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Short-time dynamics of a random Ising model with long-range interaction
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Short-time critical dynamics of a random Ising model~model A! with long-range interaction decaying as
r 2(d1s) ~where s is the parameter controlling the range of the interaction!, is studied by the theoretic
renormalization-group approach. In dimensionsd,2s, the initial slip exponentsu8 describing the initial
increase of the order parameter, andu for the growth of the response function, which govern the short-time
scaling behaviors, are calculated to the second order inAe with e52s2d. The crossover between the
long-range interaction and the short-range interaction, which occurs at somes.2, is also discussed.
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For critical dynamic systems, traditionally it is believe
that universal scaling behavior exists in the long-time regi
of dynamic evolution. However, in 1989, it was discover
that starting from macroscopic initial states, the macrosco
short-time stages of dynamic processes display universa
havior governed by initial slip exponentsu and u8 @1#. In
recent years, universal short-time scalings have been fo
in various models with the short-range interaction~SRI!
@2–6# or the long-range interaction~LRI! @7,8#. In general,
after the system initially at a high temperatureTi with a
small magnetizationm0 is suddenly quenched to the critic
temperatureTc!Ti or nearby, in the short-time regime no
only does the order parameter show an critical initial
creasem(t);m0tu8, but it also gives the response functio
G(r ,t,t8);(t/t8)u for t8→0.

As a further step in that direction, in this work we an
lyze, the short-time critical behavior of a random Ising sy
tem with LRI decaying asr 2(d1s) (d is the spatial dimen-
sion, ands is the parameter controlling the range of t
interaction!. In equilibrium at temperatureT the Hamiltonian
describing this random Ising system is given by

H@s#[E ddxH a

2
~,s!21

ã

2
~,s/2s!21

t

2
s21

g

4!
s4

1
1

2
fs2J , ~1!

wheres is a one-component order parameter field;t is pro-
portional to the reduced temperatureT/Tc21; g is the cou-
pling constant.a term and ã term denote SRI and LRI
respectively. f(x) represents static quenched rando
temperature impurities, which has a Gaussian distribu
with zero mean and second cumulant^f(x)f(x8)&f
5g1d(x2x8). The angular bracket̂•••&f indicates an av-
erage with the impurities.

It is well known that the scaling regime of the model~1!
without impurities is governed by the LRI fixed point~FP!
for s,ss[22hsr ~herehsr is the Fisher exponenth at the
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SRI FP @9#!. At s5ss the critical exponents chang
smoothly to their SRI values that hold fors.ss . This be-
havior based on the assumption that the LRI dominates o
the SRI fors,2 and is irrelevant fors.2, is true for the
systems with a positivehsr @9–11#.

However, it is incorrect for the casehsr,0 @12–14#, e.g.,
for the random Ising system~1!. In order to get correct re-
sults, one should choose a proper renormalization-gr
~RG! transformation to calculate the stability exchange of
nontrivial SRI and LRI. In the following we use Wilson’
momentum-shell RG recursion relations. First, the fields a
parameters in Eq.~1! are scaled vias2(a1ã)→s. Then the
free propagator is found to beG05@p21v(ps2p2)1 t̄ #21

with v5ã/(a1ã) and t̄5t/(a1ã) for p<1 in momentum
space. In the crossover region 22s5O(42d) @9#. Second,
after the elimination of the short-wavelength fluctuation
we rescale the fieldss,(x)5*p< l 21eip•xsp via s,(x)
5 l (22d2g)/2s8( l 21x) @14#. Here the functiong follows from
the requirement to hold the~rescaled! propagator to be 1 a
p51 and t̄85 t̄50. Finally, settingl 5ey and lettingy→0
one gets

g5~22s!v1Kd
2F 1

24
ḡ22

1

4
ḡḡ11

1

4
ḡ1

2G ~2!

to two-loop order, and an exact RG equation ofv,

dv
dy

5~22s2g!v. ~3!

Here Kd5212dp2d/2@G(d/2)#21, ḡ5g/(a1ã)2, and ḡ1

5g1 /(a1ã)2. The other RG equations are not written o
because they are large and complicated. The well-known
FP with v5v* 50 follows from Eq. ~3! and leads to the
exponenth[g* 5hsr @15,16#. It is stable fors.22hsr .
While for s,22hsr it is unstable, the LRI FP (ã* .0,
ḡ* .0, ḡ1* .0) develops from Eqs.~2! and ~3! with v*
5(h2hsr)/h and h522s, and is stable up tos52
2hsr . To the order ofe8542d.0, hsr52e8/106,0
@15#. Therefore, in contrast to the casehsr.0, the LRI still
dominates over the SRI in a small region 2,s,2
1e8/106.
©2002 The American Physical Society04-1
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In this paper we are concerned with the dynamics of
random Ising model~1! affected by the nonequilibrium ini
tial condition. Using the theoretic RG approach, the ex
nentsu8 and u are computed to two-loop order in dimen
sions d,2s. The dynamics to be discussed has
conservation law, and is called the model A dynamics@17#,
which is controlled by the Langevin equation

] ts~x,t !52l
dH@s#

ds~x,t !
1j~x,t !, ~4!

wherel is the kinetic coefficient.j is the Gaussian random
force with zero mean and the correlations^j(x,t)j(x8,t8)&j

52ld(x2x8)d(t2t8). The angular bracket̂•••&j indi-
cates an average with the thermal noise.

As mentioned above, the initial condition is macrosco
cally prepared at some very high temperatureTi@Tc . The
initial states0(x)5s(x,0) with short-range correlations co
responds to a distributionP@s0#}exp$2*ddx(t0/2)@s0(x)
2m0#2%. Herem0 is the homogeneous initial order param
eter. By naive dimensional analysis, one finds that the ph
cally interesting FP oft0 is t0* 51`, which corresponds to
a Dirichlet initial conditions05m0. The statistical expecta
tions can be computed by averaging with respect to ther
noise, random impurities and the initial condition.

As shown in Ref.@18#, the dynamics expressed in Eq.~1!
and~4! can be cast in field theoretical form in terms of a pa
integral which involves a set of conjugated variabless ands̃.
The perturbation theory based on this path integral can
considered as an extension of Martin-Siggia-Rose the
@19#. The variables̃ has a simple physical interpretation
terms of the response field, sometimes called Martin-Sig
Rose response field. Then all correlation and response f
tions can be obtained by the path integral over phase s
variabless and s̃. The generating functional for all the con
nected correlation and response functions is now given b

W@h,h̃#5 ln E D~ i s̃,s!expS 2L@ s̃,s#

1E
0

`

dtE ddx~hs1h̃s̃! D , ~5!

where the action functionalL@ s̃,s# is defined by

L@ s̃,s#5E
0

`

dtE ddxH s̃ F ṡ1l@t2a,21ã~2,2!s/2#s

1
lg

6
s3G2l s̃ 2J 1E ddxF t0

2
~s02m0!2

2
lg1

2 S E
0

`

dts̃sD 2G . ~6!

Here we have used a prepoint discretization with respec
time so that the step functionQ(t50)50. Then the contri-
bution @}Q(0)# to L@ s̃,s# arising from the functional deter
minant det@dj(x,t)/ds(x,t)# vanishes. Forg5g150, the
03710
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action functional~6! becomes the Gaussian model whi
serves the free part of a perturbation series. It is conven
to consider the Dirichlet boundary conditionst051` and
m050. The general case is recovered by treating the par
eterst0

21 andm0 as additional perturbations. The model~6!
with Dirichlet boundary conditions must be renormalize
The Ward identity states that the relationsṡ0(x)52l s̃0(x)
ands0(x)5 s̃0(x)/t0 are invariant under renormalization.

Since the SRI is irrelevant fors,22hsr , we takea

50 and ã51 in Eq. ~6! in the following. Through dimen-
sional analysis, one can show the upper critical dimens
dc52s, and hence it is convenient to make an expansion
e52s2d. A perturbation calculation of the connecte
Green functionsGNÑ

M ($x,t%)5^sNs̃Ñs̃0
M& leads to integrals

ultraviolet-divergent atdc . We will apply the dimensional
regularization with minimal subtraction scheme@20# to ren-
der these integrals finite, and introduce renormalized qua
ties through some multiplicative factors

sb5Zs
1/2s, s̃b5Zs̃

1/2
s̃, s̃0b5~Zs̃Z0!1/2s̃0 ,

lb5~Zs /Zs̃!
1/2l, tb5Zs

21Ztt,

gb5meKd
21Zs

22Zuu, g1b5meKd
21Zs

22Zu1
u1 . ~7!

Here the subscriptb denotes the bare quantity. Since the L
term}ps is not renormalized because of its nonanalyticity
p, Zs51 @10,9#. The otherZ factors exceptZ0 have been
obtained in Ref.@21#. The new factorZ0 is induced by the
fact that nonequilibrium initial conditions break the trans
tional invariance att50.

As usual, the theoretic RG equation is derived by explo
ing the fact that the unrenormalized Green functionsGNÑb

M

5^sb
Ns̃b

Ñs̃0b
M & are independent of the external momentu

scalem. This leads to the RG equation

Fm]m1
1

2
~g s̃2gs!l]l1kt]t1bu]u1bu1

]u1
1

1

2
@Ngs

1Ng̃ s̃1M ~g s̃1g0!#GGNÑ
M

50. ~8!

Here bw5m]mwu0 ~for w5u,u1) and X5m]mln Yu0 ~for X
5gs ,g s̃ ,g0 ,k and Y5Zs ,Zs̃ ,Z0 ,t, respectively! are Wil-
son functions. The symbolu0 means thatm derivatives are
calculated at fixed bare parameters.

At the two-loop level, the new Wilson functiong0 con-
nected with the nonequilibrium initial condition is given b

g052
1

2
u2

1

2 S 2

s
ln 22

1

2
DsDu22~Ds22As23Bs!uu1 .

~9!

The other Wilson functions are given by

bu52eu1
3

2
u226u1u2

3

2
Dsu3112Dsu1u2221Dsu1

2u,

~10!
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bu1
52eu11uu124u1

22
1

2
Dsu2u116Dsuu1

2211Dsu1
3 ,

~11!

g s̃52u11Bsu22Dsuu113Dsu1
2 , ~12!
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1

2
u2u12

1

4
Dsu21

3

2
Dsu1u2

3

2
Dsu1

2 ~13!

with gs[0 for e52s2d. Here we have introduced
As[
G~s!

ApGS s2
1

2D E0

`

dxE
0

p

dw
~sinw!2s22xs21

~21xs!@11xs1~11x212x cosw!s/2#
,

Bs[
G~s!

ApGS s2
1

2D E0

`

dxE
0

p

dw
~sinw!2s22xs21

@11xs1~11x212x cosw!s/2#2
,

em.
tion

can

n

ion
andDs[c(1)22c(s/2)1c(s) with c(x) the logarithmic
derivative of the gamma function. For the particular cases
52, one has A25 1

4 @3 ln 327 ln 21A3 ln(21A3)#, B2
5 1

2 ln(4/3), andD251.
Equation~8! allows us to study the infrared asymptot

properties of the Green functions which are dominated by
scaling solution of the RG equations~10! and ~11! at the
stable FPsw* 5(u* ,u1* ) @which can be obtained frombw

50 for w5(u,u1)]. Here we are only interested in the b
havior governed by the FP characteristic of the random s
tem, which is given by

u* 5
4

3
A e

Ds
, u1* 5

1

3
A e

Ds
2

e

9
, ~14!

and is stable to ordere. Using dimensional analysis and th
solution of Eq.~8!, we find the asymptotic scaling laws

GNÑ
M

~$x,t%,t,l,w* ,m!

5 l (d221h)(N/2)1(d1s1h s̃)(Ñ1M )/21h0(M /2)

3GNÑ
M

~$ lx,l zt%,t l 21/n,l,w* ,m!, ~15!

where the critical exponentsh, h s̃ , h0 , n, and z are the
fixed-point values of the functions 22s1gs ,g s̃ , g0 , 1/(s
2k), and s1(g s̃2gs)/2 with hs5gs(w* )[0, respec-
tively.

To second order inAe the dynamic exponentz describing
the critical slowing down of the relaxation forT→Tc , is
given by @21#

z5s1
1

3
A e

Ds
1S 8Bs

9Ds
2

1

6D e. ~16!

As in random systems with SRI@16#, the quenched impuri-
ties affect the critical dynamics already in first order inAe,
leading to a relevant enhancement of the dynamic expo
z. While in the pure systems, the leading corrections toz only
e

s-

nt

occur at the ordere2 @17,11#. The reason is that random
impurities account for many metastable states in the syst
In the presence of these states the nonequilibrium relaxa
to the equilibrium state at or nearTc is slower than in the
absence of the impurities.

Using Eq.~15! and the equations0(x)5 s̃0(x)/t0, we find
the autocorrelationC(t)5^s(x,t)s0(x)& displaying the scal-
ing behavior

C~ t !5tu82d/zf c~tt1/(nz)!, ~17!

where the initial slip exponentu8 is defined byu8[2(hs

1h s̃1h0)/(2z). To second order inAe it has the value of

u85
e

9sDs
S 8

s
ln 224As214Bs1

3

2
DsD . ~18!

The short-time scaling behavior of response functions
be obtained by a short-time expansion of the fieldss(x,t)
and s̃(x,t), as done in Ref.@1#. By means of the Green
functions~15!, one will find the two-point response functio
to behave

G11
0 ~r ,t,t8!5r 2z22b/nS t

t8
D u

f G~r tn,ttnz,t8tnz! ~19!

with f G finite for t8→0. Its long-time behavior is
G11

0 (r ,t,t8)5r 2z22b/nFG@r tn,(t2t8)tnz#, which satisfies
the same scaling laws as in equilibrium. Here the relat
(d221h)/25b/n has been used, and the exponentu is
defined byu52h0 /(2z). To second order ine1/2, the initial
slip exponentu is given by

u5
1

3s
A e

Ds
1

2e

9sDs
S 4

s
ln 22

1

2s
22As23BsD .

~20!
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The RG analysis of nonequilibrium critical relaxation al
gives the scaling form of the order parameterm(t)
[^s(x,t)&u h̃5h50 which is expanded in powers ofm0, i.e.,

m~ t !5m0tu8 f m~m0tu81b/(nz),tt1/(nz)!, ~21!

where the function f m(0,0) is finite; while for x→`,
f m(x,0);1/x, which leads to the long-time behaviorm(t)
;t2b/(nz) @17,4#.

As seen from Eqs.~19! and ~21!, LRI Ising systems un-
dergo the nonequilibrium critical relaxation. In the short-tim
region, the order parameter displays the initial incre
m(t);m0tu8, and the response function has the growth fo
of G11

0 (r ,t,t8);(t/t8)u for t8→0. For t,t8 large, they cross
over to the familiar long-time behaviors. The exponentsu,
u8, and z decrease whend increases~or s decreases!, and
satisfy the scaling relationz(11u82u)5s which follows
from the identifications of the exponents. Ats521e8/106
with e8[42d, the exponents change continuously to th
SRI values@3,15,16#. For instance, the values ofu8 corre-
sponding toe50.1 for n51 and d51, 2, 3 are listed in
Table I, where their corresponding nonrandom valuesup8 and
SRI random valuesusr8 are taken from Refs.@8# and @3#,
respectively. In one dimension, there is no SRI FP he
only the behavior controlled by the LRI FP is observed. F
fixed d and s the exponentu8 is all smaller than its corre
spondingup8 , as in Table I. That is because the impuriti
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TABLE I. The values ofu8 to e50.1 ford51,2,3 together with
up8 in Ref. @8# andusr8 in Ref. @3#.

d51, s50.55 d52, s51.05 d53, s51.55

u8 0.0259 0.0143 0.0106
up8 0.0383 0.0180 0.0117
usr8 0.1736 0.0868
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impede the formation and development of the order para
eter, and then decrease the initial critical increase.

It is interesting that our results are compared with tho
obtained for the random hierarchial Dyson model. In abse
of disorder, the hierarchial model captures rather well
physics of the corresponding one-dimensional Ising sys
with LRI @13,22#. However, the Dyson model with random
impurities does not have a stable FP in the physical reg
for e52s21.0, while the FP only exists fore,0 and is
unstable, which is different from our results ford51. There-
fore the Dyson model with impurities does not have the sa
critical behavior as our model ford51. If the disorder is a
random external field, the Dyson model may also disag
with the corresponding one-dimensional model@22#.

In summary, the short-time behavior of the random Isi
model with LRI is studied by the theoretic RG approach. T
initial slip exponentsu and u8 are attained for dimension
d/2,s,21e8/106 with e8[42d.0. At s521e8/106,
our results recover the SRI results with the random impu
ties @3,15,16#.

Finally, we would like to mention that long-range intera
tions together with random temperature are most likely
tremely rare in reality. It is not easy to find an experimenta
accessible system relevant for the model considered in
paper. Although some systems~such as ionic systems@23#!
have the long-range nature of interactions, it is not yet cl
that these systems belong to the LRI universality class
cause of interactions partially screened. Recent experim
argue that dynamical properties of the Ising pyrochlore m
nets Ho2Ti2O7 and Dy2Ti2O7 is due to long-range dipola
interactions like 1/r 3 @24#. Maybe the experiments which tr
to test our results will be carried out in these Ising pyrochlo
magnets with the impurities.

The author is grateful to Z.B. Li and L. Schuelke fo
fruitful discussions.
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