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Single-particle entropy in „1¿2…-body random matrix ensembles
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Random matrix ensembles defined by a mean-field one-body plus a chaos generating random two-body
interaction~called embedded Gaussian orthogonal ensembles of (112)-body interactions@EGOE(112)]! pre-
dict for the entropy defined by the occupation numbers of single-particle states, in the chaotic domain, an
essentially one parameter Gaussian form for their energy dependence. Numerical embedded ensemble calcu-
lations are compared with the theory. In addition, it is shown that the single-particle entropy, thermodynamic
entropy defined by the state density and information entropy defined by wave functions in the mean-field basis
for EGOE(112) describe the results known for interacting Fermi systems such as those obtained from nuclear
shell model.
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Chaos vs thermalization in isolated finite interacti
many-particle quantum systems, with a mean-field an
chaos generating two-body interaction, is a topic of cons
erable interest in the subject of quantum chaos@1–5#.
Zelevinsky and co-workers@1# addressed questions in th
topic for the first time by examining different definitions o
entropy using the interacting nuclear shell model with
nucleons. They found that the thermodynamic entro
(Sther) defined by the state density, the information entro
(Sin f o) in the wave functions expanded in the mean-fie
basis and the single-particle entropy (Ssp) defined by the
mean occupation numbers of the single-particle states
coincide for strong enough interaction but only in the pr
ence of a mean field~a similar conclusion is reached b
Casati and co-workers who examined different definitions
temperature for a smaller symmetrized coupled two-ro
model @3#!. On the other hand, in the last few years it
established that the two-body random matrix ensembles
their various extended versions are good models for un
standing various aspects of chaos in interacting particle
tems @6# and they are applied to nuclei@6,7#, atoms @8#,
quantum dots@9#, quantum computers@4,10#, etc. In particu-
lar, using the so called embedded Gaussian orthogona
semble of (112)-body interactions@EGOE~112!# defined
by a mean-field one-body interaction plus a chaos genera
random two-body interaction, for the first time Flambau
and Izrailev@2# showed that occupation numbers for sing
particle states, in the chaotic domain of interacting Fe
systems, will be close to Fermi-Dirac distribution but wi
effective temperatures and chemical potentials. With this
sult, it can be argued that the Zelevinskyet al. results for
various entropy definitions should have their basis in EG
(112). The purpose of this brief report is to establish th
result. In fact the Gaussian form for exp(Sther) for EGOE(1
12), essentially independent of the strength of the two-bo
interaction, is easily understood from the old results of M
and French for the EGOE~2! state densities; see Refs.@11,6#
and the last part of the present paper. However, only last
a complete EGOE(112) theory forSin f o was given and it is
shown to describe the results for realistic systems@12#.
Therefore for a complete understanding of Zelevinskyet al.
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results, EGOE(112) theory for Ssp is needed. This is
worked out in this Brief Report and the theoretical results
compared with numerical ensemble calculations. In the la
part of the paper, EGOE(112) results for the three entropie
are compared with nuclear shell model results for ei
nucleons.

Let us considerm fermions inN single-particle statesi,
i 51,2, . . . ,N. Given the Hamiltonian which is one plu
two-body @H5h(1)1V(2)#, the nature of state densitie
rH(E)5^d(H2E)&m (^ &m denotes average over allm par-
ticle states! generated byH is understood by assuming tha
H is representable by EGOE(112), H→$H%5h(1)
1l$V(2)%, where$ % denotes an ensemble,h(1) is a fixed
one-body operator~or an ensemble! generating single-
particle spectrum with average spacingD51, theV(2) ma-
trix elements variance is chosen to be unity andl is the
interaction strength. Asl→` EGOE(112) behaves as
EGOE~2! and it is well known that for EGOE~2! in the dilute
limit ( m→`, N→` and m/N→0) the ensemble average
~smoothed! state densities approach Gaussian form@11#. For
EGOE(112) one can define two ‘‘quantum chaos’’ marke
lc andlFk

so that forl.lc there is chaos in the sense th
the level fluctuations start coming close to GOE fluctuatio
and for l.lFk

~note thatlc,lFk
) one has the Gaussia

form not only for the smoothed state densities but also
the strength functions@12#. Therefore, l.lFk

region is

called the Gaussian domain. It should be noted thatrH(E)
will be Gaussian even belowl,lFk

, but with fluctuations

approaching Poisson forl50 ~for l50 the Gaussian form
arises due to the action of the central limit theorem!; see
Figs. 2 and 3 ahead for examples.

Occupation numbers are given by the expectation val
^ni&

E of the number operatorsni . Then the single-particle
entropySsp(E) is defined by

Ssp~E!52(
i

$^ni&
Eln~^ni&

E!1~12^ni&
E!ln~12^ni&

E!%.

~1!

In order to derive an expression forSsp first a form for^ni&
E
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is needed. Considering the linear response ofrH(E) under
the deformationH→Hz5H1zni it is easily seen that@13#

^ni&
E52@rH~E!#21 lim

z→0
E

2`

E ]rHz~x!

]z
dx. ~2!

Note that underH→Hz , the single-particle energye i→e i
1z; without loss of generality, the single-particle energiese i
are assumed to be zero centered. WithH represented by
EGOE(112), Hz for z small is also represented by EGO
(112), and therefore the shape ofrH(E) will be unchanged
~from the Gaussian form! under thez deformation. Using
this and applying Eq.~2! one gets

^ni&
E →

EGOE~112!

^ni&
m1^ni@H2eH~m!#&m@E

2eH~m!#/sH
2 ~m!. ~3!

In Eq. ~3!, eH(m)5^H&m and sH(m)5$^H2&m

2@eH(m)#2%1/2 are the centroid and width that defin
rH(E). The linear form~with respect toE) as given by Eq.
~3! is seen in many EGOE(112) and nuclear shell mode
calculations@6#. Just as with the state density, though t
^ni&

E smoothed form is well represented by Eq.~3!, the fluc-
tuations will be large forl,lc ; see Refs.@6,12#, for ex-
amples. For the EGOE(112) Hamiltonian H5h(1)
1lV(2) one can considerh(1) andV(2) to be orthogonal
in a well defined sense~see Ref.@12#! and then

^ni@H2eH~m!#&m5@m~N2m!/N~N21!#e i , ~4!

and alsosH
2 (m)5sh

2(m)1sV
2(m); ^ni&

m5m/N. Assuming
that we have a uniform single-particle spectrum with spac
D51, sh

2(m)5@m(N2m)(N11)/12# and sH
2 (m)5@m(N

2m)(N 11)/12# 1 @m(m21)(N2m)(N2m21)N(N21)
/4(N22)(N23)#l2; note thatl is expressed in units ofD.
Using, with r(e) denoting single-particle density,*2
2r(e)de5@D#21*22de, the sum in Eq.~1! is converted
via Eq. ~4! into an integral. Evaluating the integral and th
expanding it in powers ofÊ5@E2eH(m)#/sH(m) gives a
remarkably simple expression, when truncated toÊ2 term,
for exp(Ssp) divided by its maximum value,

exp@Ssp~E!2Smax
sp #5expS 2

1

2
z2Ê2D ,

z25sh
2~m!/sH

2 ~m!. ~5!

Note that the correlation coefficientz in Eq. ~5! is the same
as the one that enters in the EGOE(112) formula forSin f o

as given in Ref.@12#, and we will return to it later. Using the
expressions forsh

2 andsH
2 , it is easily seen that in the dilut

limit z25@113ml2#21. Figure 1 gives a comparison of Eq
~5! with numerical EGOE(112) calculations for a system o
m56 spin-less fermions inN512 single-particle states forl
varying from 0.01 to 5. In this example,lc;0.05 andlFk

;0.2 @6,12#. For l;0, z;1 and therefore exp(Ssp) is of
Gaussian form as given by Eq.~5!. As pointed out before
03710
g

here the fluctuations are expected to be large~for l&lc) as
seen in the figure. Forl.lc ~i.e., for l50.08 and beyond!
the fluctuations are small and Eq.~5! gives a good descrip
tion of the numerical results. Forl@lFk

~in Fig. 1 for l

52,5 cases! it is seen thatz→0 and then exp(Ssp) ap-
proaches a constant. This can be seen also from Eq.~3! as in
this case the occupancies are given just by the first term
should be noted that the numerical results do deviate fr
Eq. ~5! predictions foruÊu*1.5. Therefore theÊ4 correction
to Eq. ~5! is calculated but it is found give negligible contr
bution. Thus the corrections will not come by adding high
powers ofÊ in Eq. ~5! but by reexamining Eq.~3!. Recog-
nizing @14# that to a good approximation one can wri
rH(E) as a convolution,rH(E)5rh

^ rV@E# ( ^ denotes
convolution! and then applying Eq.~2! gives @15#

^ni&
E5^ni&

mrni

H ~E!/rH~E!5S m

NDexpF2
1

2
S E2eni

~m!

sH~m!
D 2G

expF2
1

2 S E2eH~m!

sH~m! D 2G ,

~6!

FIG. 1. Single-particle entropySsp vs energy for a 25 membe
EGOE(112) for various values of the interaction strengthl in
$H%5h(1)1l$V(2)% for a system of six fermions in 12 single
particle states; the matrix dimension is 924. The single-particle
ergies used in the calculations aree i5( i 11/i ),i 51,2, . . .,12, just

as in Ref. @6#. In the figures exp(Ssp2Smax
sp ) is plotted againstÊ

5(E2e)/s, wheree is the spectrum centroid ands is the width.
The EGOE(112) results are obtained by averaging over a bin s
of 0.1 and the average values are shown in the figures as fi
circles at the center of the bin. The dashed curves correspond to
~5! and the continuous curves are obtained by combining to Eq.~6!
with Eq. ~1! as explained in the text.
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where eni
(m)2eH(m)5^ni@H2eH(m)#&m/^ni&

m5@(N

2m)/(N21)#e i . Substituting Eq.~6! in Eq. ~1!, the sum in
Eq. ~1! can be converted into an integral as before. Howe
we could not simplify it any further. Therefore, the sum
evaluated numerically and then exp@Ssp(E)2Smax

sp # is calcu-
lated. These results are compared with numerical EGO
12) calculations in Fig. 1. It is clearly seen that Eqs.~6! and
~1! give a very accurate description of the numerical resu
It is worth pointing out that the convolution form forrH(E)
used in deriving Eq.~6! is also employed recently in th
study of the thermodynamics of chaotic systems@2,16#. Fi-
nally, as Eq.~5! gives a reasonable description ofSsp, in the
following discussion Eq.~5! is employed.

Returning to Zelevinskyet al. @1#, study of different defi-
nitions of entropies, nuclear shell model results with eig
nucleons~see Fig. 2! are compared with numerical EGO
(112) calculations~see Fig. 3! and also the theoretica
forms . As pointed out before, with nonsingular one-bo

FIG. 2. Thermodynamic entropy exp(Sther2Smax
ther), information

entropy exp(Sinfo2SGOE
info ) and single-particle entropy exp(Ssp2Smax

sp )
vs (E2e)/s for the angular momentumJ50 and isospinT50
levels in the nuclear shell model (2s1d)m58 space~matrix dimen-
sion is 325!. The HamiltonianH5h(1)1V(2) is defined by Kuo’s
@20# two-body matrix elements@V(2)# @20# and 17O single-particle
energies @h(1)⇔ed5/2

524.15 MeV, ed3/2
50.93 MeV, es1/2

5

23.28 MeV]. In the calculations, as described in the text, the
agonal matrix elements of the Hamiltonian in th
(2s1d)m58,J50,T50 space are multiplied byL and results for the
three entropies are shown in the figure forL510, 1, and 0.1. All
the shell model calculations are carried out using the Roches
Oak Ridge shell model code@21#. The shell model results are ave
aged over a bin size of 0.3 and the average values are shown i
figure as filled circles at the center of the bin. The continuous cur
are the EGOE(112) predictions as given by Eq.~5!.
03710
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Hamiltoniansh(1) ~see for example, Ref.@17#!, the EGOE
(112) state density will be a Gaussian even for small valu
of l. Then the exponential ofSther5 ln rH(E) will be essen-
tially a Gaussian for alll values

exp@Sther~E!2Smax
ther#5expS 2

1

2
Ê2D . ~7!

The form forSin f o in terms of the correlation coefficientz,
valid in the Gaussian domain~and which can be extended t
regions belowl,lFk

as hereSin f o will be very small com-
pared to the GOE value!, is given by@12#

exp@Sin f o~E!2SGOE
in f o #5A12z2expS 1

2
z2DexpS 2

z2Ê2

2
D .

~8!

All the EGOE(112) results in Fig. 3 are well described b
Eqs.~5!, ~7!, and ~8!. More striking is that the EGOE(1
12) results are in one to one correspondence with
nuclear shell model results in Fig. 2~also see Fig. 3 in Ref
@1#!. The example in Fig. 2 is for eight nucleons and in R
@1# a larger system with 12 nucleons was studied. Howe
the results are essentially same. In the shell model calc
tions ~exactly as in Ref.@1#!, the diagonal matrix elements i
the many-particle Hamiltonian matrix are multiplied by
parameterL and thenS’s are studied as a function ofL.

i-

r–

the
s

FIG. 3. Same as Fig. 2 but for three values ofl in the EGOE
(112) example in Fig. 1. The filled circles are EGOE(112) re-
sults as in Fig. 1 and the continuous curves are the theore
EGOE(112) predictions as given by Eq.~5!. Calculations are also
carried out for a ten member 3432 dimensional EGOE(112) with
seven fermions in 14 single-particle states and the results are fo
to be close to the six fermion example shown in the figure.
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ThenL→0 corresponds tol→` in EGOE(112) and simi-
larly L@1 corresponds tol→0. Finally L51 corresponds
to the actual nucleon-nucleon interaction used in the s
model and it is well known@18,6# that for this value one is in
the Gaussian (l.lFk

) domain. As seen from Fig. 3 and Eq

~7!, ~8!, and~5!, z;1 for l;0 and thenSin f o;0 but Sther

andSsp are Gaussian in form. The same result is seen in
shell model results in Fig. 2~for L large!. Forl50.3 ~this is
similar to L51 in the shell model! z;0.7, and then all the
three entropies look similar. In other words in the chao
Gaussian domain~but not forl very much greater thanlFk

)

one has thermalization in the sense that all different defi
tions of entropy coincide. Finally forl52 ~similar to very
small value ofL in the shell model!, z;0 and therefore
ys

.

ys

o-

i-
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Sin f o and Ssp approach their maximum values whileSther

still retains the Gaussian form.
In conclusion exp@Sinfo(E)2SGOE

info # changes from 0 to 1 as
l goes from 0 to`. Similarly exp@Ssp(E)2Smax

sp # changes
from Gaussian to 1 while exp@Sther(E)2Smax

ther# is always a
Gaussian. Thus all the three entropies will be approxima
same for some intermediate values ofl. The best value ap-
pear to come from the condition that exp@Sinfo(E)2SGOE

info #

50.9 atÊ50 and this givesz251/2. TheL51 in Fig. 2 and
l50.3 in Fig. 3 come very close to this situation. The cri
cal lc determined byz251/2 appear to be closely related
the duality issue in EGOE(112) discussed recently by Jac
quod and Varga@19#. Finally, the results in Ref.@1# are com-
pletely explained by Eqs.~5!, ~7!, and ~8! and it is estab-
lished that they have their basis in EGOE(112).
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