ¢|+|$)( |
M d
dp=[D1[¥)(dl+ D) (ulldt+ 3, [Shiv)( IS} T gllenelrlenvil=0 ©
+S§kWS§,I]dt+ H.c. (5) does. Unfortunately, applying this condition does not lead us

to positive values of the jump ratex, for all trajectories at

Comparing with Eq(1) one notes tha$., has to equai2, all times. However, since thp'k are arbitrary real functions,
and S}, has to equals?,. Moreover, one can see thaf, ~ they can be replaced by their absolute values. The price to
=Ck+a§ and SngEﬁaE with a& and aE being arbitrary pay is thgt we have to mt_roduce an additional We|g_ht factor
scalar functions of|¢/),|#)) T and possibly of time. Making for the trajectories, which jumps between one and minus one.
the latter substitutions in E45) yields the constraint In addmor_l, there is a small deviation of the norm from unity
because in the regions where thg are replaced by their
M absolute values norm conservation is no longer guaranteed.
D;=D,=A- >, (a¥*Cy+ai*Ey+aia?*). (6) Butin all our tests this deviation was far below 1% and
k=1 neither affected numerical stability nor efficiency. The nega-
_ ) N ) ) tive weights are actually needed to reconstruct RDMs which
Any quantum jump method is specified by jump ratgs  are in general, not positive semidefinite. If the RDM stays
which have to be real scalar functions of,|¢)). If ni(t)  positive semidefinite during its entire time evolution the
is the number of jumps in channkland due to termup to  npegative weights of some trajectories are not needed, i.e., all
time t, the probability forn,(t) to increase by one, i.e., the trajectories can be normalized to unity and represent physi-
expectation value of bottin, and @ny)?, is equal top,dt  cally pure states of the open quantum system. In the ex-
during the infinitesimal time intervadlt. Thus, the noise amples below the RDM can exhibit negative populations.

variablesg, obeying Eq.(3) are related taln,(t) as[21] This unphysical situation could probably be cured by apply-
ing an initial slippage to the initial staf@3,24]. We note that
_ d“L_ pikdt , these physically unreasonable RDMs occur because of un-
dg=—"7——¢'"%. (7)  physical initial states or because the QME is not physically
\/p—k correct or is applied in a parameter region where it is not

i . valid. Nevertheless an unraveling scheme has to be able to
The phase factoe'* does not change the RDM expressions mimic also this unphysical behavior of the QME because in
within each realization and can be set to one. Substituting,e ensemble average both should fully coincide.

Eq. (7) into Eq. (4) one finds thatyikz - \/BE So the SSEs The condition(9) applied to the QME1) results in the
for our quantum jump method read additional constraint
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M 1 —
A+AT=-3 (ELCi+ClEY (10) :
0.8 | | .
and if applied to the deterministic part of the corresponding i )
SSE(8) it yields the total jump rate 06 o : 1
_ (BA+ AT+ (glA+AT ) a £ 1 i i ]
- (dl)+(y1d) ‘ ' M } ‘

All partial jump rates can be found subsequently making use 92 1 |
of Egs.(10) and(11) i
0 L :‘
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FIG. 1. Time evolution of the third excited state of the harmonic
2 <¢|Elck| ¢>+<IJI|CIEk|¢> oscillator in the quantum Brownian oscillator model for
Pk= <¢|¢>+<¢| ) (12p =10 3w, kT=4.5w. The direct integration of the QMEHthick
solid line) is compared to the results of the quantum jump method
In the rest of this paper let us briefly show how the pro-with one trajectory(dot-dashed ling average of 10Qthin solid
posed method can be applied to two typical physical prob#ne), and 1000(broken ling trajectories.
lems: the quantum Brownian motion and dissipative electron
transfer within Redfield theory. In both cases the systems ar@ which A is the relaxation operator aritithe system part
described by Markovian QMEs which do not have Lindbladof the system-bath interactiqid2]. Let us consider a model
structure. The model of Brownian motidri] describes a for electron transfer in which the system includes a single
particle with massn, coordinatey, momentunp, and Hamil- ~ reaction coordinate with the Hamiltonigh2,25
tonian Hg interacting with a thermal bath. In the high-
temperature limit of a bath of harmonic oscillators the rel- Hs=Ha|1)(1]+Hal2)(2[ +v1a|1)(2[ +]2)(1]), (16)
evant QME has the form

whereH; andH, are the Hamiltonians of two coupled har-
monic oscillators with frequencw. We choose a potential

dp i iy mykT : S ’ . .

== _[He,pl— =—[q.{p.0} - ——[a.[q,p]], configuration in the normal region with no barrier between

dt ﬁ[ s:p] Zﬁ[q {Popi] h? La.La.p]] the two harmonic potentialéchange of free energ\E
(13 =2w, reorganization energy=3w) with intercenter

coupling v1,=w. The bath is described by a cutoff fre-
guencyw.=w and temperatur&T= w/4. The system-bath
interaction is characterized by the damping rafe

=mnl(Mexp(l)Fw/10 (see Ref.[25] for detailg. After
E;= 1 /%q, Ci=—i /%p, (149  rearrangement of Eq15) one Ean .easiIX identifxthe op_era—
tors involved in Eq.(1) (M=1): C;=K, E;=A, A=
—iHg— KA. A Gaussian wave packet located at the donor
mykT state| 1) and having energy slightly above the crossing of the
Ep= 7 q, C=E;, (14D harmonic potentials was chosen as initial state. The numeri-
cal simulation for about 1000 trajectories provides suffi-
. . KT ciently converged and accurate results. Figure 2 shows the
A=— ;i_HSJr ;_;q p— mquq. (149  relaxation of the ensemble av_erage(_j donor populaRgn
fi =(p|1)(1|p) +(|1){1| ). Awidely discussed property of
. . . ) o the Redfield equation is that it does not conserve positivity
Modeling the particle as a harmonic oscillator with elgenfre-[lz] AIthoughP_ is always positive the tiny negative frac-
guency o one can compute the population dynamics de-; - !

) S o ) ) tion in Fig. 3 is an evidence for the existence of single real-
picted in Fig. 1. The initial state of the oscillator is the PUre;-tions with negative®,. The simulation of the same sys-
statepsz=1. As can be seen, the agreement of the result

tem within the so-called diabatic-damping approximation
using our stochastic method and a direct integration of th : -
QME is already quite good for one thousand samples. ?25’26 with a Lindblad QME by means of the standard

As a next test for the present quantum jump method unantum jump method3—7] keeps all values oP, wel

shall demonstrate the stochastic unraveling of the Redfiel Orgéni%r?]?nt\gﬁgg Oaann(?ne%ﬁod of stochastic unraveling of
QME [12,25 X

QMEs beyond the Lindblad form is proposed and thus large
i 1 fields of application for stochastic methods are opened. This
p=——[Hs,pl+ —={[Ap,K]+[K,pAT]} (15)  brogress became possible with the use of the wave-function

fi h? pair in the doubled Hilbert space and the derivation of stable,

where y is the damping rate. Comparing with E(L) one
finds the operators of the jump algorithivi& 2)

037701-3



BRIEF REPORTS

LT

8 10

FIG. 2. Relaxation of the donor population for the electron
transfer model. The solid line shows the exact solution of the QME
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FIG. 3. Occurrence of the expectation values of the population

on the donor state produced by the new unraveling scheme for the

the dashed line one arbitrary trajectory, the dotted line an averaggafield QME (dotted ling and the standard normalized jump

over 500 trajectories.

method for the Lindblad QMEsolid line) at time wt/(27)=3,
both with 5000 trajectories.

almost normalized SSEs. The efficiency is determined by the

behavior of the norm of every single trajectory. In this senseshould allow for better quantum dynamical simulation of
the jump rates were used as parameters to influence the effarge systems. It can also unravel non-Markovian QMEs
ciency. Negative values for the weight of single trajectorieswhen they are in a time-local form like in the time-

allow for the reconstruction of non positive-semidefinite

convolutionless formalisril3] or in methods using auxiliary

RDMs if required. The method was successfully tested for alensity matrices to include the memory effeitd] as well
simple electron transfer model and for Brownian motion andas post-Markov master equatiof3].
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