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Statistical properties of a photon gas in random media
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This paper is devoted to a derivation of the probability distribution of photon escape from a semi-infinite
random medium, depending on the number of its interactions with macroscopic particles inside the medium.
The consideration is limited to the case of highly developed multiple light scattering. The distribution function
found facilitates the solution of both direct and inverse problems in light scattering media optics.
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[. INTRODUCTION goal of this paper, therefore, is to derive the analytical rep-
resentation for the weighfg(m,mgy,n).
Statistical characteristics of a photon gas in random media
is an important subject which has a number of applications || t1E PROBABILITY DISTRIBUTION FUNCTION
[1-3]. We address the following question. We have a con-
stant infinitely broad monochromatic photon flux incident in  Let us introduce the probabilities
the direction specified by the unit vectd (¥4, ¢q) on the

surface of a semi-infinite plane-parallel random isotropic me- p(m,mg,n)
dium. Here 9, is the zenith angle and, is the azimuth f(n)=—= 2
angle of the incident light beam. It is assumed also that the > p(m,mg,n)

n=1

energy of the photons is far from the absorption bands of

substances contained in the random medium. We consider

the angular distributioNy(m,mM,) of photons emerging in  with the normalization condition

the direction specified by the unit vectdi(9,¢) from an

arbitrary pointS on the surface of a layer. Heré is the -

zenith angle an is the azimuth angle of the emerging light > f(n)=1. 3
beam. Clearly, due to the symmetry of the problem this dis- n=1

tribution does not depend on the choiceSain the surface of i N
a random isotropic medium. Also we have for normal illu-  The value off(n) can be interpreted as the probability for

minationrity- X=0, X e L, whereL is the plane containing the Photons injected in the medium in the directiog and scat-
medium surface and is an arbitrary unit vector in the plane teredn times to emerge in the direction specified by the
L. vectorm. The condition(3) states that the total probability of

The functionN(f, M) can be obtained by solving Am- photon escape is equal to 1. This is due to the assumed
bartsumian’s nonlinear integral equatiph5]. We are inter- absence of absorption.

ested, however, in the representatiorNg{im, M,) as a sum To derive Fhe functiorf (n) we will use the.rlandom wallk
of contributionsp(rM, My, n) due to photons scatteredimes theory[8]. This theory states that the probability of a particle
in the mediurm 1—3]: appearing at a given place, time, and direction after a large

numbern of interactions is given by

- f(n)=al/mn=*2exp — aln), 4
No(R,fg) = 2, p(rh,g,n). (D " Aalm @
where the constant depends on the physical process under
study. The only problem left is, therefore, to find the constant
Photons scattered different numbers of times, of coursey for our particular case. Clearly, it does not depend on the
will have different path lengths in the scattering medium.position of the pointS on the surface of the medium. It also
The value ofp(m,my,n), which is often called the photon does not depend on time because we consider the steady
weight, can be considered also in the framework of the Feynease. So the only dependence left is due to local optical
man path integral approagB,?7]. This approach, being very characteristics of the random medium and the vecforg,.
general, can be applied to any type of scattering medium. We To derive the parameter, we consider now the case of an
will use here, however, the essential features of the mediurabsorbing medium with the same scattering law in a single
under consideration, namely, its infinite extension in thescattering event as for the nonabsorbing semi-infinite random
space below the plarle and the absence of photon absorp-medium in question.
tion. These assumptions allow us to avoid path integral cal- The probability of photon survivab, in a single scatter-
culations. Clearly, the average number of scattering events img event differs from 1 for absorbing media. Then we have
such an artificial medium is infinite as well. The primary instead of Eq(1) [9,10]

1063-651X/2002/663)/0376014)/$20.00 66 037601-1 ©2002 The American Physical Society



BRIEF REPORTS

©)

N(nﬁ,rm)zz,l p(M,Mg,N) wh.

Clearly, it follows thatN=N;, at wg=1. We can also use the
distribution functionf(n). Then we have foé=N/N,

g:nzl f(n)wp, 6)

where for the sake of simplicity we omitted the indications

of the dependencies @fandf on m, my. We will consider
now a random turbid medium witl g~ 1.

First of all we note that the expansid6) is only slowly
convergent forwg~1. So we will use an expansion in the
parameteB=1— wq, which is the probability of photon ab-
sorption, instead of the expansiondn, in Eq. (6). Then we
have from Eq.6)

gzn; f(n)(1—B)"

(7)
or
§=él f(n)(l—,Bner
_33n<n—;)<n—2)+_“)’ @
where we used the expansion
(1—ﬁ)”=j2no v ]e ©)
with (n/j)=n!/j1(n—j)!.
It follows from Eq. (8) that approximately
g~1-pn+ Bzf— BT+---~W, (10)
where
n_=§1 f(mnk, k=1,...,
exp(—Bn)= 21 f(n)exp(— Bn). (19
Note that we have assumed that(n—1)~n?,

n(n—1)(n—2)~=n3,... in thederivation of Eq.(10). This is
possible due to the large number of scattering eventor
the same reason we have

exp(—,Bn)=f:f(n)exp(—[g’n)dn, (12

where[see Eq.3)]
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fwf(n)dn=1. (13
0

The integral12) can be evaluated analytically. The answer is

exp— Bn)=exp —2aB),

where we used Eq4). Thus we have, taking into account
Eg. (10),

(14

N(m, M) = No(h, Mo) exp — 2\/a B) (15)
or, asB—0,
N(m, M) = No(f, o) (1— 2\/aB). (16)

Now we have an opportunity to find the value @fcom-
paring Eq.(16) with the exact solution of the radiative trans-
fer equation at smalB [3]:

N(m,Mg) = No(M,M)[ 1 —yu(m,mg)], 17
wherey=4./8/3(1—g) andg=3 fJp(6)sinfcosadais the
asymmetry paramet¢8], p(#) is the probability of a photon
scattering in the direction specified by the scattering adgle
and

u(m,mMg)= [Ko(u)Ko( o) /[ Ro(pes o, 4)], (18
where[1]
3 (1,
Ko(w) =3 fo Ree (i, o) (e po)d o (19
is the escape function and
0 L
R0 = 5 | Ry (20)

is the azimuthally averaged reflection functiB(u, uq, %)
[3]. Here w=cosd, uo=cosdy, =¢—¢y. Clearly we
haVe,LLO: \/1_ (rﬁo )2)2, M= \/1_ (I”ﬁ )-())2

It follows from Eqgs.(16) and(17) that

a=(4u?)/[3(1-9)], (21)
which is the result we tried to establish from the very begin-
ning. Finally, we have from Eqg4) and(21)

2uexd —4u?/3n(1—g)]
n¥\3w(1-g)

whereu is given by Eq(21). We note here the importance of
the viewing functionu, which combines all angular depen-
dencies.

Our Eq.(22) transforms to the similar equations derived
in [9,10] if one uses the expansion of the exponent in a
power series in the value of . Only the first term of such
an expansion was explicitly derived @,10].

It follows from Eg.(22) thatf’(n)=0 atn=ng,=2a/3
and

f(n)=

(22)
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LN N IR RN N BN N R NN BN N NN R NN N B BN N I11. APPLICATIONS
0.18 |- —g=0.0
e g=05 ] The main result, given by E@22), can be generalized to
I 9=0.75 | other situations and measurement setups. For instance, if one
014 | - 9=0.85 ] o : L — :
TR 0=0.9 | is interested in function§(n) for total photon numbers, in-
012 | J tegrated over the escape angle, it is possible to obtain instead
ool 1 of Eq. (22), following the same line of reasoning,
T oosf /N i T = 2Kl po)ex —4KG(10)/3n(1-g)] 6
0.06 | A ] n%23m(1—g)
0.04 ‘;" X . Using similar arguments we obtain for the case of inte-
002 i ] gration on both the incident and escaped photon directions:
0.00 P 1 L1 ‘I__—-;_._;_-_-I_-. ,].c.( ) 2exd—4/3n(1—g)] 27)
0 9 10 11 12 13 14 15 16 17 18 19 20 n)= .
n n¥2J3m(1-9)
FIG. 1. The dependend¢n) for various values ofj atu=1. This corresponds to the case of diffuse illumination and dif-

fuse reflectance measurements. Clearly, we have for the dif-
fuse reflection coefficient(9)

1 3 3/2 3
fmaFf(nmax>=—(—> exp(——» 23 S
am\2 2 r(ﬁo)=20 f(n)wg, (28

wherea is given by Eq.(21). We also havégsee Eq(21)] which gives us after transfer to the continuous basis

Niaoc= (8U)/[9(1— ). (24 [(9g)= f “F(mehdn. 29
0

We see than,,,, increases withg and f,,, is linearly pro-

; This formula can also be presented in the following form:
portional to 1-g.

Finally, it follows from Eqgs.(2) and(22) r(9g)= f:f_(n)exp(pn)dn, (30
P(spg,N) where p=In(l/wg)~1—-wo=B as wg—1. It follows from
2K Kol o)exid —4u?(u, o, 1)/30(1-g)] Egs.(30) and(26) that
2 Bnl-g) ’ r(90)=exd — yKo( o)), (3D
(25

wherey=4/[In(1/w,)]/3(1—g). Also, we have for the total

reflectivity
where we used the normalization conditiddg(m,my)

=Ro(u,mq,¥). The functionKy(u) can be approximated - N

by [11,12 the expressiorKo(u)=3(1+2u) for arbitrary f:ngo f(n)wg (32

random media with discrete particles. The accuracy of this

formula is better than 2% at>0.2[11,12. Simple approxi-  or, following the same steps as in the derivation of &),

mations forRy(u, uo,) are derived if1,5,11,12. r=exp(-y). All cases considered here correspond to weak
We present results of calculations with EB2) atu=1in  absorption and, therefore, we can use the limiting valug of

Fig. 1. It follows that the maximum of the probabiliy for o, close to 1: y=4\(1—w,)/3(1—g). The expres-

increases linearly with increasing—ig, which is in corre-  sjons forr(9,) andr derived here have been known for a

spondence with Eq23). Clearly, we obtain thaf=0 atg  |ong time[11]. They were obtained, however, using a differ-

=1. This means that photons do not have a chance to escapfit approach. Our derivations allow us to make clearer their

from the medium. They only propagate along straight linesphysical basis.

(no scatteringy Also, using Eqgs(22) and(6) we conclude that
The maximum shifts to larger numbers of scatterindsr

larger values ofj, which is in correspondence with E@4). Ry

The influence of the paramets+u~2 on the curved(n) is “R% =exp—uy).

similar to that of the parameter-1g. The value oin,4, 0Only

slowly changes witlg at g<<0.7. However, it increases rap- This formula is also the well known result of radiative trans-

idly at g>0.9. fer theory[11,12. We see that the derived functi¢®2) ap-

(33
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pears to be a key point for the derivation of many important
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The probability distribution functiorf(n) can be used

relations in scattering media optics in a simple and straightalso to find the statistical moments

forward manner.

It can also be used to establish the temporal statistics of
photons emerging from a random light scattering layer. For

instance, accounting for the fact that=vt/L, wheret is
time needed for a photon travel the distande with the
group spee@, we may obtain from Eq.22) the distribution
of photons according to arrival timeésor pathsnL. HerelL

=01, whereo is the extinction coefficient of the random
medium. The value df is called the photon free path length.

Taking this into account, we obtain from E@2)

L 3/2 t*3/2 4Lu2
V3m(1—g) 3(1-g)vt

v
Clearly the functions‘_(n) andf(n) transform to

f(t)=2u ) (34

— L\%¥2 732 ALK o)
f(t>=2Ko(uo>(;) G o™ 3ot
(39
and
~f(t)=2(£)3/2t—3/2ex —L). (36)
v/ Ba(l-g) 3(1—g)ut

For instance, we have from E5) at normal incidence

_ L\3%? BL
f(t)=+[B/m(1-9g)] ﬁ) eXF{‘m), 37

where
(38

B:

(IS

K3(1).

The value ofB is approximately equal to 2.2. Equation

(37) has been derived earligf,13]. However, the value dB
in [13] is equal to 0.75. We believe thBt given in Eq.(38),
is closer to the exact result. Note that the valu@a$ equal
to 2.19 in[7], which is close to the result given by E@8).

ﬁzf n*f(n) wfdn. (39)
0
It can be done analytically; namely, we have
— Mt [exp(—2\ap)
K_(_1\k=1
nk=(-1) ﬁﬁp“( % . (40

wherea is given by Eq.(21) andp=In(1/wp). In particular,
we have

n=Jalpexp —2\ap).

Thus, one can obtain for the average number of scatterings
involved in forming the observed absorption lifie4]

<N>=(f:nf(n)w8dn)/(ij(n)den) (42

the following simple relation:
(N)=(2u)/y,

wherey=+3(1-9)(1— w) is the diffusion exponent of ra-

diative transfer theor{3]. The average distance traveled by a
photon havingN) scatterings is given bly=(N)L. This dis-
tance varies with the observation geometry due to the pres-
ence of the viewing functiom in Eq. (43). Thus, we con-
clude that the strength of the absorption line in the scattering
atmosphere will also depend on the viewing geometry.

(41)

(43

IV. CONCLUSION

In conclusion, we derived here the probability distribution
function (22). It describes the photon migration from the
directionmy to the directionm aftern interactions with scat-
terers. This function might be of importance for a wide range
of applications. Some of them are outlined above. Interest-

The distribution on path lengths is obtained by substituingly enough, the geometry of the observation enters Eq.

tion of t in Eqgs.(34)—(36) by s/v, wheres=nL is the total
distance traveled by a photon aftescatterings.

(22) as a single numbeun. This gives significance to the
function u, given by Eq.(18), for radiative transfer theory.
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