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Relativistic EXB acceleration
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The relativistic motion of charged particles is analyzed theoretically in electric and magnetic fields that are
constant, uniform, and mutually perpendicular. In the relativistic regime where the magnitude of the electric
field E is equal to or greater than that of the magnetic fiBldi.e., |E|=|B|, the particle is effectively
accelerated and gains energy indefinitely. This is quite different fronkEth8 drift motion in the nonrelativ-

istic regime.
DOI: 10.1103/PhysReVvE.66.037402 PACS nunier52.20—j
I. INTRODUCTION d(’yﬁx)/dT=E—By, 3)
Understanding the motion of charged particles in electric d(yB,)/d7=p,, (4
and magnetic fields is basic to plasma resedighIn par- Y
ticular, the EXB drift motion is well known as a popular d(yB,)/dr=0, (5)

drift motion. However, it is difficult to analyze the drift mo-
tion in the relativistic regime because of the strong nonlin-and the other new equation corresponding to the energy

earity of the Lorentz factor. equation is derived as
Landau and Lifshit4 2] have calculated the drift motion ~
in the relativistic regime whertE|=|B|. Some of their re- dy/dr=EB,. (6)
sults, presented in parametric form, are focused on a special
case. IIl. PARTICLE TRAJECTORIES

Jackson 3] has predicted that ifE| <|B|, the EX B drift _ _ _
motion in the nonrelativistic regime is significant; on the Introducing the following relations:
other hand, when the conditigi|=|B| is satisfied, the par-

ticle acceleration becomes dominant rather than the drift mo- defdr=py,  dyldr=B,,  d{/dr=p;,
tion. In a special case whet&|=|B|, this effective accel- B B B
eration has already been used as a velocity spectrofdgter §=6=X, ==Y, [={o=Z,

However, this is only a part of thEX B acceleration. Spe- .. . . - .
o i : : it is possible to integrate Eqé3)—(6) as follows:
cific calculations and explanations of the acceleration mecha- P g a83)-(6)

nism have not been performed. _ =
. . = —(n— +E7m=G, 7

Therefore, we have derived here exact solutions from the YBx=Y0Pxo~ (1~ 1m0) T @)
relativistic equation of motion and investigate the relativistic _ T (E—EN=d+ X 8
E X B acceleration in detail. vBy=YoByot (6= &o) ' ®

¥YB2z= YoBo=K, 9
II. BASIC EQUATIONS
The relativistic equation of motions of a particle with Y=%+E(E—&)=r+EX (10
massm and chargey in electric and magnetic fields is given Substituting Eqs(7)—(10) into the modified Lorentz fac-
by tor asy?—1=(yBx)*+(vBy)*+ (vB,)? we obtain
dyv = =
m e =QE+ VB, ) G?=(B2-1)X?+2yo(E— Byo) X+ ¥3B%,  (1D)

and redefine in a simpler form:
where y=1/{1—(v/c)? is the Lorentz factor and is the

velocity of light. We choose the uniform fields G=aX?+bX+c=f,(X),
E=(E,,0,0), B=(0,0,—By), (2 whereG= yyB,,—Y+Er as shown in Eq(7) and
and ngrmalize physical quantities in_ the for@=v/c, 7 a=E2-1, bEZ)’o(E—Byo), c=12B2,.
=Qt, E=E,/By, whereQQ=qBy/mc is the cyclotron fre- _ _ _ _
quency. Thus, the equation can be rewritten as From Egs.(7)—(9), we can derive the differential equations

yBy dpy dY X+d X+d
*Electronic address: take@js.yamanashi.ac.jp YBy dé dX G fi(X)’

(12
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d¢ dzZ k k
¥B, _d¢_dz_k_ , (13)
yBx d§ dX G fi(X)
and obtain the following from Eq<7) and(10):
dr EX+ EX+
l _ _7' _ Yo _ Yo . (14)
yYBx dX G f1(X)

These equations have exact solutions as presented in the Ap-

pendix.
When the conditiom# 0 is satisfied, then the exact solu-
tions are described in the forms

1 b
Y= 2[00~ fol+ d‘%)['(x)_lo]- 15)

Z=K[1(X)~ o], (16)

E
T= E[fl(x)_f0]+

bE
Yo~ Z)U(X)—Io], 17

wherefy andl, are the initial values aK=0. Combining
these three equations leads to another new relation

Bom=EBnY+(1-EBy0)Z.

First, let us consider the case wher€0, i.e.,Eq<By. In
this case the particle drifts in tHeXx B direction with gyra-
tion, and its trajectory is described by E4l) as

(18)

2 bZ
=C— —.

X+ b
2a 4a

(Y_Yoﬂxo_NET)z_a 2a

(19

This implies that the trajectory is elliptical in th&Y
plane because @&<0; in addition, its guiding center moves
along theY direction with a constant velocity, namely the

drift velocity Vq=cEy/Byg. In the limit of E=0, the trajec-

tory becomes a circle or cyclotronlike motion as described

below:

(Y= ¥0Bx0)*+ (X+ YoByo) 2= ¥5( Biot+ Boo).

and the trajectory in th& direction obeys the relatio@
= B,o7 derived from Eq(18).
If a>0 or Eq>B, then the electric force becomes stron-

(20
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FIG. 1. Particle trajectories projected on tR& plane.a<0,
trajectory of theEx B drift described by Eq(19) whereE=0.1;
a=0, slow curved trajectory described by E@3) or Eq. (25
whereE=1.0; a>0, linear trajectory described by E(L5) or Eq.
(21) whereE=3.0. Initial values are given a{,Y,)=(0,0) and
(BXO!ByOIBZO)=(o'3!0'410'1)'

2X 6bd—4c
Y=g f2(X)+ ?[fz(x)—fo], (23
2k

where f,(X)=VbX+c. As time goes onX grows larger,
thus approximate forms of the trajectories can be shown by

2x3/2 \/Ex3/2

Y~ = , (25
3Vb  3Vyo(1-By0)
zkxl/z Z,YOX 1/2

== :ﬁzo(l_ﬁyo . (26)

Some typical trajectories are shown in Fig. 1.

IV. ENERGY GAIN

To obtain the net energy gain of the particle, we can re-

ger than the Lorentz force. Therefore, the particle can neveyrite Eq. (6) as follows:

gyrate and moves linearly along the trajectories

X X
Y~ —==—, (21
Va  \E2-1
K YoB20 ~,
Z~—In|4aX|= Inj4(B2-1)X|. (22

N =

Whena=0 or Eg=B, is satisfied, the trajectory of the

dy 1dy? .

Yar 27dr P @

and further by the use of Eg§3), (8), and(10), the above
equation can be modified in the form

E d2,y2 B

1-E e
5 ; = 'YO( ﬁy0)5a+_
i

Y

(28)

particle follows a slow arc described by the other exact soReplacing the variable? by I" and performing the energy

lutions:

integral, we can obtain
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2

1/dr’
~|=—| =ar+2e\T+h, (29
4\dr
whereh is the initial value given by
1/dr\?
= —aPO—Ze\/F—0+ Z E) L
=—ay;—2ey+ (EvoBu)’. (30)

The last term on the right hand side is derived from €3).
Furthermore, Eq(29) can be rewritten as

dr vy

d_7 B fa(y)’ 39

wheref;(y)=\ay’+2ey+h and its exact solution is also

given in the form

() —fs(vo0)  ell(»)—1(v0)]
™ a a

. (32

PHYSICAL REVIEW B6, 037402 (2002

50
4t
40 r
35
30 |

20 |
15
10 1

10 15 20 25 30 35 40 45 50
7(=Q1)

FIG. 2. Time evolution of particléenergy gains.a<0, peri-
odic gain due to theExXB drift described by Eq(32) where E
=0.5; a=0, slow curved increment described by Eg85) where
E=1.0; a>0, linear gain described by E¢34) where E=3.0.
Initial values are the same as those given in Fig. 1.

0 5

Whena>0, the first two terms on the right hand side of the where 7951/\/1—(vg/c)2. This implies that the particle

above equation are important, while whex 0, the last two
terms are dominant.
If the conditiona=0 is satisfied, then

_ ¥Ea(¥) = vofalvo)  hlfa(y)—falyo)]
= —
3e 3e?

wheref,(y)=2ey+h.

As shown in Eq(6), if £ increases linearly, them must

also increase because®dfy=EA¢. Whenys>1 anda>0 is
assumed, we can obtain

. (33

y~(E?-1)*?r. (34)

gyrates in the uniform magnetic field in the syst&h

If Eo>B, is satisfied, the velocity/y will be greater than
the velocity of light. Then, we must introduce the other ve-
locity described b= cEyx By/E3. According to the trans-
formation, the fields acting on the particle in the systefn
moving with the velocityV; are given by

E
== E2-B2,

Vi

B"=0, (37)

where y,=1/\/1—(V;/c)2. The particle only experiences
the purely electrostatic field and is accelerated indefinitely
with a hyperbolic trajectory in the systelt’.

The motion of the particle in the moving frames can be

On the other hand, ii=0 is satisfied, the equation can be derived more easily than for the original frame. Nevertheless,

derived as

y=~[9y0(1- Byo)/2]*3r%3. (35

In both cases, netenergy gains of the particles increase

indefinitely as time elapses.
Time evolutions of some typicalenergy gains are de-
picted in Fig. 2.

V. DISCUSSIONS

With an appropriate Lorentz transformation, the equatio

of motion can be rewritten simply3,5]. Let us consider the
case where the conditioBy<B, is satisfied. The particle
that stays in the systeid’ moving with the drift velocity
Vg=(Eo/By)c relative to the original framé< experiences
the electric and magnetic fields:

Bo
Yy

E'=0, B’ JVB2—EZ,

(36)

as calculated in previous sections, it is in the original frame
where we can observe the trajectories and the energy gains.
Accordingly, the inverse Lorentz transformation from the
systemK’ or K” to the original frameK is needed and leads

to the same result as that in the original frame.

An alternative an acceleration mechanigmagnetic trap-
ping accelerationfMTA)] [5,6] has been presented to ac-
count for ultrahigh energy cosmic rays, in which the energy
gain of the particle becomes indefinite. TB& B accelera-
tion also has as a feature of indefinite acceleration. If the
condition Eq=B, would be satisfied anywhere in the uni-

Nerse, this mechanism might be a candidate for high energy

particle generations.

VI. CONCLUSION

The relativistic motions are determined exactly in mutu-
ally perpendicular electric and magnetic fields. When the
conditiona=0 or Ey=By, is satisfied, the particle can never
gyrate anymore and is accelerated indefinitely.
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This implies that the drift velocityv, has a physical where the function (x) must be classfied into the following
meaning only ifV,/c=Ey/By<1 is satisfied. This is quite two functions. Fora>0,
different from the drift motion in the nonrelativistic regime.
In the limit of E2<1 andy~1, the trajectories in the rela- 1
tivistic motions coincide with the nonrelativistic ones. [(x)= ?|n|2ax+ b+2\a(ax*+bx+c)|; (A2)
a
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APPENDIX I(x)=—\/marc5| T anc) (A3)
Mathematical formulas of indefinite integrals are pre-
sented below: If a=0, then the above formula is reduced in the following:
pPX+q p bp

—————dx=—Jax*+bx+c+ q——)l(X), X+ 2p(bx—2c)+6b

Jaxt+bx+c @ 2a f P gx= P ) q\/bX-i-C- (A4)
(A1) Vbx+c 3b?
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