PHYSICAL REVIEW E 66, 037103 (2002
Single-particle entropy in (14 2)-body random matrix ensembles
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Random matrix ensembles defined by a mean-field one-body plus a chaos generating random two-body
interaction(called embedded Gaussian orthogonal ensembles-62{ibody interactioqEGOE(1+2)]) pre-
dict for the entropy defined by the occupation numbers of single-particle states, in the chaotic domain, an
essentially one parameter Gaussian form for their energy dependence. Numerical embedded ensemble calcu-
lations are compared with the theory. In addition, it is shown that the single-particle entropy, thermodynamic
entropy defined by the state density and information entropy defined by wave functions in the mean-field basis
for EGOE(1+ 2) describe the results known for interacting Fermi systems such as those obtained from nuclear
shell model.
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Chaos vs thermalization in isolated finite interactingresults, EGOE(%2) theory for S°P is needed. This is
many-particle quantum systems, with a mean-field and avorked out in this Brief Report and the theoretical results are
chaos generating two-body interaction, is a topic of considcompared with numerical ensemble calculations. In the later
erable interest in the subject of quantum chdads-5|. part of the paper, EGOE(#2) results for the three entropies
Zelevinsky and co-workerfl] addressed questions in this are compared with nuclear shell model results for eight
topic for the first time by examining different definitions of nucleons.
entropy using the interacting nuclear shell model with 12 Let us considem fermions inN single-particle stateg
nucleons. They found that the thermodynamic entropyi=1,2,...N. Given the Hamiltonian which is one plus
(sthe" defined by the state density, the information entropytwo-body [H=h(1)+V(2)], the nature of state densities
(S") in the wave functions expanded in the mean-fieldp™(E)=(&(H—E))™ ({ )™ denotes average over ali par-
basis and the single-particle entrop$°{) defined by the ticle stateg generated byH is understood by assuming that
mean occupation numbers of the single-particle states, ali is representable by EGOE{12), H—{H}=h(1)
coincide for strong enough interaction but only in the pres-+\{V(2)}, where{ } denotes an ensemblie(l) is a fixed
ence of a mean fielda similar conclusion is reached by one-body operator(or an ensemble generating single-
Casati and co-workers who examined different definitions ofparticle spectrum with average spacitg-1, theV(2) ma-
temperature for a smaller symmetrized coupled two-rototrix elements variance is chosen to be unity ands the
model [3]). On the other hand, in the last few years it is interaction strength. As\—o EGOE(1+2) behaves as
established that the two-body random matrix ensembles anBGOH?2) and it is well known that for EGO®) in the dilute
their various extended versions are good models for undefimit (m—o, N— andm/N—0) the ensemble averaged
standing various aspects of chaos in interacting particle sy§smoothed state densities approach Gaussian fotr. For
tems [6] and they are applied to nuclé6,7], atoms|[8], EGOE(1+2) one can define two “quantum chaos” markers
quantum dot$9], quantum computergl,10], etc. In particu- and\g, so that forA >\ there is chaos in the sense that
lar, using the so called embedded Gaussian orthogonal egxe |evel fluctuations start coming close to GOE fluctuations

semble of (K 2)-body interaction§EGOE1+2)] defined 44 for \>\g. (note that\,<\r ) one has the Gaussian
by a mean-field one-body interaction plus a chaos generatin k k

random two-body interaction, for the first time FI(';\mbaum,[]%rm ?Ot o?rl]yffor tthe ST;Ot:]_re]d s;[cate (;I\e>ni|t|es bqt a'?" for
and Izrailev[2] showed that occupation numbers for single- € streng unc_: iong ]'_ eretore, F fegion 1s
particle states, in the chaotic domain of interacting Fermfcalled the Gaussian domain. It should be noted H4(E)
systems, will be close to Fermi-Dirac distribution but with Will be Gaussian even below<Ag , but with fluctuations
effective temperatures and chemical potentials. With this reapproaching Poisson for=0 (for A\=0 the Gaussian form
sult, it can be argued that the Zelevinskyal. results for arises due to the action of the central limit theojesee
various entropy definitions should have their basis in EGOE-igs. 2 and 3 ahead for examples.

(1+2). The purpose of this brief report is to establish this Occupation numbers are given by the expectation values
result. In fact the Gaussian form for ei¢") for EGOE(1  (n;)E of the number operators;. Then the single-particle
+2), essentially independent of the strength of the two-bodyentropyS°*P(E) is defined by

interaction, is easily understood from the old results of Mon
and French for the EGQPB) state densities; see Refdl,6]

and the last part of the present paper. However, only last yea

SPP(E) == 2, {(m)FIn((m)%)+ (1—(m))In(1—(n)©)}.

a complete EGOE(4 2) theory forS"'® was given and it is (1)
shown to describe the results for realistic systerhg].
Therefore for a complete understanding of Zelevinekyl.  In order to derive an expression 8% first a form for(n;)E
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is needed. Considering the linear response'fE) under
the deformatiorH —H,=H+{n; it is easily seen thgtl3]

E gpte(x)

% dx.

(n)E=—[p"(E)] Hlim
-0 =

)

Note that undeH—H,, the single-particle energy,— ;

+ ¢; without loss of generality, the single-particle energigs
are assumed to be zero centered. Withrepresented by
EGOE(1+2), H, for { small is also represented by EGOE
(1+2), and therefore the shape @t(E) will be unchanged
(from the Gaussian forinunder the{ deformation. Using
this and applying Eq(2) one gets

EGOE1+2)
—

(mi)® ()™ +(ni[H—ey(m))™E

—ey(m))/ad(m). (3)

N Eq. (), e(m=(H)" and oy(m)={(H})"
—[eq(m)]2}¥2 are the centroid and width that define
pH(E). The linear form(with respect tcE) as given by Eq.
(3) is seen in many EGOE(#2) and nuclear shell model
calculations[6]. Just as with the state density, though the
(n;)E smoothed form is well represented by E8), the fluc-
tuations will be large fon<\.; see Refs[6,12], for ex-
amples. For the EGOE@2) Hamiltonian H=h(1)
+AV(2) one can considdn(1) andV(2) to be orthogonal
in a well defined sensesee Ref[12]) and then
(N[H=ep(M DT =[M(N=m)/N(N=1)]e;, (4
and alsoo?(m)=o3(m)+od(m); (n;)™=m/N. Assuming
that we have a uniform single-particle spectrum with spacin
A=1, o3(m)=[m(N—m)(N+1)/12] and o3(m)=[m(N
—m)(N +1)/22] + [m(m—1)(N—m)(N—m—1)N(N—1)
/4(N—2)(N—3)]A?; note that\ is expressed in units of.
Using, with p(e) denoting single-particle densityf —
—p(e)de=[A] [ — —de, the sum in Eq(1) is converted
via Eq. (4) into an integral. Evaluating the integral and then
expanding it in powers oE=[E— ey(m)]/oy(m) gives a
remarkably simple expression, when truncatecEfoterm,
for exp(SP) divided by its maximum value,

exi S°P(E) — Syl = eXp( - %zzéz) ,

2= op(m)/of(m). (5)
Note that the correlation coefficiedtin Eq. (5) is the same
as the one that enters in the EGOE{(2) formula forS"f
as given in Ref[12], and we will return to it later. Using the
expressions foo? ando?, it is easily seen that in the dilute
limit £2=[1+3mA?] L. Figure 1 gives a comparison of Eq.
(5) with numerical EGOE(% 2) calculations for a system of
m=6 spin-less fermions ik = 12 single-particle states far
varying from 0.01 to 5. In this example,.~0.05 and)\Fk

~0.2[6,12]. For A~0, {~1 and therefore ex&P) is of
Gaussian form as given by E(). As pointed out before,
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FIG. 1. Single-particle entrop$°P vs energy for a 25 member
EGOE(1+2) for various values of the interaction strengthin
{H}=h(1)+N\{V(2)} for a system of six fermions in 12 single-
particle states; the matrix dimension is 924. The single-particle en-
ergies used in the calculations are=(i+1/),i=1,2,...,12, just
as in Ref.[6]. In the figures ex®"—SP,) is plotted againsE
=(E—¢€)/o, wheree is the spectrum centroid and is the width.

The EGOE(12) results are obtained by averaging over a hin size

2 -2 -1 0 1

%f 0.1 and the average values are shown in the figures as filled

circles at the center of the bin. The dashed curves correspond to Eq.
(5) and the continuous curves are obtained by combining tq@&q.
with Eq. (1) as explained in the text.

here the fluctuations are expected to be ldfgeA<\.) as
seen in the figure. Fax>\. (i.e., forA=0.08 and beyond
the fluctuations are small and E@) gives a good descrip-
tion of the numerical results. FOr>N\g, (in Fig. 1 for

=2,5 casesit is seen that{—0 and then ex®" ap-
proaches a constant. This can be seen also froniFas in
this case the occupancies are given just by the first term. It
should be noted that the numerical results do deviate from

Eq. (5) predictions forlE|=1.5. Therefore th&* correction

to Eq.(5) is calculated but it is found give negligible contri-
bution. Thus the corrections will not come by adding higher
powers ofE in Eq. (5) but by reexamining Eq(3). Recog-
nizing [14] that to a good approximation one can write
p"(E) as a convolutionp™(E)=p"®p"[E] (® denotes
convolution and then applying Eq2) gives[15]

-3 |
X — 5|\~
2 )
<ni>E=<ni>mp;‘i(E)/pH(E)=(g) 1 EiHe(Hr?m) 27 1
exr{—z(m) }
(6)
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FIG. 2. Thermodynamic entropy ex§t'—She), information FIG. 3. Same as Fig. 2 but for three valueshoin the EGOE

entropy expg"™—S%) and single-particle entropy exgP—SP,)  (1+2) example in Fig. 1. The filled circles are EGOE(2) re-

vs (E—¢€)/o for the angular momentund=0 and isospinT=0 sults as in Fig. 1 and the continuous curves are the theoretical
levels in the nuclear shell model $2d)™=8 space(matrix dimen- EGOE(1+2) predictions as given by E¢5). Calculations are also
sion is 325. The HamiltoniartH =h(1)+V(2) is defined by Kuo's  carried out for a ten member 3432 dimensional EGOER) with

[20] two-body matrix elementgV(2)] [20] and 17O single-particle  seven fermions in 14 single-particle states and the results are found
energies [h(1)&e€q,,=—4.15 MeV, €,=0.93 MeV, ¢ = to be close to the six fermion example shown in the figure.

—3.28 MeV]. In the calculations, as described in the text, the di-

agonal matrix elements of the Hamiltonian in the Hamiltoniansh(1l) (see for example, Ref17]), the EGOE
(2s1d)™=8I=0T=0 gnace are multiplied b\ and results for the (1+2) state density will be a Gaussian even for small values
three entropies are shown in the figure for=10, 1, and 0.1. Al of \. Then the exponential &"¢'=In p"(E) will be essen-

the shell model calculations are carried out using the Rochestertially a Gaussian for alk values

Oak Ridge shell model cod@1]. The shell model results are aver-

aged over a bin size of 0.3 and the average values are shown in the ther ther 1. )

figure as filled circles at the center of the bin. The continuous curves exd S"*'(E) — Spad=exp — EE . (7)

are the EGOE(% 2) predictions as given by E@5).

The form forS"° in terms of the correlation coefficiett
where eni(m)— en(m)=(n;[H—ey(m)])™/{n;)™=[(N valid in the Gaussian domafand which can be extended to
—m)/(N—1)]e; . Substituting Eq(6) in Eq. (1), the sum in  regions belowk <\g, as hereS"° will be very small com-
Eq. (1) can be converted into an integral as before. Howeverpared to the GOE valygis given by[12]

we could not simplify it any further. Therefore, the sum is

evaluated numerically and then é§R(E)—SP,] is calcu- _ . 1 {2E?

lated. These results are compared with numerical EGOE(1 exf S"°(E) — SdoEl = Vl_ézexi{zgz exp( ~ 5 |

+2) calculations in Fig. 1. It is clearly seen that E(®.and (8)
(1) give a very accurate description of the numerical results.

It is worth pointing out that the convolution form faf'(E) All the EGOE(1+ 2) results in Fig. 3 are well described by
used in deriving Eq{(6) is also employed recently in the Egs(5), (7), and (8). More striking is that the EGOE(1

study of the thermodynamics of chaotic systgi@d6]. Fi- +2) results are in one to one correspondence with the
nally, as Eq.(5) gives a reasonable description®, in the  nuclear shell model results in Fig.(also see Fig. 3 in Ref.
following discussion Eq(5) is employed. [1]). The example in Fig. 2 is for eight nucleons and in Ref.

Returning to Zelevinsket al. [1], study of different defi- [1] a larger system with 12 nucleons was studied. However,
nitions of entropies, nuclear shell model results with eightthe results are essentially same. In the shell model calcula-
nucleons(see Fig. 2 are compared with numerical EGOE tions(exactly as in Ref{1]), the diagonal matrix elements in
(1+2) calculations(see Fig. 3 and also the theoretical the many-particle Hamiltonian matrix are multiplied by a
forms . As pointed out before, with nonsingular one-bodyparameterA and thenS's are studied as a function of.
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ThenA —0 corresponds ta— o in EGOE(1+2) and simi- S"f® and S°P approach their maximum values whi@&"e"
larly A>1 corresponds ta—0. Finally A=1 corresponds still retains the Gaussian form.

to the actual nucleon-nucleon interaction used in the shell In conclusion expS"°(E)—SIG:] changes from 0 to 1 as
model and it is well knowi18,6] that for this value one isin A goes from 0 tox. Similarly exgSNE)—S,] changes
the Gaussian\>\,) domain. As seen from Fig. 3 and Eqgs. from Gaussian to 1 while ekB"(E)—Shad is always a

(7), (8), and(5), {~1 for \~0 and therS"°~0 but Sthe Gaussian. Thus all the three entropies will be approximately

L . . same for some intermediate valueshof The best value ap-
and S°P are Gaussian in form. The same result is seen in thé P

it {10, _ anfo
shell model results in Fig. @or A large). ForA =0.3 (this is ;:iear toAc_ome ZO:,] th.e cc;rﬁjn;on t:at fﬁﬂ. (E). S50 d
similar to A =1 in the shell model{~0.7, and then all the =0.9 atE=0 and this giveg~=1/2. TheA =1 in Fig. 2 an

three entropies look similar. In other words in the chaotic)‘zo'3 In Fig. 3 come very close to this situation. The criti-
: PIES ' cal A, determined by?=1/2 appear to be closely related to
Gaussian domaitbut not for\ very much greater thaan)

the duality issue in EGOE(%2) discussed recently by Jac-
one has thermalization in the sense that all different definiquod and Varg&19]. Finally, the results in Ref.1] are com-
tions of entropy coincide. Finally fox=2 (similar to very  pletely explained by Eqs5), (7), and (8) and it is estab-
small value ofA in the shell model {~0 and therefore lished that they have their basis in EGOE{2).
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