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Spin polarization of the low-density three-dimensional electron gas
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To determine the state of spin polarization of the three-dimensional electron gas at very low densities and
zero temperature, we calculate the energy versus spin polarization using diffusion quantum Monte Carlo
methods with backflow wave functions and twist averaged boundary conditions. We find a second-order phase
transition to a partially polarized phasergt-50+2. The magnetic transition temperature is estimated using
an effective mean-field method, the Stoner model.
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[. INTRODUCTION energy dominates and the electrons crystallize into a Wigner
crystal[5]. There is a first order freezing transitip@] atr
The three-dimensional homogeneous electron gas, alss 100.
known as the fermion one component plasma or jellium, is Considering now the spin degrees of freedom, at small
one of the simplest realistic models in which electron corre-lectrons fill the Fermi sea with equal number of up spin and
lation plays an important role. Despite years of active re-down spin electrons to minimize the total kinetic energy and
search, the properties of thermodynamic phases of the elethus the total energy; the system is in the paramagnetic state.
tron gas are still not known at intermediate densifies In  As the density decreases and before the freezing transition,
this paper, we study the spin polarization phase transition othere is a possibility that the electrons become partially or
the three-dimensional electron gas at zero temperature wittotally polarized(ferromagnetit. The spin polarization is de-
recently improved quantum Monte Carl@MC) methods. fined as{=|N;—N,|/N, whereN; andN, are the number of
There has been recent interest in the low-density phasagp and down spin electrons, respectively, &N, +N, .
spurred by the observation of a ferromagnetic state in calFor paramagnetic phase=0 and for ferromagnetic phase
cium hexaboride (Caf doped with lanthium2]. The mag- (=1.
netic moment corresponds to roughly 10% of the doping This polarization transition was suggested by Blo@h
density. The temperature$600 K) and densities (7 who studied the polarized electronic state within the Hartree-
X 10'%cn®) of this transition are in rough agreement with Fock (HF) approximation. He found the ferromagnetic state
the predicted transition in the homogeneous electrorfias favored over paramagnetic state fQi>5.45, almost within
However, to make a detailed comparison, it is necessary tthe density of electrons in metals. However, HF is not accu-
correct for band effects. For example, conduction electronsate forrs>0.
are located at th¥ point of the cubic band structure and thus  More accurate energies became available with the devel-
have a sixfold degeneracy. The effective mass of electrons ajpment of Monte Carlo methods for many-fermion systems.
this point and the dielectric constant are also changed significeperley[8] using variational Monte Carlo with a Slater-
cantly from their vacuum valud8]. These effects cast doubt Jastrow trial function determined that the transition between
on the viability of the electron gas model to explain thethe polarized and unpolarized phase occured,at26=+5.
observed phenomena. Excitonic models have been proposétsing a more accurate method, diffusion Monte Carlo
to explain the ferromagnetisid]. Whatever the interpreta- (DMC) [6], it was estimated that the polarized fluid phase is
tion of ferromagnetism in Ca the determination of the stable atr;=75+5. An extension to this workd] found the
polarization energy of the electron gas is an important prob7=0.5 partially polarized fluid becomes stable at roughly
lem because of the importance of the model. rs~20 and the completely polarized state is never stable.
The ground-state properties of the electron gas are en- Recently Ortizet al. [1] applied similar method§10] to
tirely determined by the density parametgr=a/a, where  much larger systemsaN=1930) in order to reduce the finite-
4mpad/3=1 anda, is the bohr radius, possibly changed size error. They concluded that the transition from the para-
from its vacuum value by band effects. In effective Ryd-magnetic to ferromagnetic transition is a continuous transi-
bergs, the Hamiltonian is tion, occurring over the density range of 26<r <40
+5, with a fully polarized state at,;=40.
2 1 Due to the very small energy differences between states
P 2 erCOHSt- (1) with different polarizations, systematic errors greatly affect
si=hi the QMC results. Recent progress in the quantum simulation
methods makes it possible to reduce these errors. Kavah
Note that the kinetic energy scales as31#nd the potential [11] found that a wave function incorporating backflow and
energy scales asrl/so that for smallrg (high electronic three-body(BF-3B) terms provides a more accurate descrip-
density, the kinetic energy dominates, and the electrons betion: they obtained a significantly lower variational and
have like an ideal gas; in the limit of large, the potential fixed-node energy. In another advance of technique, twist-

1 N
He- =S V24
rs|=l

1063-651X/2002/63)/0367037)/$20.00 66 036703-1 ©2002 The American Physical Society



F. H. ZONG, C. LIN, AND D. M. CEPERLEY PHYSICAL REVIEW E66, 036703 (2002

averaged boundary conditiofifA) [12] have been shown to -0.0286 [

reduce the finite-size error by more than an order of magni- He =50 4
tude, allowing one to obtain results close to the thermody- o SI-VMC 1
namic limit using results for small values Bf In this paper, -0.0287| .

we apply these improved methods to the polarization transi-
tion in the three-dimensional electron gas. We first describe
the simulation method, and then, the results.

E(Ry)

-0.0288] .

BE-VMC ]
Il. METHODS 10,0289 ;ML

[T SI-DMC ]
The most accurate QMC meth¢@i3] at zero temperature 9 »—W ]

is projector or DMC: one starts with a trial function and uses 0029 liiirs RS L L L N
exp(—tH) to project out the ground state using a branching Y0 02 04 06 08 1
random walk. Fermi statistics pose a significant problem for g
the projection method, since exact fermion methods such as . N
transient estimate or release-node QMC suffer an exponen- FIG. 1. _Ene%gy VS spin polarization a=50 for 54 .eleCtrqns
tial loss of efficiency for large numbers of particles. For this using TA with 1 twust.values. Co_mpared are calculatlo.ns with S
. . LT and BF-3B wave functions and with two QMC methods: VMC and
reason, the fixed-node approximation is normally used, ObDMC
taining the best upper bound to the energy consistent with an
assumed sign of the wave function. The generalization of the N L
fixed-node method to treat complex-valued trial functions is _ N T DT 2
known as the fixed-phase approximatidr]. Tr(R) DTDLeXﬁ( 2 ulry) =3 izl Gl ®
In the simpler, but less accurate variational Monte Carlo
method (VMC), one assumes an analytic form for a trial where
function W(R) and samplegW(R)|? using a random N
walk. An upper bound to the exact ground-state energy is the G=3S &r)(ri—r) 4)
average of the local enerds (R)=¥(R) ‘H¥(R) over e I
the random walk.
The trial wave function plays a very important role in and
these two methods. With a better trial wave function, not ~
only is the variational energy lower and closer to the exact u(r)=uRPAr) = NpEX(r)r2+y(r). (5
energy, but also the variance of the local energy is smaller sp . .
that i?){akes less computer time to reach the dge)éired accuraéc}llereDT gnle are the dgtermmants for the up spin and the
level. The trial wave function is also important in fixed phasedOWn SPin electronsi(r) is the three-body correlation func-
DMC because the solution is assumed to have the saniton, andu is the Jastrow correlation function. For the elec-
phase as the trial function. One then solves for the modulugron gas an accurate analytic fofit6], u?"A(r), has as low
This implies that the DMC energy lies above the exactan energy[8] as those with optimized parameters. In the
ground-state energy by an amount proportional to the meapresence of three-body correlation, the random-phase ap-
squared difference of the phase of the trial function from theProximation(RPA) two-body term is supplemented with an
exact phase. As this is the only uncontrolled approximationextra Gaussian functiory(r). Please refer to Kworet al.
it is important to carefully optimize the assumed trial wave[11] for further details concerning this wave function. We
function. used optimized Ewald sunjd6] both for the potential and
For a homogeneous system, the noninteraatitig wave  for the correlation factor so as to have the correct long wave
function consists of a Slater determinant of single-electroiength behavior.
plane waves orbitals. To incorporate electron correlation, one Though the computational cost for BF-3B wave function
multiplies the NI wave function by a pair wave function, iS somewhat greater than the simple SJ wave function and
obtaining the so-called Slater-Jastr(® form. To construct there is the added cost of optimization for BF-3B wave func-
a better trial function, one incorporates backflow and threetion, we found accurate trial wave functions crucial to com-
body effects[11]. The particle coordinates appearing in the pute the small energy differences between different polariza-

determinant become quasiparticle coordinates, tion states. We optimized the parameters by minimizing a
combination of the energy and the variance for each density

N and polarization. Figure 1 shows the energy vs polarization

atr =50 using different trial functions and simulation meth-
Xi:ri+j2¢i (1) (ri=rj). (@ ods. The SJ trial function with VMC has the highest energy
for all polarizations and at this level of accuracy finds the
_ fully polarized phase to be stable, in agreement with earlier

The Slater determinant is théh= det(g'm *n) where n(rj;) VMC calculations[8]. However, using the best BF-3B trial
is a function to be optimized. Then tiBF-3B) wave func-  function, the variational energies are lowered significantly
tion is with the unpolarized energy dropping more than the polar-
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FIG. 2. The pair correlation function for several polarizations at  FIG. 3. The polarization energy for various sized systems, at
r<=50 using DMC. The various curves are fo+=0,0.33, 0.67, 1 =50 using TA and DMcircle, 54; square, 108; and triangle, 162
with the structure increasing with spin polarization. The point at{=1 with the large error bar is from Ceperley and
Alder [6]. Other errors are less than 10

ized case so that the polarized phase is no longer stable. .

DMC calculations confirm this result. Note that the DMC from 1.175 to 1.190 as the system goes from unpolarized to
energies determined using the NI phagersnodes give en- polarized. Hence, the potential size effect hardly changes the
ergies lower than the BF-3B variational energies, confirmingsPin Polarization energy. Figure 3 shows the polarization en-
the importance of accurate DMC calculations. The use of'gies forN=>54, 108, 162. With TA boundary conditions,
BF-3B wave functions with DMC leads to the lowest there is a remarkable insensitivity to the number of electrons.

ground-state energies, hopefully, very close to the exact erf=Ven though the system size is increased threefold, the
ergy. change in t.he energy versus po!anzatlon is glmost undgtect-
After the effect of the nodes, the dependence of the endble. Con5|_der|ng only the leadingNL/correction, we esti-
ergy on the number of electrons is the largest systematif’@t€dE.. with N=54 andN=108. o
error. Within periodic boundary conditio®BCO), the phase ~ AlSo shown in Fig. 3 is the estimate of the polarization
picked up by the wave function as a particle makes a circuighergy from Ceperley and Ald¢6). In that work, size ef-

across the unit cell, is arbitrary. General boundary conditionéeCts were estimated with Fermi liquid corrections. Rather
are than BF-3B wave functions, corrections using the potentially

_ exact, release-node method were used. The results with PBC
W(ri+L,ry, ...)=eW(ryry,...), (6) and fixed-nod€FN) -DMC are in agreement with the present
. _ . fixed-phase(FP) -DMC calculations. However, the present
wherelL is a lattice vector of the Supercell. If the twist angle results have an error bar more than an order of magnitude
¢ is averaged over, most single-particle finite-size effectgmaller than those of Ceperleya and Alder, primarily due to
arising from shell effects in filling the plane wave orbitals, increased computer performance.
are eliminated. This is particularly advantageous for polar-  Though PBC with FLT corrections are adequate for unpo-
ization calculations since shell effects dominate the polarizagrized and fully polarized systems, the precision is limited
tion energy. The extra effort in integrating over the twist for intermediate polarizations. To estimate finite size effects
angles is minimal, since the various calculations all serve tqyithin FLT, one must perform accurate DMC simulations for
reduce the final variance of the computed properties. Thejidely varying system sizes. In the paper of Owizal. [1],
effect of boundary conditions is examined in detail in thethe simulation size varied from 728\ < 1450. Within DMC
paper of Linetal.[12] _ _ it is very time consuming to ensure uniform accuracy inde-
There is a further size effect in the calculation of thependent of particle number, so that one typically determines
potential energy due to a charge interacting with its correlasize effects within VMC, using the more approximate SJ trial
tion hole in neighboring supercells as shown in Fig. 6 of Linfunctions. As we have seen in Fig. 1, the SJ trial functions
et al.[12]. To correct this, we fit the energies versusising  are unreliable at low densities. TA boundary conditions allow

the expansion a much better way to estimate energies in the thermodynamic
limit of partially polarized Fermi liquids since the number of

E =E + ﬂ+ QJF o @) electrons can be held fixed as the spin polarization varies.

NTEETNT N2 ' Small system sizes, allowing the use of more accurate but

expensive trial functions and even exact fermion methods,
For unpolarized systems, the fittégd, agrees with the previ- give precise estimates of the spin polarization energy in the
ous non-twist-average(PBC) result determined using ex- thermodynamic limit.
trapolations based on Fermi liquid thedBLT). As shown in In Fig. 4 we compare the total energy foy=40 calcu-
Fig. 2, the correlation hole is only weakly dependent on spifated with DMC and TA and extrapolated to the thermody-
polarization at low density: the peak g{r) only changes namic limit with the calculation of much larger systems (
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FIG. 4. Comparison of this work with that of Ortiet al. [1]. FIG. 5. The spin polarization energy of the 3DEG timé$ in

The filled diamonds are DMC simulations with TA and BE-3B Ry/electron at various densities using a polynomial fit to the data in
wave functions(this work). The filled circles are DMC with PBC  Table I. The density;s, is denoted on the right axis.

and SJ wave functiofl]. All energies are extrapolated to the ther- ] o )
modynamic limit. Errors are given in Table | and are smaller than We then fit the energy versus polarization to a quadratic
the size of the points. polynomial in £?. The results are shown in Fig. 5. A polar-

ization transition is evident. At,=40, the system is still
paramagnetic, with the unpolarized phase stable. As the den-

i e - sity decreases, at~50, the system becomes unstable with
ergy and show a different polarization energy: Ortiz’s calcu-

9y < ; X ) ~respect to spin fluctuations. The partially polarized states be-
lation finds that the polarized or partially polarized phase IS;ome stable at,=60. As the electronic density continues to

stable at this density, while we find the unpolarized phase igecrease, the fully polarized state has a lower energy with
stable_. This dlfferenc_e is due to the backflow correlatlons Mespect to unpolarized staterat=80, however, we find that
the trial wave function. Although backflow energies areu,q naially polarized state has an even lower energy.
small, they favor thg un.polanzed state .anq hence are crucial | Fig. 6 is shown the predicted square of the optimal
for accurate determination of the polarization transition. polarization versus density. We find that the equilibrium po-
larization is described by?=(rs—r¥)/62 with the critical
. RESULTS densityr} =50+ 2. As the density decreases, the stable state
becomes more and more polarized, becoming fully polarized
We carried out computations of the spin polarization en-at the freezing density;c~100. Quantum critical fluctua-
ergies at electronic densities 40,<100. At each density, tions, not present in systems wikh=162, could modify the
we performed DMC calculations withN=54 andN=108 behavior of the spin polarization energy near the critical den-
electrons using T0twist angles. The time step was adjusted sity.
so that the DMC acceptance ratio was in the range 98—-99 %. The quoted error bar on the critical density estimates the
Note that when calculating the polarization energy, mosstatistical errors, not the systematic errors arising from the
time step errors will cancel out of the polarization energy.fixed-phase approximation. The experimental and theoretical
Thus systematic errors in the polarization energy are muckesults on polarized helium warn against placing too much
smaller than in the total energy. We then extrapolated theonfidence in the estimate of the polarization transition. Even
energy to the thermodynamic limit using E@). The ener-  using the accurate optimized BF-3B wave functions, the
gies are given in Table I. magnetic susceptibility in liqui®He does not agree with

=725) of Ortizet al. [1] The BF-3B energies are lower en-

TABLE I. Energy of the 3DEG computed using TA-DMC and extrapolated fiém54 andN=108 with 16 twist angles. Energies are in Ry/electron.
The numbers in parentheses are standard errors in units 6fR9.

red 0.0 0.185 0.333 0.519 0.667 0.852 1.0

40 —0.03523748(60) —0.03523295(67) —0.03520539(67) —0.03513483(72)
50  —0.02889900(62) —0.02889900(66) —0.02889962(68) —0.02889449(70) —0.02888835(62) —0.02887542(70) —0.02884983(81)
60  —0.02452017(44) —0.02451866(51) —0.02452031(48) —0.02451963(50) —0.02451747(42) —0.02451188(46) —0.02450167(46)
70 —0.02131429(41) —0.02131381(40) —0.02131621(39) —0.02131716(37) —0.02131593(37) —0.02131332(39) —0.02130667(37)
75 -0.02001137(35) —0.02001191(37) —0.02001376(36) —0.02001434(44) —0.02000878(33)
85  —0.01784017(30) —0.01784152(32) —0.01784300(32) —0.01784109(32)
100 —0.01535357(30) —0.01535340(30) —0.01535639(26) —0.01535761(26)
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L B B the theory of itinerant magnetisfi20]. The Stoner model
1 differs from the Hartree-Fock approximation by replacing
the Coulomb interaction by a zero range one, a repulsive
delta function potentialZ; _;g4(r;;). One can view this ap-
proach as the first step to a full Fermi-liquid description of
the quasiparticle interactions, and use the QMC data to de-
termine the strength of those interactions. One expects that
the Slater-Jastrow trial function has screened off the long-
range interaction, leaving only a short-ranged spin-dependent
term that can be modeled by a contact interaction.

In the Stoner model, the energy is evaluated within the
05 | S R R mean-field(Hartree-Fock approximation using the NI wave

40 60 80 100 function. The energy at zero temperature in the thermody-

Ts namic limit is

0.5

& (r,)

LI RN AN (R S B B N

T T T

FIG. 6. The square of the spin polarization s The curves
were obtained using fits in Fig. 4. The line is a fit though the points. Eoc(1+ )%+ (1-0)%%+0.054r3(1- ). (8
The value atr ;=40 was obtained by extrapolation from physical

values ofZ. For gr2<20.5 the system has an unpolarized ground state

experiment at low pressure and the polarized phase is neargnd forgré>24.4 the ground state is ferromagnetic. For in-
degenerate with the unpolarized phase at the freezing densitgrmediate couplings, the ground state has a partial spin po-
[17]. The present results also do not preclude the existence J_)quzatlon at zero temperature, S|m|!ar to the observed behav-
phases with other order parameters such as superfluids, & of the electron gas at low density.

occurs in the ground state of liquitHe. In fact, it is rather Although the polarizations are qualitatively correct, the
likely that the ground state of the electron gas will have suctfbove functional form does not fit well the DMC dafee.,
a phase at the lowest fluid densities. from Table ). In addition, assuming thaf does not have a

However, examination of the variance of the trial function Very strong density dependence, the Stoner model predicts
suggests that the result for the electron gas may be mor@at the partially polarized density range should be quite nar-
reliable than for liquid®He. Shown in Fig. 7 is the variance oW, from 50<r,=<54, while as the QMC results indicate a
of the trial function ar ;=50 for both the SF and the BF-38 Much broader density range. Certainly, the assumption of a
functions. Although the variance of the SJ trial function de-Zero-range interaction of quasiparticles is too restrictive.
pends on spin polarization, that of the BF-3B does not. Sucfiiowever, we note that in the case of the three-dimensional
is not the casé17] with liquid 3He. Arguments based on !SINg model, the mean-field estimate of the critical tempera-
variance extrapolatiofil8] suggest that the DMC calcula- ture is approximately 20% greater than the exact value, sug-

tions with BF-3B phases should be more reliable than irdesting that the Stoner model will give a reasonable estimate
liquid 3He. of the transition temperature if the effective couplings are

determined from the QMC ground-state energies.
IV. THE PHASE DIAGRAM We use the Stoner model to make an estimate of the tran-

sition temperature of the polarized phase as follows. The free

One can use the calculated energies to estimate the finighergy[21] in a fixed volumeV in the Stoner model is
temperature behavior within the Stoner moded|, arising in

1078 (e gN;N,
S | F=Fo(N))+Fo(N)+=—— ©)
8x1076 |- TThe 7
L \\\\ ] where the free particle free energy for a single spin species at
x10-¢ |- ™= largeN is
Y N ]
4x10-8 L i
: 1 Fo(N)=Nu—kgT>, In(1+e A1) (10
Tl — k

BF-3B

1 The chemical potentigl of each spin species is determined
L by the number of particles with that spin. At each density, we
0 02 04 ¢ 06 08 1 perform a three parameter linear least squares fit of the en-
ergies in Table I, to determine the zero of energy, the effec-
FIG. 7. The variance of the SJ and BF-3B trial function as ative mass, and the spin coupling paramegersing Eq.(8).
function of spin polarization at,=50 using TA and VMC wittN  Then, we numerically calculate the temperature at which the
=54, system becomes polarized by determining when the spin
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L1101 e e liquid phase, a polarized phase is found to be stable between
- : . 26=r,<35, though the energy differences are even smaller
than in 3D. The partially polarized phase is never stable. In
the two-dimensional Wigner crystal, path integral methods
[25] were used to derive directly the spin Hamiltonian. It was
found that the ground magnetic state is a spin liquid though
the ferromagnetic state has only a slightly higher energy at
P R melting. Analogous calculations of the magnetic phase dia-
1 gram of the WC in 3D are underwdg6].

1015 |  unpolarized fluid

p ool

.
i

ol

Wigner crystal !

electron density (cm™3)

i ! i V. CONCLUSION

10 We studied the polarization transition in the three-

dimensional electron gas using twist-averaged boundary con-
T R BV S ditions and trial functions with backflow and three-body cor-
1075 107 10-° 10-2 10! relations. Twist-averaged boundary conditions have a much
T (K) reduced systematic finite-size error, especially for the calcu-
lation of polarization energies, enabling size-converged re-
FIG. 8. The phase diagram of the electron gas. Conversion t6ults with fewer electrons. Using relatively small system
units of cm and K was done usingy,=1.3 nm and Ry250 K  Sizes allows one to use more accurate trial wave functions
using estimatef3] of the effective mass and the dielectric constantand to fully converge the diffusion Monte Carlo calculations.
of SrBs. The solid line is the mean-field estimate of the magneticWe find a second order transition to a polarized phasg at
transition temperature from the Stoner model, where the spin inter=50+ 2.
action is estimated from the zero temperature QMC data. The dotted |n general, methods based on the variational principle
line is the energy difference between the unpolarized and partiallgych as the fixed-node quantum Monte Carlo method for
polarized system. many-fermion systems, favor phases with a higher symme-
. . . . try, in this case the Wigner crystal and the polarized fluid,
s_tlffness of the unpolarized system vanishes, tér/d¢” 0\)//er the more complicz?ted ungolarized phz{s%;ectively a
_0'. . . _ two-component mixture of spin up and down electrpiRe-
Figure _8 IS the estimated phase diagram Of_ the e_Iectroga” that in HF one has a polarization transition because an-
gas. In this diagram, the effective mass and dielectric Conﬂsymmetry is the only way to correlate electrons, however,
stant for SrR, a closely _related material to CgBhave been the correlation is only between like spins; hence, there is an
used[3] to convert to units of K and cfn Note that bOth. the instability to polarize the system once the potential is domi-
temperatures and densities of.our calculated magnetic trangl, + gt using a SJ wave function both like and unlike
tion are four orde_rs of magnitude sma_IIer than that foun lectrons are highly correlated. Our results demonstrate that
experimentally[2] in CaB. Even assuming errors because s 53 wave functions still preferentially favor the “simple”
of uncertainties in material properties and from the mea”bhases, even using the DMC method. This symmetry argu-
field estimate ofT., these estimates are very difficult 0 ont explains the tendency of the polarized phase to become
reconcile with experiment, apparently ruling out an electrongiapie over a more and more restricted range of density and
gas model of fgrromagnetism in this material. Also plonedtemperature, as more accurate methods are used. Our QMC
on the phase diagram is the energy difference between thegrs ysing the BF-3B wave function indicate that there is
partially polarized fluid and the unpolarized fluid as anotherg| 4 instability for spin polarization at a very low density.
estimate of the magnetic transition temperature. Finite temAIthough examination of the variance indicates that the po-
perature QMC calculations would be desirable to confirm thg,j,eq” and unpolarized BF-3B trial functions are equally
mean-field estimate of .. A rough estimate of the limit of j,5ccyrate, it is still not clear if our finding of a polarization
stability of the Wigner crystal22] is also shown. ~ ganition is an artifact of the assumed trial wave function.
Tanaka and Ichimar[23] have computed the polarization ¢ culations with the new method3A and BF-3B wave
phase diagram of the electron gas both at zero and nonzefgnctiong, but with the exact fermion methods, are desirable

temperature using an integral equation method. At zero temy, regplve the phase of the electron gas at intermediate den-
perature they obtain a result similar to that of Oetzal.[1],  gjties.

with a continuous transition at~20 and a fully polarized

fluid state at a slightly higher density~22. Apparently this

approach, built on local field corrections to free fermion re- ACKNOWLEDGMENTS
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