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Short-time dynamics of a random Ising model with long-range interaction
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Short-time critical dynamics of a random Ising modelodel A) with long-range interaction decaying as
r~(@+9) (where o is the parameter controlling the range of the interagtios studied by the theoretic
renormalization-group approach. In dimensiahs 2o, the initial slip exponent®’ describing the initial
increase of the order parameter, athdor the growth of the response function, which govern the short-time
scaling behaviors, are calculated to the second ordeydnwith e=20—d. The crossover between the
long-range interaction and the short-range interaction, which occurs atsome is also discussed.
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For critical dynamic systems, traditionally it is believed SRI FP [9]). At o=o0 the critical exponents change
that universal scaling behavior exists in the long-time regimesmoothly to their SRI values that hold fer>o. This be-
of dynamic evolution. However, in 1989, it was discoveredhavior based on the assumption that the LRI dominates over
that starting from macroscopic initial states, the macroscopithe SRI foroc<2 and is irrelevant foo>2, is true for the
short-time stages of dynamic processes display universal bgystems with a positiveyg, [9-11].

havior governed by initial slip exponentsand 6’ [1]. In

However, it is incorrect for the casg,, <0 [12-14, e.g.,

recent years, universal short-time scalings have been fourfdr the random Ising systerfl). In order to get correct re-

in various models with the short-range interacti®RI)
[2—6] or the long-range interactiofLRI) [7,8]. In general,
after the system initially at a high temperatufe with a

sults, one should choose a proper renormalization-group
(RG) transformation to calculate the stability exchange of the
nontrivial SRI and LRI. In the following we use Wilson’s

small magnetizatiomn, is suddenly quenched to the critical momentum-shell RG recursion relations. First, the fields and
temperature€l <T; or nearby, in the short-time regime not parameters in Eq(1) are scaled via?(a+a)—s. Then the

only does the order parameter show an critical initial in- . propagator is found to b®,=[p
creasem(t)~m0t"', but it also gives the response function

G(r,t,t")~(t/t")? for t'—0.

As a further step in that direction, in this work we ana-
lyze, the short-time critical behavior of a random Ising sys-
tem with LRI decaying as (") (d is the spatial dimen-
sion, ando is the parameter controlling the range of the

interactiorn). In equilibrium at temperatur€ the Hamiltonian
describing this random Ising system is given by

a a T g
= dy! & 2, % o2, 2, 2 A
H[s]—fd X{Z(VS) +2(V S) +23 +4!s

¢SZ] : )

wheres is a one-component order parameter fietds pro-
portional to the reduced temperaturéT.—1; g is the cou-

pling constant.a term anda term denote SRI and LRI, B
random-_ 91
temperature impurities, which has a Gaussian distributio

respectively. ¢(x) represents static quenched
with zero mean and second cumulai(x)$(x’)),
=g;6(x—x"). The angular brackef: - -), indicates an av-
erage with the impurities.

It is well known that the scaling regime of the modg)
without impurities is governed by the LRI fixed poi(fP)
for o<os=2- 7, (hereys, is the Fisher exponenj at the
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un 2+o(p7—p?)+7]7t
with v =a/(a+a) andr=7/(a+a) for p<1 in momentum
space. In the crossover region-2r=0(4—d) [9]. Second,
after the elimination of the short-wavelength fluctuations,
we rescale the fieldss=(x)=/,<-1€P*s, via s~(x)
=1(2=d=0/2g' (| ~1x) [14]. Here the functiony follows from

the requirement to hold th@escaled propagator to be 1 at
p=1 and7 =7=0. Finally, settingl=¢e¥ and lettingy— 0
one gets

1 1 1
y=(2-0)u+K§ 530°~ 7001+ 797 @

to two-loop order, and an exact RG equationvof

dv _
d—y—(2—o'—y)v. (3)

Here Ky=2'"97"9T(d/2)]", g=g/(a+a)? and g,
/(a+a)2. The other RG equations are not written out
ecause they are large and complicated. The well-known SRI
P withv=v*=0 follows from Eq.(3) and leads to the
exponenty=y* = 75, [15,16. It is stable fore>2— 7,,.
While for ¢<2— 7, it is unstable, the LRI FPg* >0,
g*>0, g7 >0) develops from Eqgs(2) and (3) with v*
=(n—7ns)/m and n=2—0, and is stable up tor=2
— 7. TO the order ofe’=4—d>0, 5s=—¢€'/106<0
[15]. Therefore, in contrast to the cagg,>0, the LRI still
dominates over the SRI in a small region<z<2
+€'/106.
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In this paper we are concerned with the dynamics of theaction functional(6) becomes the Gaussian model which
random Ising mode(1) affected by the nonequilibrium ini- serves the free part of a perturbation series. It is convenient
tial condition. Using the theoretic RG approach, the expo+to consider the Dirichlet boundary conditiomg= + and
nents ¢’ and 6 are computed to two-loop order in dimen- my=0. The general case is recovered by treating the param-
sions d<2¢. The dynamics to be discussed has noeter37-51 andm, as additional perturbations. The mod6é)
conservation law, and is called the model A dynaniitg],  with Dirichlet boundary conditions must be renormalized.

which is controlled by the Langevin equation The Ward identity states that the relatiosgx) =2\So(X)
SH[s] andsy(x) =§o(x)lro are invariant under renormalization.
as(X,t)=—N\ 350x.1) + &(X,1), (4) Since the SRI is irrelevant for<2— 7., we takea

=0 anda=1 in Eq. (6) in the following. Through dimen-
where\ is the kinetic coefficient¢ is the Gaussian random Sional analysis, one can show the upper critical dimension
force with zero mean and the correlatiofg&x,t) £(x,t")), d.=20, and hence it is .convenlent t.o make an expansion in
=2\8(x—x')8(t—t'). The angular bracket: - -), indi- e=20—d. A perturbation calculation of the connected
cates an average with the thermal noise. Green functionsGLAN({x,t})z(sNéNég" leads to integrals
As mentioned above, the initial condition is macroscopi-yltraviolet-divergent atd,. We will apply the dimensional
cally prepared at some very high temperatlife-T.. The  regularization with minimal subtraction scherf29] to ren-
initial statesy(x) =s(x,0) with short-range correlations cor- der these integrals finite, and introduce renormalized quanti-

responds to a distributiorP[sy]ecexp{—[dX(7/2)[Se(X) ties through some multiplicative factors
—my]?}. Heremy is the homogeneous initial order param-

eter. By naive dimensional analysis, one finds that the physi- sp=2Y%, $,=Z%, Sp=(Z:Z0)"%,,

cally interesting FP of, is 75 = + o, which corresponds to

a Dirichlet initial conditions,=m,. The statistical expecta- No=(Zs/ZH)Y\, m=2.'Z.7,

tions can be computed by averaging with respect to thermal

noise, random impurities and the initial condition. 0=uKg'Z?Zu,  g1=pnKe'Z%Z 0. (D)

As shown in Ref[18], the dynamics expressed in EG)
and(4) can be cast in field theoretical form in terms of a pathHere the subscrigt denotes the bare quantity. Since the LRI
integral which involves a set of conjugated variatdesds. termep? is not renormalized because of its nonanalyticity in
The perturbation theory based on this path integral can be, Zs=1 [10,9. The otherZ factors excepZ, have been
considered as an extension of Martin-Siggia-Rose theorgbtained in Ref[21]. The new factoiZ, is induced by the
[19]. The variablés has a simple physical interpretation in fact th_at nqnequlhbnum initial conditions break the transla-
terms of the response field, sometimes called Martin-Siggiat-'Onal invariance at=0. o _ _
Rose response field. Then all correlation and response func- AS usual, the theoretic RG equation is derived by exploit-
tions can be obtained by the path integral over phase spaded the fact that the unrenormalized Green functi®i,,
variabless ands. The generating functional for all the con- =(syspSg,) are independent of the external momentum
nected correlation and response functions is now given by scalew. This leads to the RG equation

~ ~ ~ 1 1
W[h,h]=InJD(is,s)exr{—ﬁ[s,s] md,+ E('yg— YN\ + KT+ Budyt By dy, + E[N'ys

+f:dtf d(hs+hs)|, (5) FNYs+M(7:+ 70)1|Gyz=0. (8)

Here B,,= nd, w|o (for w=u,u;) andX=pud,In Y|y (for X
=%Ys, Vs, Yo,k and Y=2Z¢,7Z5,Z,, 7, respectively are Wil-
) _ son functions. The symbd} means thaju derivatives are
s+A[r—aV3+a(—V?)?]s calculated at fixed bare parameters.

At the two-loop level, the new Wilson functiomy con-

where the action functional['s,s] is defined by

L[s,s]= J:dtf dx

S

\ nected with the nonequilibrium initial condition is given by
93| ,x2 dy| 70 2
+—5|—=As} + | d|—=(sp—mp)

° ’ —112I21D2D2ASB

)\gl . 2 ’YO__EU_E ;n _E s u _( o o 0')uul'
__U dfss| |. ®) ©

2 \Jo

o o . The other Wilson functions are given by
Here we have used a prepoint discretization with respect to

time so that the step functiof (t=0)=0. Then the contri- B N 3, 5 3D 3.4 190 2_ 51D 2
bution[=<®(0)] to £[s,s] arising from the functional deter- Pu=—eut zum—buu—5D,u ot otiath
minant deftdé(x,t)/ds(x,t)] vanishes. Fog=g,=0, the (10
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1 1 , 3 3 )
K=zU—U;— ZD‘TU +-D,u;u— 5D, ug

2 2 2 (13

with ys=0 for e=20—d. Here we have introduced

(Sin¢)20—2xa—1

2+ XN)[1+X7+(1+x2+ 2x cose) 2]’

(sin (P)2072Xa'71

2
11
yz=2u;+B,u?>~D, uu;+3D,u?, (12
r ©
A= L)lf de de
\/;F( o _) 0 0 (
2
r © [
B,= L)lf dXJ de
\/;F( o— E) 0 0

andD = (1)—2¢(0/2)+ (o) with #(x) the logarithmic
derivative of the gamma function. For the particular case
=2, one has A,=%[3In3-7In2+\3In(2+3)], B,
=11In(4/3), andD,=1.

[1+4 X7+ (1+x%+ 2x cosg) 22’

occur at the order? [17,11. The reason is that random
impurities account for many metastable states in the system.
In the presence of these states the nonequilibrium relaxation
to the equilibrium state at or nedi; is slower than in the

Equation(8) allows us to study the infrared asymptotic absence of the impurities.
properties of the Green functions which are dominated by the Using Eq.(15) and the equatiosy(X) =Sy(X)/ 7o, We find

scaling solution of the RG equatiori40) and (11) at the
stable FPswv* = (u*,u}) [which can be obtained frong,,

=0 for w=(u,u,)]. Here we are only interested in the be-
havior governed by the FP characteristic of the random sys-

tem, which is given by

*_4 € *_1 € €
“=3Vp, ""3VDp, 9

(14)

and is stable to ordet. Using dimensional analysis and the

solution of Eq.(8), we find the asymptotic scaling laws
G'\NA'N({X,'[},T,)\,W* L)

= | (d=2+ ) (NI2)+(d+ o+ 72) (N+M)/2+ 7o(M/2)

X Gk ({1%, 176}, 71 72\ W ), (15)
where the critical exponents, 7z, 70, v, andz are the
fixed-point values of the functions2o+ ys,vs, v, (o
—k), and o+ (yz— ys)/2 with ns=ys(W*)=0, respec-
tively.

To second order iR/e the dynamic exponentdescribing
the critical slowing down of the relaxation foF— T, is
given by[21]

1 [e (8B, 1

Z—O’+§ D_0.+ 9D0_€ €.

As in random systems with SRL6], the quenched impuri-
ties affect the critical dynamics already in first orderyis,

(16)

leading to a relevant enhancement of the dynamic exponent

z. While in the pure systems, the leading correctionsaaly

the autocorrelatiol©(t) =({s(x,t)sy(x)) displaying the scal-
ing behavior
C(t) ztﬁ’fd/ch( ’Ttl/(yz)), (17)

where the initial slip exponend’ is defined by#'=— (7,
+ 775+ 70)/(22). To second order ine it has the value of

0!

(18

ol

= 8|2 4A,—14B +3D
_90'D,,En 7 st 2

The short-time scaling behavior of response functions can
be obtained by a short-time expansion of the fied(is,t)
and’s(x,t), as done in Ref[1]. By means of the Green
functions(15), one will find the two-point response function
to behave

0
t
G‘fl(r,t,t’)zr‘z‘zﬁ’”(t—,) fo(rr’ tr'%t' %) (19

with fg finite for t'—0. Its long-time behavior is
G(r,t,t")=r"2"28I"F[rs”, (t—1')7"%], which satisfies
the same scaling laws as in equilibrium. Here the relation
(d—2+n)/2=pB/v has been used, and the exponénts
defined byd= — 5,/(22). To second order ie*?, the initial

slip exponentd is given by

1 €

=32 Vp-

B
D, 90D o "¢ 25 T 3Bg):

(20
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TABLE I. The values of¢’ to e=0.1 ford=1,2,3 together with  impede the formation and development of the order param-
0p in Ref.[8] and 6, in Ref. [3]. eter, and then decrease the initial critical increase.
It is interesting that our results are compared with those
d=1,0=055 d=2,0=105 d=3,0=155  gptained for the random hierarchial Dyson model. In absence

9’ 0.0259 0.0143 0.0106 of disorder, the hierarchial model captures rather well the
0, 0.0383 0.0180 0.0117 physics of the corresponding one-dimensional Ising system
9., 0.1736 0.0868 with LRI [13,22. However, the Dyson model with random

impurities does not have a stable FP in the physical region

for e=20—1>0, while the FP only exists foe<0 and is
The RG analysis of nonequilibrium critical relaxation also unstable, which is different from our results = 1. There-

gives the scaling form of the order parameter(t) fore the Dyson model with impurities does not have the same

=(s(x,t))|f=n=0 Which is expanded in powers afi,, i.e.,  critical behavior as our model fat=1. If the disorder is a
o 0+ BIv2) 1) random external field, the Dyson model may also disagree
M(t) =mMot™ f (Mot 7t ), (2D with the corresponding one-dimensional mof].

In summary, the short-time behavior of the random Ising
model with LRI is studied by the theoretic RG approach. The
~t= B0 [17 4 initial slip exponentsy and ¢’ are attained for dimensions

As seen from Eqgs(19) and (21), LRI Ising systems un- d/2<o<2+€'/106 with EIE4_d>O'_At 0:2+6,/1(_)6’ .
dergo the nonequilibrium critical relaxation. In the short-time OUr results recover the SRI results with the random impuri-
region, the order parameter displays the initial increasdi€s[3,15,18.

m(t) ~mot? , and the response function has the growth formt_ Flntally, tvr:e Wo_?rlld I'kz to mtentlon t?at Iong-rangfll_ﬂtelrac-
of GOr,,t') ~(t/t')? for t'—0. Fort,t’ large, they cross 1oNS together with random temperature are most likely ex-

over to the familiar long-time behaviors. The exponefis tremely rare in reality. It is not easy to find an experimentally
6. andz decrease whed increasesor o decreases and accessible system relevant for the model considered in this
satisfy the scaling relatioa(1+ 6’ — 6) = which follows ~PaPer. Although some systerfisuch as ionic systeni3])

from the identifications of the exponents. &t=2+ ¢'/106 have the long-range nature of interactions, it is not yet clear
with €’=4—d, the exponents change continuously to theirthat these systems belong to the LRI universality class be-
SRI values[3,15,16. For instance, the values @ corre- Ccause of interactions partially screened. Recent experiments
sponding t0e=0.1 forn=1 andd=1, 2, 3 are listed in argue that dynamical properties of the Ising pyrochlore mag-

Table I, where their corresponding nonrandom valﬁ"gaand pets HgTiZC?7kar533 D23'2Ti2|\§)7 ';' dze to Iong-range ﬁl_ipﬁlar
SRI random value9)., are taken from Refs[8] and [3], Interactions like [24]. Maybe the experiments which try

respectively. In one dimension, there is no SRI FP hencéo test ourr_esults \{vill be_garried out in these Ising pyrochlore
only the behavior controlled by the LRI FP is observed. Formagnets with the impurities.

fixed d and o the exponen®’ is all smaller than its corre- The author is grateful to Z.B. Li and L. Schuelke for
spondinger’,, as in Table I. That is because the impuritiesfruitful discussions.

where the functionf,(0,0) is finite; while for x—oo,
fm(x,0)~1/x, which leads to the long-time behavian(t)
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