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Mobility spectrum computational analysis using a maximum entropy approach
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A method to calculate a smooth electrical conductivity versus mobility (9oobility spectrum”) from the
classical magnetoconductivity tensor in heterogeneous structures with the help of a “maximum entropy prin-
ciple” has been developed. In this approach the closeness of the fit and the entropy of the mobility spectrum
are optimized. The spectrum is then the most probable one with the least influence of the personal bias of the
investigator for any given set of experimental data and is maximally noncommittal with regard to the unmea-
sured data. The advantages of the maximum entropy mobility spectrum analysis as compared to the conven-
tional mobility spectrum analysis are demonstrated using a synthetic dataset.
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[. INTRODUCTION field B into conductivity densitys(u) (defined belowversus
mobility u. This procedure replaces the commonly used pa-
The research and development of various types of moderrameters(carrier concentration, average mobility, and Hall
electronic devices requires accurate modeling and analysis @befficien} in the conventional transport approach. It is very
transport phenomena. Using the semiclassical Boltzmanimportant to note that MSAloes not require any a-priori
theory or the single-particle density matrix formaligr, assumptiongbout the number of different types of carriers
one can quantify the transport coefficients in the frameworkcarrier specigs
of the density functional theor2]. For example, knowing The reduced-conductivity-tensgRCT) scheme was de-
the band structure and the phonon spectrum of a materialised[8] as an alternative to MSA for determination of the
one can use the Bloch-Boltzmann equation and the lineagarrier densities and mobilities in multicarrier semiconductor
response method to calculate the electron-phonon scatterirgystems. A matrix formalism of the magnetoresistance and
probabilities and hence the experimentally measured electrHall effect, based on the RCT, has also been further devel-
cal resistivityp and Hall coefficienRy . An example of an oped[9,10]. The MSA and RCT methods have been tested
application of such a complicated approach occurs in théor many real systems such as Si, &g, _,Te, GaAs, and
case ofd metals[3], but there are few others. Similar models for various layered structures.
that may be used to investigate the transport characteristics However, for both the MSA and RCT approaches it is
of semimetals and semiconductors include continuumalmost impossible to ensure that the solution obtained does
ensemble averaging and Monte Carlo simulatiphs The  not contain unreliable negative values for the transport pa-
latter, in particular, can explicitly take into account both therameters. A major objective in our approach to MSA, pre-
band structure and the various scattering processes. It pegented in this paper, is to ensure that the solution obtained is
mits direct computation of all quantities relevant to transportalways physically meaningful, i.e., everywhere positive. This
such as carrier distribution function, density, velocity, etc.,is achieved using the maximum entropy princigEP) of
but unfortunately at the cost of long computation time andinformation theory. The MEP method has been applied suc-
stochastic noise in the data. cessfully in geophysical spectral analysis, beginning with the
All of the above approaches are very complex and meanseminal work of Burg 11]. One can find examples of MEP
ingful comparisons of experimental results with theoreticalapplications in astronomil 2], neutron scatteringl3], x-ray
predictions are difficult, especially for multicarrier systemsphotoemission spectroscopy depth profilidg, processing
(e.g., compound semiconductors, layered and device heterof nuclear magnetic-resonance speff, electron-positron
structures with several different types of carrjerSince  annihilation experiment$16], and in secondary-ion-mass
1980s, new methods of examining experimental data on elegpectrometry depth profile quantification by maximum en-
trical transport have been developed. A “mobility spectrumtropy deconvolutior17].
analysis(MSA)” was proposed in the pioneering paper of The MEP method in data analysis is a variational ap-
Beck and Andersofb], and developefb,7] as a useful tech- proach. In the context of the analysis of transport phenom-
nique for analyzing galvanomagnetic phenomena. MSAena, Sondheimdr8] was the first to discuss transport coef-
transforms the electrical conductivity tensor versus magnetificients in metals, treating the Boltzmann integro-differential
equation as a variational problem. This approach is based on
the principle of maximum production of physical entropy or
*Present address: Department of Physics, Chulalongkom Univetthe entropy principléEP) and is a minimization procedure,

sity, Bangkok 10330, Thailand. which in mathematical aspect is similar to that developed in
TAuthor to whom correspondence should be addressed. Email adiur paper. Later work has established that the variational
dress: O.A.Mironov@warwick.ac.uk method of transport coefficients takes rigorous account of the
*On leave from LISES Institute of Applied Physics ASM, band structure and of anisotropic scattering mechanisms in
Kishinev MD-2028, Moldova. semimetalg19] and semiconductof0].
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The variational approach is very useful for theoreticalderived by Beck and Andersds]. In their pioneering paper
studies of transport phenomena in magnetic fi¢l®20. It  they transformed the McClure integrdl®4] over k space
has been used to describe the transport coefficients of bigato integrals[Egs. (2a) and (2b)] over the mobility x and
muth material§21,22 and narrow gap semiconductors suchhave introduced the electrical conductivity density function
as lead tellurid¢20] with highly anisotropic effective masses s(u) called the carrier mobility spectrum. Similar density
and in a wide range ofnonquantum magnetic fields. Re- functions can be defined in a conventional transport ap-
cently, the variational method and the EP have been used fsroach:s(k) in wave vector space arsfE) in energy space.
analyze the transport properties of semiconductor quanturAowever, only the mobility spectrurs(x) can be obtained
wells [23]. We have outlined some peculiarities of the varia-immediately from the experimental magnetoconductivity
tional method for transport phenomena, because in th@ata 5(B) using an inverse Laplace transformation and it
present maximum entropy approach we also aim to realize @ontains all the information that can be extracted fid(B).
suitable tool for the possible study of energy-dependent retherefore, MSA is very useful from the practical point of
laxation times and band structure features, as suggested hjew and it has become a new approach for characterizing
Beck and Andersof5]. magnetotransport in conducting solids.

The major aim of this paper is to present mobility spec-  The reason that Beck and Anderson chose McClure’s ex-
trum formalism based on the MEP and to demonstrate thgression24] as the starting theoretical concept is because it
advantages of maximum entropy mobility spectrum analysiss valid at any arbitrary magnetic-field strength and the re-
(ME-MSA). The paper is organized as follows: in Sec. Il ajaxation time is allowed to depend on the energy and crystal
brief review of the various MSA methods is given. The basicmomentum in the magnetic-field direction, provided the re-
ME-MSA approach is introduced in Sec. Ill, and it is shown |axation time is constant on the cyclotron orbit. This should
how it might be used to obtain carrier densities and mobili-he compared with other Boltzmann transport approaches that
ties for different types of carriers on the basis of the MEP.gre valid only in low or high classical magnetic fie[@5]. A
The application of the ME-MSA to synthetic datasets is dis-parabolic dependence of energy on crystal momentum is not
cussed in Sec. IV. The paper concludes in Sec. V with aassumed when deriving Eqa) and (2b) from McClure’s
discussion of the advantages of ME-MSA in comparisonexpression. Beck and Anderson argue thas(if.) can be

with earliest MSA approaches. solved accurately, rather than merely obtaining the envelope,
it will provide all the information that can possibly be ex-
[l. MOBILITY SPECTRUM APPROACH tracted from the magnetoconductivity, which can be summa-

. . . o rized as follows.(1) the conductivities of different carrier
MSAis a m.ult|carr|er characte.rlz.apon tool that employs species can be identified by distinct peakssm): (2) the

the magnetic-field-dependent resistiviiy,(B) and Hall re-  ,rnadening of each peak will indicate an energy dependence
sistivity py,(B) =BRy(B). Itis capable of treating different ot the relaxation timet3) if the constant-energy “surface” is
groups _of carriergcarrier speq@_&dentlﬂed accordm_g to anisotropic (i.e., nonsphericaf the s(u) spectrum of a
their different average mobilities, and hence differentgiyen group of carriers will contain several peaks that are the
responses to the cIassma}I magnetic field. Using a set omponents of the mobility tensd#) constant-energy “sur-
experimental  data  points (B,p,«(B).px(B)), the  faces” with both concave and convex sectors will result in
magnetoconductivity tensor componentsox(B) and  poth holelike and electronlike terms in Eqb2

oxy(B) can be obtained from the relations: This method has been applied to a number of different semi-
conductor materials, for example bulk-Hg[l26], thin film
o (B)= P B) (19 HgTe[27], bulk-Hg,Cdy ,Te [28], thin fim Hg,Cd, ,Te
> [pxx(B)1°+[Bpyy(B)]*’ [29], HgTe-CdTe superlatticd80], Al,Ga _,As/GaAs het-
erostructureg31], Si—5-doped GaAg32] In,Ga _,As/InP
BRy(B) heterostructuref33], Si—6-doped InSH34], InP on a semi-
Oxy(B)= [pxx(B)]2+[Bpxy(B)]2' (1b) insulating substratg35], and SiGe/Si heterostructurg26].

For any measured set of data, the first mathematical pro-

These tensor components are related to the mobilitycedure to obtais(x) as a solution to Eq¢2a) and(2b) was
dependent conductivity densit(x) by the integral trans- developed by Beck and Andersfh]. However, because the

forms: number of data points is finite, it is impossible to determine
s(u) uniquely by this method. In fact, the proposed proce-
= s(u) dures can only provide an envelope of all possible mobility

oxx(B)= T+ (uB)? du, (28 spectrum solutions. This envelope can be regarded as yield-

ing the maximum conductivity at each mobility that the mea-
sured material might have. Nevertheless, $fg) peaks in

o (B)= fw S(p)uB P (2b) this envelope have been shown to provide good approxima-
Y —1+(uB)? tions to the mobility and carrier concentration of each carrier
species.

1All conductivities, resistivities, and carrier densities referred to in
this paper are equivalent 2D or “sheet” values. 2Contour in the case of a two-dimensional carrier gas.
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Subsequent developments in the mobility spectrum apinherent in the iterative technique, the use of interpolation
proach have involved mathematical techniques that imand/or extrapolation of experimental data is questionable be-
proved the accuracy of the obtaingg) values. Dziuba and cause there are several interpolation and extrapolation tech-
Gorska[6,37] have transformed Eq$2a) and(2b) into their  niques available, and the modification of original data prior

discrete forms to calculation is subject to investigator bias and error.
An improved QMSA(IQMSA) [7] has removed the limi-
N S tation in the number of mobility points by not confining
Uxx(Bj):iZl lesz (38 these to the valueg;=B; *. The range of mobilities and the

number of mobility points are then independent of the range
N B and the number of points of measured magnetic field, respec-
N Ladlad| tively. iQMSA differs from the iterative technique and
Tx(B)) 21 1+,uizB,2' (3 QMSA, where it minimizes the least-squares deviation of
both the conductivity tensor and its derivative with respect to
which are similar to those used in a nonlinear least-squarethe magnetic field. In addition, empirical proceduléso/
fit [38]. Thus, the partial conductivitg;, and mobility w; , three-point swapping and point eliminatidior manipulating
(i=1,2,...N) in Egs. (38 and (3b) can be iteratively the mobility spectrum are introduced and shown to improve
solved by using the Marquardt algoriti®9]. In the mobil-  the fits while smoothing the spectrum and making it “more
ity spectrum calculation) represents the number of mobili- physically reasonable.” Despite these refinements, it must be
ties which are arbitrarily defined to cover a wide range ofsaid that empirical procedures are likely to be case specific
likely mobilities of all carriers. It should be large enough soand are dependent on the individual bias.
that a resultant set of partial conductivitiss is virtually

guasicontinuous, and is equivalent to the conductivity den- 1. ME-MSA EORMALISM
sity s(u). As a result, the term “mobility spectrum” usually . . _
refers to either a set of partial conductivitgsand mobilities In correspondence with earlier variants of the MSA

wi or a conductivity densitg(u). Taking all data points into method, the conductivity tensor components can be ex-
account, Eqs(3a and (3b) constitute two systems of equa- pressed as a fine grid of possible mobilities:

tions, which are linear iis; . A set of partial conductivities;
is deduced by a simple iterative technid@é The plot ofs;

N
1 1
versusu; oscillates around zero partial conductivity with the Uxx(BJ’):Ei s(ui)cos Oij :E‘TO"' 2

N
izl S(ui)cos 20;;

biggest positive partial conductivity occurring at the mobility (4)

corresponding to the actual average mobility of the majority

group of carriers in the material. The oscillation means that 1 N

some of the partial conductivity isegative which is un- oyy(Bj)= 52 S(i)sin(26;)), (5)
1

physical An additional “smoothing procedure” has been
proposed to minimize this effect but it is found that the nega- ] ) N
tive partial conductivity cannot be entirely suppressed whilevhered;; are the Hall angles of the carriers with mobiljty
maintaining an acceptable fit to the data. In this iterative magnetic fieldB; and can be determined by the standard
technique, a set of mobility poinjs; is arbitrarily chosen in ~ relation tang;=w;B;, oo=3{L15() is the conductivity at
the rangeB, % to BL, whereB,, and B, are the mini- ~ Z€ro magnetic field. In Eq$4) and(5) the function of partial
mum and maximum measured magnetic fields. The numbetonductivity s(x;) has the forms(s;) =sp(4i) =euip(si)

of mobility points is then limited by the number of measuredfor the holes, and,(u;)= —euin(x;) for the electrons. It
magnetic-field points and the lowest mobility is set by thedefines the mobility spectrum of holes in the positive part of

maximum magnetic field available. the u-coordinate axis, while in the negative part of fhaxis
An extended version of the iterative technique has beeff defines the mobility spectrum of electrons.
developed by Antoszewslét al. [40], which is known as Within our formalism both the holes and the electrons

quantitative mobility spectrum analySiMSA). In QMSA, havenon-negativepartial conductivities, but their mobilities
the Gauss-Seidel successive over-relaxation iteration methddf€ positive and negative, respectively. It is natural to use
is employed to give faster convergence and the partial consuch sign definitions of the carrier mobilities, because in a
ductivities are constrained to be non-negative at all iteratiodiven electrical fieldE the holes and electrons have a differ-
steps. The mobility range has been exteridedsalues of,  ent directions of the drift velocityy= u;E. Therefore, the
less thanB,. by extrapolation of the experimental data to tensor component of the magnetoconductivity,(B;) is
higher fields than the maximum measured magnetic fieldvritten in Eq.(4) as an even function of;;, while the Hall
[41]. A higher number of mobility points is also obtained by componenio,(B;) is written as an odd function af; , and
spline interpolation between the experimental data poimst_he peculiarities of multicarrier longitudinal and transverse

Even though these procedures seem to overcome problerfizdgnetoconductivity are correctly reflected.
The task of the MSA method is to find those spectra that

provide the best fit to the experimental date*(B;)

3No details of how the mobility range is extended are given in the= ol(expt.) and Gi)QpYBj):Ui(y(eXpt.) at all values of the
original paper. available experimental magnetic fields.

036705-3



S. KIATGAMOLCHAI et al. PHYSICAL REVIEW E 66, 036705 (2002

All the previous attempts to generate an accurate mobility QMSA [7] to fit the magnetoconductivity tensor and its first
spectrum were based on minimizing the deviations betweederivative/slope with respect t@®. The purpose of the
the experimental data on the magnetoconductivity tensoiteration procedure was to establish what combinations of
and the fit given by equations similar to Edd) and (5).  carrier type, mobility, and concentration led to the smallest
Beck and Anderson[5], Dziuba and Gorska 6], and deviations.

Antoszewskiet al. [40] minimized the deviations at a given The deviation squared was chosen as the quantity to be
magnetic fieldB; by simultaneously adjusting the electron minimized in all previous approaches to MSA. For example,
and the hole partial conductivities(u;) at the mobilities in iQMSA, the optimization procedure is based on the fol-
,uisz’l. The optimization procedure was extended inlowing squared deviation:

(AL )2+ (AL )2+ (AED2+(A%)?

2
2_ : (6)
X N{[ol(expt) 12+ [y (expt) I+ [ o (expt) 12+ [ oy (expt) |7}
|
where data are those between two adjacent measured data points on
j j j the magnetic-field axis and data at higher magnetic fields
ALpg=0,5(eXpt)—0g, (7)  than are practically available. Jayrjé€] has shown that the

most likely probability distribution amongst feasible distri-
butions can be found by assigning “an entropy” to each
JB B |5 g (8) probability distribution and choosing the one with the high-

i est entropy. It has recently been shop] that the concept
gf entropy and its increase can be understood in general as an
"amount of uncertainty” as it is understood in information
theory, without reference to either statistical mechanics or

AYL_B &ojaﬁ(expt.)_ 9ot
aB™ Pj

are the deviations for the conductivity tensor component
and their slopes, respectively, at given magnetic fig|d
HereN is the total number of the pseudodata points. .
The ME-MSA approach developed in this paper is based Oﬁleat engines. . . L

a fundamentally different procedure as it optimizes the fit to Thus_ our ME'MSA approach is to com_blne m|n|_m|;at|on
the magnetoconductivity tensor components on the basis cﬂf the fit dewgtlpn from measured data W'f[h the prlnplple of
the MEP[15]. The main concept is to consider the mobility ENrOPY maximizationUsing the probabilitiesp; defined
spectrums( ;) in the form of a probability distribution of 2POVe. the entropii is written as

several events, which are supposed to be associated with the N

discrete values of the mobility pg_rgmetegui (i H(s)= _E pInp;. (10)
=1,2,...N). The corresponding probabilitieg; are as- =1

sumed to be the reduced values of the corresponding partial

conductivity s u;): From this universal expression an equal distribution of prob-
abilities follows in the case of zero magnetic fields. Equation

S( i) (10) describes in a unique way the amount of uncertainty

pi= oo 9) represented by a given probability distribution and it is the

only one which satisfies the condition of consistency im-
The probabilitiesp; are unknown. All we know are the ex- posed by the composition lay42]. Mathematically, the
pected values of the magnetoconductivity tensor componentaximum entropy distribution has an important property that
0,5(B;) and that the probabilities; are required to be posi- Nno possibility is ignored and it assigns a positive weight to
tive, and to satisfy the normalization conditi(ili’\'pi=1. every situation. In the context of our ME-MSA approach, it
From the information theory viewpoint, prior to the measure-iS very important to note that the conditional maximum of
ment there are no data and the most probable distribution i&9- (10) can be found from a stationary property involving
an equal distribution amongst all events. As we obtain thd-agrange multipliers, which will be introduced below, and
first few data points, they allow us to adjust the probabilitythat the conditiorp;=0 is always satisfied.
distribution in such a way that it produces a good fit to the We have pointed out that the optimization approach of
measured data. However, at this early stage, there are nBfevious MSA versions is based on the minimization of
enough data points to produce a unique probability distribusquared deviations such as those given in(Bgand used in
tion because the number of data points is less than the nuthQMSA. In the framework of ME-MSA, this is equivalent to
ber of events. Consequently, there are many feasible protsiefining the entropy ad = — 3, p?. The properties of such
ability distributions that agree well with all the data points. defined quantity are similar to E¢L0), and its use in other
Rationally, one would prefer to choose the probability distri-applications leads to equivalent resyi42,44]. However, the
bution, which is maximally noncommittal with regard to un- conditional maximum of entropy = —EiNzlpiz is impos-
available (i.e., unmeasurgddata. Examples of unavailable sible to find on the basis of a stationary property involving
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Lagrange multipliers, because the distribution probability, 1 M
which makes this quantity stationary subject to prescribed pizex;{ —A— )\jc cog 0ij— = )\jssin 20;; |-
averages, does not in general satisfy the conditos 0 =1 2i=1
[42,44). The negative values qf; [or s(u;)] could appear (14)
in previously proposed variants of MSA. Therefore, the re-
quirementp;=0 must be imposed at all stages of computa-The values of constant Lagrange multipliers can be deter-
tion and analysis. mined from
One of the more important advantages of the ME-MSA
approach in comparison with previous MSA is that it does x
not allow unphysical negative conductivities. With the help - ﬁ'”z g
of maximum entropy principle, it is now evident how to !
develop themathematical modedf ME-MSA. The problem

reduces to the maximization of the entropy as given by Eq. —Inz=aY,
(10) subject to the constraints of Eqg) and(5), which can ﬁks J
be written as dimensionless averages
Inz=M\g,. (15)
N N 0
(B 1 1
o= ZxdBy) Z picog ;== + = >, p; CoS 2, - _ B
oo 2 2= In addition to their dependence on the mobility the func-
(1) tions cosh; and sing; contain parameter;. The present
N maximum entropy approach allows us to estimate the aver-
Oyy(B; 1 . ages of the derivatives with respect to magnetic field:
Y= o(B)) == pisin2g;. (12) 9 P 9
Op 2 i=1
1 doyy 1 4
Using the Lagrange multipliers] andAj (j=1,2,... M), P 7B, ¢ (9_Bj|”z
i

whereM is the number of magnetic-field points, we can form

the partial function: (16)

l ﬁaxy 1 9
Z(NT, . AT AR oo 3B A\ B

N M 1 M
=> exr{—z )\jcco§ 6;j ex;{——z \;sin 26;; |.
=1 j 2i=31

Inz,

and thus to improve the ME-MSA optimization in a similar
fashion toi QMSA.

(13) The ME-MSA general formalism developed involves two
sets of Lagrange multipliers; and\;. Substituting Eq(14)
Then the maximum-entropy probability distributiddistri- into Egs.(11) and (12), we obtain two sets o nonlinear
bution of partial conductivitigsis given by equations

N
_21 [(cos2 b —E}‘X)ex;{ - 21 (Af cod 6+ %)\fsin 20”») ] =0, 17)
i= =
N M
1
21{( sin 26;;— xp{—zl (xfco§0ij+§>\fsin20”) }zo. (18)
i= =
|
The 2M equations allow45] us to determine B Lagrange N N
multipliers 7\}3 and )\js. The ME-MSA can be simplified as 2 pif(cosﬁij)wf(E o} coseij), (19
follows. Noting that -1 =1
Sir? 0;j +cog 0;j=1, the two sets of Lagrange multipliers can be reduced to one,
because in this case'=\j/12=\;.
1 N N In the ME-MSA method developed here the tensor com-
_2 p; sin 29“:2 pi cosaij(l—co§ gij)lf% ponentso,,(B) and o,,(B) are expressed througtosine
231 =1 and sine trigonometrical functions in Eqg4) and (5) and
Egs.(11) and(12), and are calculated as average values of
and using the approximate relations these functions. The functions in true are linked through
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trigonometric identitiegsee notes between Eg&l8) and QMSA MEMSA
(19)] and Lagrange’s procedure should be carried out on the 1.0 S oy 1.0
basis of these restrictions. As a result, thd -2limensional
problem [Egs. (17) and (18)] has been reduced to an 0.5. o5
M-dimensional one Eq(20), where M is the number of ' NO ERROR '
magnetic-field points. This reduced procedure allows us to L A “
combineo,(B) ando,,(B) datasets as;"'=0¢7"+0}” and to 0.0 0.0
simplify the software for the case of one set of linear equa- 1.04 r1.0
tions, instead of for two sets of linear equations, which is %‘
more difficult to solve. For our ME-MSA version and asso- B o5l 0.25 % ERROR 0.5
ciated software the number of Lagrange multipliers can ex- §
ceed the numbeM and even ®1 and this aspect is one 8
advantage of the ME-MSA method. Therefore, we compen- g 0.0 e R p) 0.0
sate for the reduction in the number of Lagrangian multipli- g 1.0 r1.0
ers used. One can trust théM2to M reduction procedure 2 ,
when the values op,,(B) and p,,(B) are comparable at % 0.54 05 %ERROR = & 05
strong enough magnetic fielggB;~1, but this is a general E
condition for all versions of MSA. Moreover in ME-MSA, 2 I
we have the possibility to extend the number of magnetic- A e F0.0
field points outside the range of minimal and maximal values 105 10
of the measured experimental points. In the future, we intend 1.0 % ERR
to modify ME-MSA software for calculations with two sets 0.54 0.5
of Lagrange multipliers, and we suggest that the results will
be very close to those presented here. l

In the results Eqs(17) and (18) reduce to a following P A S A

single set:

N M
2’1 [(K‘i_E}Ot)eXp(_J.Zl )‘jKij)}:o' (20)

where
. 1 .
Kij=cos 6;;+ 5Sin6;j =3 (1+cos 20 +sin 26;),
(21
o=
The probability distribution becomes
M
pi=eX;{—)\o—jEl KIJ)\j . (22)

The mobility spectrum is then achieved by the iteration of
Eqg. (22), using successive approximati¢46] and the fol-
lowing equation:

N

E}Ot_i; Kijpi | - (23

)\J(new): )\J(old)_ a'(

Mobility (10° cm®V™'s™)

FIG. 1. Comparisons between QMSA and ME-MSA spectra of
synthetic datasets for two carrier species=£1x 10" cm 2, u
=2000cmV ts ! n,=1x10" em 2, 4,=6000cnfV 1s ),
subject to various errors ip,, and Ry . n; is the sheet carrier
density andu; is the mobility, withi=1,2.

IV. TESTING OF SYNTHETIC DATA

To demonstrate the ME-MSA technique, a synthetic
dataset was generated and ME-MSA and QMSA analyses
were performed. The synthetic dataset was calculated for two
carriers with n;=1x10" cm 2, ©,;=2000cnfV s 1
n,=1x10%cm 2, u,=6000cntV ts ! and with 30
magnetic-field points equally spaced from 0 to 10 T. The
mobilities in the synthetic dataset are chosen to be high
enough {u;B,.>1) so that the resultant mobility spectra can
be obtained with high accuracy. The number of mobility
points in the spectrum is 200, which are spaced equally in
log scale for QMSA and linear scale for ME-MSA. The
QMSA uses a cubic spline interpolation to obtain 200 data
points, while ME-MSA uses only the available 30 data
points. The mobility range is between *10and
10 cm?V~1s ! for holes, and between—10° to
—10* cm?V~1s 1 for electrons, and the iteration continues
until the spectrum does not change significantly, which is

Here« is an adjustable parameter, which allows us to iterateypically around 16 iterations for QMSA and X 10* itera-

Egs.(22) and(23) until the set of probabilitiep; converges.

tions for ME-MSA. The adjustable parameterfor all ME-

The value ofa can be chosen by a trial and error procedureMSA analyses, which gives smooth and stable convergence,
and is usually set to be less than unity for the stability of thes 0.2.

computation(the so-called “under-relaxation” iterationin

Figure 1 shows the normalized mobility spectrum ob-

general,« can take any value but being less than unity hagained from both techniques for synthetic datasets with dif-

proved to be a good choice and we have typically uaed
=0.1-0.5.

ferent errors in resistivityp,, and Hall coefficientRy
=(pxy/B). For the “no error” case, both techniques yield
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FIG. 2. ME-MSA spectrum for a synthetic dataset correspond- FIG. 3. ME-MSA spectrum of two carrier specieq(
ing to two carrier species: ng=1x10"cm 2, w; =1x10"cm 2 u;=2000cmV isTy n,=1x10" em 2, w,
=2000cndfV~is L n,=1x10%em 2, u,=6000cnfV-1s 1),  =6000cntV-1s™ 1), subject to 0.1% error ipy, andRy.

Each carrier species is assumed to have a Gaussian distribution of

H:)?g:'téfjr’":\;hrgz":viraet%ﬁs;néef by the thick solid line, with a frac- peaks at the mobilitieg.; and u, are clearly resolved. It
o should be noted that we choose mobilities that differ by an

the same spectra consisting of two well-separated peaks, co?—rder of magnitude so that the low-mobility peak does not

) ; : . o, Pverlap the high-mobility peak.
responding to two carrier species having mean mobilities o To summarize, the ME-MSA technique can produce a mo-
w1 and u,. As the errors increase, each peak in the QMSA ... ' X
spectrum splits into two sharp peaks while ME-MSA Com'_ob|l|ty spectrum accurately, revealing the correct number of

fortably maintains its initial two peaks. Consequentl thecarrier species, and is less sensitive to experimental error. A
numbgr of carrier species obtainFe)zd fro.m ME-I\;IqSA w)i/I,I be good fit can be obtained within a reasonable calculation time

much more accurate. and the low-mobility {«,,) carrier contribution with

For higher values of errof0.5% and 1.0% ME-MSA MiowBmax<1 can be extracted successfully, provided the

also starts to show an artifact around the electron mobiIityh'gher'mObIIIty (righ) carrier hasuigBmae=1.5.

—1000 cnfV~1s™L It should be noted that the initial peaks
continue to dominate while the artifact is easily spotted as an
incomplete peak.

Figure 2 demonstrates how the ME-MSA calculation A powerful mathematical approach for investigations of
evolves when the true mobility spectrum corresponds tanulticarrier magnetotransport in heterogeneous materials
Gaussian distributions. The ratio of the standard deviation t@nd device structures has been proposed on the basis of the
the mean mobility of the Gaussian distributions is set to b@naximum entropy principle and the mobility spectrum
0.1 and the true distributions are shown as solid lines. Afteanalysis technique. The underlying idea of ME-MSA is to
300000 iterations, which take around 5 min on a computetietermine the probability distribution of the reduced partial
running a 1-GHz Intel Pentium IIl processor, the ME-MSA conductivity using the concept of entropy maximization,
closely resembles the true distribution. subject to the constraints imposed by the conductivity-tensor

The smoothness of ME-MSA is a very interesting featurecomponents derived as probability weighted quantities and
that cannot be achieved by any other existing mobility specfrom experimental Hall and magnetoresistivity data. It re-
trum technique. The shape of ME-MSA curves should prosults in a quantitative procedure for fitting multicarrier ex-
vide information about the energy dependence of the relaxperimental data to theoretical forms and includes the follow-
ation time and the wave vector dependence of the constaitig fundamental innovations.
energy “surface,” as first postulated by Beck and Anderson (1) The standard unique formula for the entropy defines
[5]. the probability as a reduced partial conductivity, unphysical

Another attractive feature of ME-MSA is the ability to negative conductivities are avoided, and the requirement of
recover the conductivity of low-mobility carriers below the non-negative conductivities is not imposed during iteration.
limitation set byB,.1,, without any modifications to the main (2) The conditional extremum of the entropy and other
calculation and without the need for empirical procedures. Tdunctionals can be found on the basis of a stationary property
demonstrate this, a synthetic dataset was generated for tvinvolving Lagrange multipliers.
carriers havingn;=1x10%cm 2, u;=200cnfV - 1s % (3) The electron and hole mobilities of treame magni-
n,=1x102cm 2, u,=1500cnmtV 1s 1, with 0.1% er- tudecan be resolved by virtue of their different signs. This is
ror in py, and Ry, and 30 magnetic-field points equally due to introducing the idea of positive mobility for the holes
spaced from 0 to 10 T. The ME-MSA was carried out for and negative one for the electrons, due to their opposite drift
500000 iterations and the result is shown in Fig. 3. Twodirections in a given electric field.

V. CONCLUSIONS
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(4) The iteration and fitting procedures are improved bynegative partial conductivities in accordance with the prin-
the use of exponential functions in the minimization pro-ciple of maximum entropy and the sign separation of the
cesses, in contrast to the power functions used in convenmmobility axis for electrons and holes, make ME-MSA a pow-
tional MSA approaches. erful approach for obtaining quantitative mobility and carrier

(5) The number of mobility points chosen is not limited to density information. It has been demonstrated that ME-MSA
the number of magnetic-field points and can be higher leadgives a reduced level of errors compared to other MSA tech-
ing to a reduction in errors. niques and yields useful results when the errors in the mag-

(6) A knowledge of the partial conductivity at a given netoresistivity tensor components are 0.25%, which is real-
mobility w; does not require a measurement at fi@d istically attainable in most experiments. It is important to
=u L note that the ME-MSA algorithm is fully under computer

(7) The range of available mobilities can be extended tocontrol and does not require any supporting procedures on
much lower and higher values than=B,. andB_t, re- the part of the user.
spectively.

In order to demonstrate the advantages of the ME-MSA
approach over the QMSA approach and other MSA variants,
computations were carried out on a synthetic dataset, using The authors would like to thank G. Rowlands, Z. Dziuba,
both the ME-MSA and the QMSA iterative algorithms. A. Lusakowski, N. P. Barradas, and S. A. Ostanin for helpful
While the QMSA spectra tend to collapse to a discrete set ofliscussions. S. Kiatgamolchai is grateful to the Institute for
6 functions, ME-MSA preserves linewidth information when the Promotion of Teaching Science and Technold@sT)
runs are extended to a large number of iterations. Therefor@f Thailand for financial support of his study in the United
we expect that this technique will serve as a suitable tool foKingdom (DPST). V.K. wishes to thank the Royal Society of
the study of energy-dependent relaxation times and banthe United Kingdom for financial support during his stay at
structures, as predicted by Beck and Ander§bh These the University of Warwick. This work was supported by the
advantages, in combination with ttee priori exclusion of INTAS-01-0184 project.
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