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Modeling of discontinuities in photonic crystal waveguides with the multiple multipole method

Esteban Moreno,* Daniel Erni, and Christian Hafner
Laboratory for Electromagnetic Fields and Microwave Electronics, Swiss Federal Institute of Technology, ETH-Zentrum, Gloriastra

CH-8092 Zurich, Switzerland
~Received 24 May 2002; published 27 September 2002!

A method for the simulation of discontinuities in photonic crystal defect waveguides is presented. This
frequency domain technique is based on the multiple multipole method. In contrast with other known tech-
niques, spurious reflections~due to the impedance mismatch at the waveguide terminations! are avoided. The
absence of spurious reflections allows one to characterize precisely the intrinsic behavior of the sole discon-
tinuity, reducing at the same time the size of the simulation domain. To achieve a perfect impedance matching,
the guided modes of infinitely long waveguides corresponding to the input and output channels of the discon-
tinuity are first computed using a supercell approach. Then, the discontinuity is fed with one of the previously
computed modes, and the fields transmitted or reflected towards the discontinuity arms are matched to the
modal fields corresponding to each output waveguide. This method allows one to compute the intrinsic trans-
mission and reflection coefficients of the discontinuity~i.e., coefficients not altered by additional effects such
as finite crystal size, etc.!. The procedure is presented in detail using some simple discontinuities as test cases.
Then, it is applied to the computation of the coupling from a waveguide to free space and for the analysis of
a filtering T junction.

DOI: 10.1103/PhysRevE.66.036618 PACS number~s!: 42.79.2e, 42.70.Qs, 42.82.2m, 02.60.Cb
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I. INTRODUCTION

The design of integrated optical circuits has to face
problem of losses in waveguide bends and other interc
necting structures. In fact, the size of typical integrated
tical components—containing bends, junctions, couple
etc.—is of the order of millimeters or centimeters rather th
micrometers due to the constraints imposed by the minim
radius of curvature of the interconnecting waveguides@1#.
The increase of the dielectric contrast and the use of reso
cavities at waveguide corners@2# can reduce the losses, but
is difficult to suppress them completely.

In this framework, one of the most promising alternativ
is the photonic crystal concept@3,4#. The underlying periodic
structure of a photonic crystal gives rise to the appearanc
frequency ranges~photonic band gaps! for which the optical
field cannot propagate inside the crystal. This modification
the density of states of the optical field due to the periodic
of the crystal has many applications, e.g., it can provide
ternative waveguiding schemes for dense integrated op
@1,5#. The disruption of the crystal periodicity by introduc
tion of crystal defects induces a field localization that allo
one to design various essential optical elements of very s
size. For instance, line defects may behave as waveguid
for frequencies in the band gap—and, since the photons
not escape through the crystal, waveguide corners wit
radius of curvature of the order of one wavelength and w
out losses can be designed@6#.

The basic building elements for the design of devices
modulate the optical field are essentially waveguide disc
tinuities. A waveguide discontinuity consists of several inp
and output channels that are connected by an interaction
gion @2#. The simplest photonic crystal waveguide discon
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nuities are bends@7–9#, branches@10–12#, and intersections
@13#. They are prerequisites for the development of opti
circuits in photonic crystals@14#. Much effort has been mad
recently for the analysis of sharp bends@13# ~to allow for
ultrasmall circuits! with the lowest possible reflection coe
ficient @7#. In this context, coupled-cavity waveguides see
to be quite promising@15#. The design of branching struc
tures operating as power splitters@10,13#, and of waveguide
intersections without crosstalk@16,17# is also actively re-
searched. Further structures~involving two different ele-
ments! are waveguides coupled to point defect microcavit
@18–20#, which can act as frequency discriminating syste
@21#. Direct coupling of waveguides has been demonstra
for the design of directional couplers@22# and multiplexing
systems@23#, and indirect coupling via resonant cavities h
been employed@24,25# for the design of channel drop filters
A proposal for multichannel wavelength division multiple
ing @26# has been presented as well. To conclude, two
applications are mentioned, which concern the coupling
radiative modes~to be applied for the design of emittin
antennas@27,28# and detectors@29#! and the important issue
of the in coupling and out coupling of the modes guided
a photonic crystal line defect to a conventional wavegu
@30–32# ~operating as a sort of spot-size converter!.

Up to now, the computation of photonic crystal wav
guide discontinuities has been performed in time dom
with the finite differences time-domain~FDTD! method~see,
for instance, Ref.@7#! and with the time-domain beam propa
gation method@33#, and in frequency domain with scatterin
matrix methods~see, for instance, Ref.@11#!. However, as it
will be explained in Sec. II, those methods have seve
drawbacks. Here, the goal is to present a general framew
for the computation of photonic crystal waveguide discon
nuities ~in frequency domain! aiming at the following three
aspects:~i! to avoid spurious reflections due to the impe
ance mismatching at the waveguide terminations,~ii ! to char-
©2002 The American Physical Society18-1
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acterize accurately the discontinuity, and~iii ! to reduce the
size of the computational domain. The presented techniqu
based on the multiple multipole~MMP! method@34# that is a
well established semianalytical boundary method for
computation of electrodynamic problems.

Section II analyzes the drawbacks of the most commo
employed numerical techniques for the computation of p
tonic crystal discontinuities. Section III summarizes the b
sics of the MMP method. In Sec. IV the developed proced
is presented and its features are explained. Afterwards
Sec. V, two applications are shown: a photonic crystal
tenna and aT junction presenting a filtering behavior. Th
paper is closed with Sec. VI, where some conclusions
drawn.

II. COMMONLY USED METHODS FOR THE SIMULATION
OF PHOTONIC CRYSTAL WAVEGUIDE

DISCONTINUITIES

The FDTD method has been successfully applied to
computation of various photonic crystal waveguide disco
nuities. Some prominent examples are Refs.@7,10,24,31#.
Here, the general advantages~such as easy modeling, etc!
and disadvantages~large memory requirements, etc.! of
FDTD will not be discussed. Only those details specific
photonic crystal discontinuities are commented. The met
is explained for the case of aT junction discontinuity~Fig. 1!
in Ref. @10#. It proceeds in the following way:~i! The input
waveguidea is excited with a pulse~typically originated
from a dipole in front of the input waveguide entrance! con-
taining the relevant frequencies.~ii ! The pulse propagate
along the input waveguide towards theT junction. This
waveguide has to be long enough to guarantee that the
tial transients due to the coupling in the waveguide ha
decayed before the pulse arrives to the discontinuity.~iii ! The
incident, transmitted, and reflected pulses are recorded
Fourier analyzed to determine the transmission@T2(v) and
T3(v)# and reflection@R(v)# coefficients as a function o
the frequency. Due to the finite size of the crystal, the pul

FIG. 1. T junction in a photonic crystal. The discontinuity is fe
from the left. The ‘‘pacmen’’ represent the incident, transmitted, a
reflected pulses~including the pulses reflected back at the crys
interfaces! at several different time instants.
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arriving to the waveguide terminationsa, b, andc after
interacting with the junction are partially reflected back t
wards the junction. If these reflections are not carefu
handled, they result in a complex mixture of the vario
transmitted and reflected pulses. To avoid this effect, t
mechanisms have been proposed. The first one@10# consists
in defining very long arms for theT junction. In this way, if
the positions and the time windows where the pulses
recorded are properly chosen, the interferences between
various pulses are avoided. The second one makes us
sophisticated absorbing boundary conditions@35,36# to avoid
spurious reflected pulses. The first approach requires h
computational domains~for instance, Ref.@10# reports on a
computational domain of 1403180 crystal cells!, whereas
the second approach has to ensure that the perfectly mat
layers perform equally well for all incidence directions a
all k wave numbers included in the wave packet.

In the frequency domain, scattering matrix methods ha
also been applied for the analysis of photonic crystal disc
tinuities @11,23,37#. As with FDTD, finite size crystals are
simulated. The field inside the scattering cylinders is mo
eled with Bessel functions whereas the field outside the
inders is represented by multipolar functions and one ad
tional excitation function~usually a plane wave!. In this case
Fourier transformations are obviously not required, but
the other hand—as several authors have pointed
@11,15#—it is very difficult to determine the value ofT2(v),
T3(v), andR(v). The reason is again the reflection of th
guided modes at the waveguides terminations: the field
each of theT junction branches is a superposition of wav
transmitted or reflected at the junction itself and reflected
the waveguide termination~at the crystal interface!. As a
consequence, it is not easy to characterize precisely the
trinsic behavior of the sole discontinuity.

It is worth emphasizing the undesired effects that are
troduced in the simulations with the mentioned methods
to the fact that finite crystals are modeled. The influence
the details of the waveguide termination and of the fin
crystal size can be observed in the following two examp
computed with MMP. In Fig. 2, it can be seen that the co
pling to the waveguide is extremely sensitive to the fine
tails of the waveguide entrance: a very short taper
changes enormously the coupling efficiency of the incom
wave. The interference mentioned in the previous paragr
between the mode traveling downwards in the wavegu
and the mode reflected back at the waveguide exit can
observed in Fig. 3~a!. In this figure the field is compared with
the pure modal field traveling downwards~i.e., without re-
flected mode! @Fig. 3~b!#. The mode in Fig. 3~b! was com-
puted using the technique described in Ref.@38#, appropri-
ately generalized to consider the case of photonic cry
defects, namely, employing an adequate supercell.

III. MULTIPLE MULTIPOLE METHOD

The MMP method@34,39# is a numerical technique fo
performing electrodynamic field calculations in the fr
quency domain~as usual, a factore2 ivt multiplying the
fields will not be explicitly written, wherev is the angular

d
l
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MODELING OF DISCONTINUITIES IN PHOTONIC . . . PHYSICAL REVIEW E 66, 036618 ~2002!
frequency!. It was developed for systems with isotropic, li
ear, and piecewise homogeneous materials, and its ess
ideas are explained in the following. Since the structu
considered in this paper are invariant along theZ axis, we
present the MMP method for the two-dimensional~2D! case
~r will denote the position in theX-Y plane, and a further
factoreibz multiplying the fields will be omitted, whereb is
the propagation constant along theZ axis!. However, this
technique is not restricted to 2D problems.

The 2D region where the fields are to be computed
partitioned in domainsDi , where the permittivity«Di and
permeabilitymDi are r independent~but, in general,v de-
pendent!. The field FDi(r ) in every Di is expanded as a
linear superposition ofNDi known analytical solutions
w l

Di(r ) of the 2D Helmholtz equation in the correspondi
domain:

Fapprox
Di ~r !5Fexc

Di ~r !1Fsca, approx
Di ~r !

5Fexc
Di ~r !1(

l 51

ND i

xl
Diw l

Di~r !, ~1!

FIG. 2. Effect of ‘‘tapering’’ on the in-coupling behavior. Th
crystal considered here is a triangular lattice of dielectric« r

58.41) circular cross section cylinders in vacuum. The radius
the cylinders isr 50.15a, wherea is the lattice constant~the cor-
responding band structure is plotted in Fig. 12!. The waveguide is
excited with a plane wave incident from the top (E polarization!
with normalized frequencyva/(2pc)50.473 ~which corresponds
to an effective wavelength ofleff'2.8a @see Fig. 13~a!#!. The only
difference between~a! and ~b! is the row where the crystal is ter
minated. Observe that in~b! a kind of ultrashort tapering occurs
which enhances the in-coupling efficiency~the total power traveling
downwards is approximately 26 times larger with taper than with
it!. The plotted field is the time averaged electric field.
03661
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where Fapprox
Di (r ) denotes the approximation to the actu

field, Fexc
Di (r ) and Fsca, approx

Di (r ) represent the exciting an

approximated scattered fields, respectively, andxl
Di are un-

known coefficients to be determined.FDi(r ) denotes a ge-
neric field from which the electricEDi(r ) and magnetic
HDi(r ) fields can be extracted. In general, the knowledge
FDi(r )5$Ez

Di(r ),Hz
Di(r )% is sufficient to derive the fields

ET
Di~r !5

i

~kDi !2
@b“TEz

Di~r !2vmDi~ez3“T!Hz
Di~r !#,

~2a!

HT
Di~r !5

i

~kDi !2
@b“THz

Di~r !1v«Di~ez3“T!Ez
Di~r !#,

~2b!

where the subscriptT denotes vectors in theX-Y plane,ez is
a unit vector along theZ axis, andkDi is the transverse wave
vector:«D imDiv25(kDi)21b2.

As the name of the method suggests, the multipolar fu
tions are the most frequently used basis functions. A sc
2D multipolar function with origin in the pointrOl

is given
by

w l
Di~r l ,f l !5Hnl

(1)~kDi r l !3H cos~nlf l !

sin~nlf l !,
~3!

where Hnl

(1)(•) is the Hankel function of first kind and o

order nl , and (r l , f l) are polar coordinates with origin in
rOl

. Usually, several ‘‘clusters’’ of multipolar functions ar
employed to expand the fields. Every cluster is a set of m
tipolar functions, all of them located at the same point a
including several multipolar orders. We will call amultipole
expansionof ordern to such a cluster with ordersnl ranging
from zero up ton @a Bessel expansionwill be the same but

f

t

FIG. 3. Effect of the finite size of the crystal. The crystals in~a!
and~b! have the same structure~described in Fig. 2!. ~a! Details of
Fig. 2~b! for the seven central periods of the waveguide.~b! Modal
field of an infinitely long waveguide computed with the superc
method. The pattern in~a! is due to the interference between th
mode traveling downwards and the mode traveling upwards~re-
flected at the waveguide exit!, whereas in~b! the field of the pure
mode traveling downwards does not present such an effect.
plotted fields are the time averaged electric fields forva/(2pc)
50.473.
8-3
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ESTEBAN MORENO, DANIEL ERNI, AND CHRISTIAN HAFNER PHYSICAL REVIEW E66, 036618 ~2002!
replacing the Hankel functions with Bessel functionsJnl
(•)#.

Vekua theory@40# guarantees that for a multiply connecte
finite domainDi , one Bessel expansion and additionally
multipole expansion in each hole ofDi form a complete
basis. Nevertheless, when the interfaces]Di j of the domains
deviate from the circular shape, several multipole expans
located at different positions achieve a much better con
gence of the expansion in Eq.~1!. Since a multipolar func-
tion is singular in its origin, the multipole expansions a
placed outsideDi to expand fields that are regular inDi .

To determine the unknown coefficientsxl
Di , the boundary

conditions are imposed on a set of collocation pointsr k , k
51, . . . ,Ncol along the interfaces]Di j :

wEi
~r k!@Ei

Di~r k!2Ei
Dj~r k!#50,

wE'
~r k!@«DiE

'

Di~r k!2«DjE
'

Dj~r k!#50,

~4!
wHi

~r k!@Hi
Di~r k!2Hi

Dj~r k!#50,

wH'
~r k!@mDiH

'

Di~r k!2mDjH
'

Dj~r k!#50,

wherei and' stand for being tangential and orthogonal
the interface, respectively, andw(•••)(r k) are appropriately
selected weights@34#. The system of Eq.~4! comprises 6Ncol
equations in general or 3Ncol for H or E polarization andb
50. The functions in Eq.~3! satisfy the radiation boundar
conditions and therefore no special care is needed with
issue if they are used to represent the scattered field in o
domains. System~4! leads to a rectangular~overdetermined!
matrix equation of the type

(
b

AabXb5Ba , ~5!

whereAab is a rectangular matrix, the vectorXb includes the
unknownsxl

Di , and the vectorBa stems from the excitation
Equation ~5! is solved in the least squares sense usin
Givens algorithm@41#. The MMP method is claimed to b
semianalyticalbecauseFapprox

Di (r ) analytically satisfies the
Maxwell differential equations in everyDi , while the alge-
braic boundary conditions are approximately fulfilled at e
ery ]Di j . For further details, see Refs.@34,39#.

The choice of the interfaces]Di j , which define the do-
mains is often straightforward. Occasionallyfictitious bound-
aries ~across which the material parameters do not chan!
are introduced in order to underpin a characteristic partiti
ing of the underlying problem, e.g., for convergence p
poses@34#. The most difficult step in MMP modeling is th
choice of the basis functionsw l

Di(r ). We have recently pro-
posed a procedure for the automatic setting of the multip
expansions in 2D problems@42#. Once]Di j andw l

Di(r ) have
been chosen, the selection of the collocation pointsr k is done
in such a way that the multipolar functions with highest m
tipolar orders are sampled along the interfaces with a
cretization that is fine enough@39#.
03661
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An interesting feature of the MMP method is the possib
ity of evaluating the local accuracy of the computed so
tions @34#. This can be measured by therelative error along
the boundaries]Di j . The relative error is defined as the mi
match of the fields at the collocation points@i.e., the residual
error in the fulfillment of Eq.~4!# divided by their values.

IV. MATCHING OF MODES AT WAVEGUIDE
TERMINATIONS

A. General principle

From the discussion in Sec. II, it is clear that the ma
difficulty stems from the impedance mismatch at the wa
guide terminations. This mismatch is what causes the un
ired reflections. Therefore, the following procedure is p
posed here~Fig. 4!: The input and output waveguides are c
by planes (p1 , p2, andp3) at an appropriate distance from
the discontinuity. Then, the fields going out from the juncti
are matched at the cutting planes to the modal fields@F in(r ),
Fout1

(r ), Fout2
(r ), and Fout3

(r )# of the corresponding infi-
nitely long waveguides. The procedure will be explain
later in more detail, but let us anticipate that these mo
fields of the input and output defect waveguides may
computed with any supercell approach. We computed th
modes with a method based on MMP described elsewh
@38#.

The proposed idea is routinely used for many applicatio
where discontinuities inconventional~i.e., with continuous
translational invariance! waveguides are present. In the co
text of the MMP method, it has been described for conv
tional metallic@43# ~i.e., closed! and dielectric@44,45# ~i.e.,
open! waveguides. However, to the best of our knowledg
the idea of defining input and output ports where the field
matched to the solution of the infinitely long waveguide, h
not been employed for the computation of waveguides w
discretetranslational invariance. In comparison with the ca
of conventional waveguides, the application of the form
idea to photonic crystals is more difficult. This is due to t
fact that they possess only discrete translational symme
and to the fact that the energy waveguiding is not sim
‘‘index waveguiding,’’ but the more complex ‘‘distributed
Bragg waveguiding,’’ which involves the scattering at a lar
number of elements. On the other hand, the analysis of o
dielectric waveguide discontinuities can be more demand
due to the coupling to the continuous set of radiative mod
In this regard, photonic crystal waveguides are more akin
the metallic waveguides used in microwave applicatio
which strictly confine the electromagnetic field.

The main advantages of the idea presented above are
following: ~i! Since a perfect matching of the guided mod
is achieved, no spurious reflections occur atp1 , p2, andp3,
and it is possible to characterize the properties of the wa
guide discontinuity alone.~ii ! Complex~and not necessarily
reliable! absorbing boundary conditions are avoided.~iii ! No
Fourier transformation is needed.~iv! The computational do-
main is reduced to the minimum possible size.

The procedure is now explained in detail. Figure 4~c! dis-
plays the domains and boundaries employed for the M
8-4
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MODELING OF DISCONTINUITIES IN PHOTONIC . . . PHYSICAL REVIEW E 66, 036618 ~2002!
simulation.D1 andD2 are the domains modeling the ‘‘inter
action’’ region. The background is assigned toD1 while the
cylinders are assigned toD2. The boundaries]D12 are the
cylinder circumferences. There are three other doma
(Din1out1

, Dout2
, andDout3

) corresponding to the input an

output channels. DomainsD1 andDin1out1
, Dout2

, Dout3
are

separated by three fictitious boundaries~along the planesp1 ,

FIG. 4. ~a! Typical photonic crystal discontinuity; thre
waveguides~two vacancy defect lines and one coupled-cav
waveguide! are connected to a central cavity. TheY junction is fed
from the left.~b! For the simulation, the crystal is cut by planesp1 ,
p2, andp3, and the fields arriving to those planes are matched
the modal fields@F in(r ), Fout1

(r ), Fout2
(r ), andFout3

(r )# of the
corresponding infinitely long waveguides.~c! MMP domains and
boundaries which are employed for the simulation~the dashed lines
are only a visual help, and they are not used for the modeling!. D1

covers all the interaction region background, whileD2 covers the
inner part of all cylinders.
03661
s

p2, andp3). The appropriate widths of the photonic cryst
around the waveguides and the distances between disc
nuity and in/out ports will be discussed in Sec. IV B. Th
fields in the different domains are modeled in the followi
way: In D1 the field is represented by a multipole expansi
at the center of each cylinder plus additional multipolesin-
side each of the in/out ports~along the three correspondin
boundaries!. In D2 the field is modeled with Bessel expan
sions ~one at the center of each cylinder; each such Be
expansion represents the field only inside the correspon
cylinder!. In each output port (Dout2

and Dout3
) the field is

modeled with the mode transmitted towards that port.
nally, in domainDin1out1

the field is modeled with the inci-
dent and reflected modes~in the case that some waveguid
are multimoded, additional modes are employed!. Each
modal field serving as input@F in(r )# or output @Fout1

(r ),

Fout2
(r ), and Fout3

(r )# mode is computed as in Ref.@38#

with a supercell approach. Note that, in order to match
field in the interaction region to the guided modes in t
in/out channels, it is only required to know the fields of t
corresponding guided modes along the fictitious bounda
separating the interaction regionD1 and the in/out domains
Din1out1

, Dout2
, Dout3

.
It is important to realize that, since in the transition fro

the interaction region to the ports there is no impedance m
match, the transmitted modes exiting towardsDout2

andDout3
and the reflected mode exiting towardsDin1out1

are not re-
flected at the fictitious boundaries separating the in/out p
from the interaction region. This means that, when the in
mode has amplitude 1, the~complex! amplitudes of the out-
put modes—which are delivered by the MMP computation
are precisely the transmission@T2(v),T3(v)# and reflection
@R(v)# coefficients of the discontinuity.

B. Computational details and assessment of the method

There are several details that have not been comme
yet. In what concerns the definition of the domains, th
essential points are:~i! the number of photonic crystal layer
around the defect waveguides and discontinuity center,~ii !
the distances from the fictitious boundaries of the in/out po
to the discontinuity center, and~iii ! the lengths of these fic
titious boundaries. The photonic crystal waveguide e
ployed for the examples shown in this section is describe
Fig. 5, where a portion of the corresponding band structur
displayed.

The number of layers around the waveguide mentione
point ~i! has to guarantee a negligible leakage of the guid
modes in its propagation through the discontinuity. On
other hand this number should be kept as small as possib
reduce the computational effort. In Fig. 4~c! the thickness of
the photonic crystal surrounding the waveguide is equa
the length of the fictitious boundaries, but sometimes thic
photonic crystal walls are required~for instance, when high
quality factor resonant cavities at the discontinuity have to
modeled!. As a first assessment of the method, Fig. 6 d
plays the power transmission (uTu2) and reflection (uRu2) co-
efficients for a waveguide without discontinuity. The refle

o
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ESTEBAN MORENO, DANIEL ERNI, AND CHRISTIAN HAFNER PHYSICAL REVIEW E66, 036618 ~2002!
tion is 0 and the transmission is 1 except for low frequenc
~corresponding to low wave numbersk, see Fig. 5!. For low
k the guided mode profile penetrates deeper in the phot
crystal, and therefore the leakage is higher. This loss
power can be diminished by adding more photonic crys
layers, as it is shown in Fig. 7: the addition of two more ro
reduces the losses for low frequencies.

FIG. 5. Dispersion relation of the mode guided by a line
vacancies (E polarization!. The insets show the first Brillouin zon
~left! and the supercell~right!. The shaded region represents t
perfect crystal band gap.~The underlying employed perfect cryst
consists in a square lattice with lattice constanta. The radius of the
rods isr 50.18a. The background is vacuum and the relative p
mittivity of the rods is« r511.56).

FIG. 6. Power transmission (uTu2) and reflection (uRu2) coeffi-
cients for a straight waveguide segment of length 5a ~wherea is the
lattice constant, see inset!. The photonic crystal considered here
described in Fig. 5. The polarization isE, and the waveguide is a
vacancy defect line. Observe that the reflection coefficient is 0
the transmission is 1, except for the low frequencies~corresponding
to low wave numbersk and wide modal profiles penetrating deep
in the photonic crystal!.
03661
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The distances between the ports and the discontinuity c
ter mentioned in~ii ! should be as short as possible in order
reduce the size of the computational window and, hence,
numerical effort. However, since the fields going out fro
the junction will be matched to pure guided modes at
ports, these distances should be long enough to guara
that the fields arriving at the fictitious boundaries are p
guided modes and the spatial evanescent terms have alr
faded away. It is worth noting that these distances depend
the effective wavelength of the guided mode and, therefo
they have to be longer for lowk wave number. This is shown
in Figs. 8 and 9~a!, which display the power transmissio
and reflection coefficients due to a 90° bend in a vaca
line defect. In Fig. 8 the power is not conserved—for lo
frequencies—because the lengths of the bend arms are
short for the corresponding effective wavelengths and
evanescent transients reach the in/out ports. Note that
conservation of energy deteriorates forva/(2pc),0.370,
which corresponds to~see Fig. 5! kx'0.5p/a, i.e., an effec-
tive wavelength ofleff52p/kx'4a. This is approximately
the length of the bend arms employed in the simulation~see
inset of Fig. 8!. Increasing the length of the arms, the fr
quency range for which the model works properly is e
tended to lower frequencies@Fig. 9~a!#. As a rule, the length
of the waveguide arms should be at least one effective wa
length of the guided mode for the operating frequency. T
same structure was computed with FDTD@7# using a simu-
lation domain 50 times larger than the domain employed
Fig. 9 @53#. The small inaccuracy of the energy conservati
observed in Fig. 8 for high frequencies is due to the fact t
those frequencies are very close to the band gap edge an
leakage is higher. This can be avoided by addition of o
layer of photonic crystal@Fig. 9~a!#. The inaccuracy in the
power conservation then becomes smaller than 0.2% of
input power. The field in the bend is plotted in Fig. 9~b!.

f

-

d

FIG. 7. Power transmission coefficients for a straight wavegu
segment with photonic crystal walls of different thicknesses~see
insets!. The losses observed in Fig. 6—for low frequencies—
reduced by adding two further photonic crystal layers.
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MODELING OF DISCONTINUITIES IN PHOTONIC . . . PHYSICAL REVIEW E 66, 036618 ~2002!
Finally, the lengths of the fictitious boundaries of the po
mentioned in~iii ! should guarantee that the guided mo
amplitude is negligible at both end points of the fictitio
boundary. Usually this length is the same as that of the
percell employed to determine the modal guided fields. N
again that the modes penetrate deeper in the photonic cr
for low k, which means that larger supercells are requir
and correspondingly longer fictitious boundaries.

Regarding the expansions modeling the fields, one sho
pay attention to the following points.~a! In this paper only
circular cross section cylinders have been considered.
this case, one Bessel expansion plus one multipole expan
~both located at each cylinder center! are probably optimal.
For other geometries more expansions may be needed@38#.
~b! The multipole expansions located inside the in/out po
and radiating towardsD1 are positioned equidistant from
each other and from the corresponding fictitious boundar
~c! The maximum order of the expansions mentioned in
two previous points depends on the desired accuracy. A
could be expected, those expansions close to the de
waveguides and to the central cavity are more important
should usually have a higher order.

The numerical details of the computations shown in Fig
are summarized as follows: 208 multipole expansions w
employed for domainD1 ~one multipole inside each cylinde
and additionally nine inDin1out1

and nine inDout2
) and 190

Bessel expansions for domainD2 ~one per cylinder!. The
order of the expansions isn53 except in two cases: thos
inside the cylinders that are nearest neighbors to the vac

FIG. 8. Power transmission (uTu2) and reflection (uRu2) coeffi-
cients for a 90° bend with arms of an approximate length ofa
~where a is the lattice constant, see inset!. The photonic crystal
considered here is the same as in Fig. 5. Observe that the
power is not well conserved for low and for high frequencies. F
low frequencies~corresponding to long effective wavelengths! the
bend arms are too short and the spatial transients reach the i
ports. For high frequencies the mode frequency is very close to
band edge and the mode is less well confined in the defect w
guide ~note that this effect does not occur for low frequencies
cause the mode does not cross the lower band edge, see Fig.!.
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defects~wheren55 was required! and those that are secon
nearest neighbors~with n54). The total number of basis
functions adds up to 3265 (ND151710, ND251552,
NDin1out152, NDout251). The average relative error along th
boundaries for the computation shown in Fig. 9~b! was
0.25%~not to be confused with the inaccuracy in the pow
conservation of 0.2% mentioned above! and the maximum
relative error was 16%. The absolute errors are of sim
magnitude in all collocation points, and the mentioned ma
mum relative error occurs in collocation points lying f
from the channel where the energy is guided, i.e., in co
cation points where the field is almost zero and therefo
despite the high accuracy, it is very difficult to obtain lo
relative errors for them. Up to now we have not found a

tal
r

out
e
e-
-

FIG. 9. ~a! Power transmission (uTu2) and reflection (uRu2) co-
efficients for a 90° bend with arms of an approximate length
7.5a ~wherea is the lattice constant, see inset!. Observe that the
total power is now conserved forva/(2pc).0.325. ~b! Time av-
eraged electric field forva/(2pc)50.435. In the horizontal branch
the interference between the incoming and reflected modes ca
observed, whereas in the vertical branch only a pure transm
mode propagates. The bend is fed from the left.
8-7



th
rv
n

of
-

ed
ta

ge
al
o
ee
st
h

ou
ve
ec
th
e

h
ce

o-

re
e

has
ad-
ot

o

ide
ide

-

in

-
to
f t

r

tonic
de-
ort
rect
.
e-
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simple quantitative relation between the relative error in
collocation points and the inaccuracy in the power conse
tion. However, collocation errors are usually an upper bou
of the error quantities involved. Moreover, the availability
a quantitative error measure~i.e., the relative error distribu
tion! provides a very useful validation tool.

V. APPLICATIONS

A. Coupling to radiative modes

The discontinuities considered in Sec. IV B were clos
i.e., the whole structure is surrounded by photonic crys
layers ~infinitely thick in the ideal case! and therefore no
energy should leak out of the system. Nevertheless, the
eralization to open systems is not conceptually difficult,
though it is more demanding from the modeling point
view. In this section the coupling from the waveguide to fr
space and the effects of the termination of photonic cry
waveguides at the crystal interface are considered. It
been already mentioned~Fig. 2! that the fine details of the
waveguide termination have a crucial importance in the c
pling of the guided modes to the radiation modes. Howe
with conventional scattering matrix computations this eff
could not be quantified because the mode arriving at
interface ~from the source! and the mode reflected at th
interface back towards the source are mixed.

The method described in Sec. IV can be applied to t
kind of discontinuity between waveguide and free spa
Here, only one port for guided modes (Din1out1

) is needed
~inset of Fig. 10! whereas the radiation couples out in d
main D1. Except under special conditions~when surface
modes are excited! the elements described in Sec. IV a
enough for the modeling of this type of discontinuity. Th

FIG. 10. Reflected (uRu2), radiated, and total power for a tran
sition between a defect waveguide and free space. The pho
crystal considered here is the same as in Fig. 5. The length o
waveguide before the discontinuity is approximately 7.5a. That
means ~see Fig. 5! that the model should deteriorate fo
va/(2pc),0.325, as it is indeed observed in the figure~see the
total power curve!.
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number of photonic crystal layers around the waveguide
to be enough to ensure a good modal confinement, and
ditionally it has to be such that the outgoing field does n
‘‘feel’’ the finite lateral size of the crystal. It may be useful t
mention that the field in domainD1 is expanded exactly in
the same way as in Sec. IV: One multipole expansion ins
each cylinder plus a set of multipole expansions ins
Din1out1

.

Figures 10 and 11~a! show the reflected (uRu2), radiated,
and total power~reflected plus radiated! for two different
waveguide terminations~see insets!. Observe the good en
ergy conservation~better than 0.5%! except for very low
frequencies ~this effect has already been discussed

nic
he

FIG. 11. ~a! Reflected (uRu2), radiated, and total power for a
transition between a defect waveguide and free space. The pho
crystal considered here is the same as in Fig. 5. The tapering
creases the reflection coefficient significantly. Due to the sh
length of the waveguide tract, the simulation results are not cor
for low frequenciesva/(2pc),0.325~as it was discussed in Sec
IV B !. ~b! Electric field amplitude radiated by the tapered wav
guide. The normalized frequency isva/(2pc)50.395.
8-8



, a
ls
e
b

lin
to

te

ur
re
n
nd
id

s
a-
re

e
inc
o

er
at
-

r

e

in

lid-
is

of

ft

o
-

in

-
ec-

ect

wo

-
ion

MODELING OF DISCONTINUITIES IN PHOTONIC . . . PHYSICAL REVIEW E 66, 036618 ~2002!
Sec. IV B!; to obtain correct results for lower frequencies
longer piece of waveguide has to be simulated. It is a
important noticing that the reflection coefficient has be
significantly decreased in most of the frequency range
introduction of a short tapering@Fig. 11~a!#. Compared to
conventional waveguide tapers, here the radiation coup
seems nearly perfect, underlining the peculiarities of pho
nic crystal tapers. The electric field in the structure is plot
in Fig. 11~b!.

B. Filtering T junction

In this section a complexT junction discontinuity of the
generic type shown in Fig. 4 is analyzed. In the struct
considered here the three in/out waveguides are diffe
from each other. The underlying photonic crystal is a tria
gular lattice of dielectric cylinders in air, and it has the ba
structure depicted in Fig. 12. The diagram shows a w
band gap between the first and second bands.

Many different line defects can be introduced in this cry
tal. Some of them~with the corresponding dispersion rel
tions! are summarized in Fig. 13. Usually, line defects p
serving the symmetry of the crystal@such as Figs. 13~a! and
13~b!# are preferred@46#, and most studies in the literatur
focus on this type of waveguides. The reason is that, s
the underlying global lattice is not disrupted, the design
complex photonic circuits is, in principle, easier. Howev
other kinds of waveguides which disrupt the underlying l
tice have been studied@47#, e.g., stacking faults. Two ex
amples of such defects are shown in Figs. 13~c! and 13~d!.
The modes labeled~a! and~c! present a very similar behavio
except close to the Brillouin zone edge: the~c! mode is de-
generated whereas~a! is not ~this effect was also found in
Ref. @47#!. Here, it will be shown that stacking faults can b
used to design devices with interesting functionalities.

The discontinuity considered in this section is shown
Fig. 14. The figure caption describes in detail how theT

FIG. 12. Band structure of a triangular lattice of dielectric (« r

58.41) circular cross section cylinders in vacuum. The radius
the cylinders isr 50.15a, wherea is the lattice constant. The po
larization isE. The insets show the first Brillouin zone~left! and the
primitive cell ~right!.
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junction is constructed. Two waveguides are created by s
ing a piece of the photonic crystal, whereas the third one
built by removing one row of cylinders. As a byproduct
this construction, a cavity appears at the center of theT junc-
tion. From the figure, it is intuitive that the right and le

f

FIG. 13. Dispersion relation for several defect waveguides
the crystal described in Fig. 12~note that the horizontal axis is
normalized using the widthw of the supercell, which is not the
same for all waveguides!. ~a! and ~b! are vacancy line defects ob
tained by removing one column and one row of cylinders, resp
tively @in fact, ~b! behaves like a coupled-cavity waveguide#. ~c!
and~d! are obtained by sliding two parts of the crystal with resp
to each other by a distanceaA3/2. In ~c! a channel waveguide with
dispersion similar to~a! is obtained whereas in~d! a coupled-cavity
waveguide~two moded in the wholek range! results.

FIG. 14. T junction with filtering behavior~diplexer!. The struc-
ture is based on the perfect crystal described in Fig. 12. T
waveguides@of types~c! and~d!, see Fig. 13# are obtained by slid-
ing the upper left block of the crystal by a distanceaA3/2. The
third waveguide@of type ~b!# is a coupled-cavity waveguide ob
tained by removing a row of adjacent cylinders. At the intersect
a cavity is formed, which consists of two smaller subcavities~of
sizes similar to as those at the left and right of the junction!.
8-9



h
e
lin
in
de

re

h

igh
of
e

is

t
n-

and
at

-

in

the
ach
is
is

he
-
this
ans
ble
se
ght

he
at
di-

ws

uen-

be
and

ent

as

-
her

of
ma-
e of
ec-
-

ESTEBAN MORENO, DANIEL ERNI, AND CHRISTIAN HAFNER PHYSICAL REVIEW E66, 036618 ~2002!
waveguides will behave as coupled-cavity waveguides. T
kind of waveguide presents flattened bands, and therefor
bandwidth is small. The bandwidth depends on the coup
between the cavities, becoming smaller for weak coupl
@15,48#. Since the cavities constituting the right wavegui
~b! are larger than those of the left waveguide~d!, the defect
band of the right one will have lower frequencies compa
to that of the left one. In addition, the vertical channel~c!
will support modes for a larger range of frequencies. If t
frequency range of~c! overlaps with those of~b! and~d!, this
could be used to implement aT junction, which additionally
filters one low frequency towards the right and one h
frequency towards the left. In fact, in Fig. 13, this kind
desired overlapping band behavior is precisely observ

FIG. 15. Filtering behavior of theT junction structure shown in
Fig. 14. The plotted field is the time averaged electric field.
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From the analysis of the dispersion curves in Fig. 13 it
clear that for the frequencyva/(2pc)'0.437@respectively
va/(2pc)'0.478# transmission from the top to the righ
~respectively left! waveguide should be possible. In the i
termediate frequency range@for va/(2pc)'0.470# none of
the horizontal waveguides supports propagating modes
therefore total reflection is expected. It is worth noting th
by simple lattice operations~dislocation and cylinders re
moval! the functionality of a diplexer is achieved.

For the simulation of this device, the ideas explained
Sec. IV were followed. The only new ingredients are:~i!
Each waveguide supports different modes, and therefore
corresponding different fields have to be matched at e
in/out port. ~ii ! Since the slope of the dispersion relation
negative for the coupled-cavity modes, the group velocity
negative. The sign of the wave numberk has to be chosen
appropriately in order to obtain the correct direction for t
energy propagation.~iii ! The vertical defect waveguide sup
ports a guided mode for all considered frequencies, but
is not the case for the horizontal waveguides. This me
that for certain frequencies, no propagating mode is availa
to match the field at the right or at the left port. For tho
frequencies which do not support a mode either to the ri
or to the left, the corresponding branch of theT junction is
left ‘‘open,’’ i.e., no output port is attached at the end of t
waveguide~taking care that the arm is long enough so th
no power leaks out, and the reflection coefficient is not mo
fied!.

As the previous considerations predicted, Fig. 15 sho
the filtering behavior of theT junction. The power transmit-
ted to the corresponding branches for the considered freq
cies is 35%~towards the left, for the high frequency! and
87% ~towards the right for the low one!. To achieve a higher
transmission for both frequencies, the central cavity has to
redesigned, in such a way that it possesses two modes,
the coupling coefficients of those modes with the adjac
waveguides are appropriate@10,25,49–51#. The idea is to
find a cavity with the following properties:~i! The right~re-
spectively left! subcavity has the same resonant frequency
the right~respectively left! waveguide.~ii ! The coupling fac-
tor of the right ~respectively left! subcavity to the left~re-
spectively right! waveguide is negligible.~iii ! The decay

FIG. 16. ImprovedT junction with filtering behavior. The struc
ture is the same as described in Fig. 14 with addition of one furt
rod at the junction. The radius of this rod isr 85r /2 ~wherer is the
radius of the other rods!, and it is positioned at a distance 3a/4 from
the rod immediately below. By choosing the position and radius
this rod, the modes of the central cavity can be appropriately
nipulated. The domain employed for the simulations has a siz
10 lattice constants in the vertical direction. In the horizontal dir
tion the domain contains the central`-shaped cavity plus four cavi
ties at each side of it.
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MODELING OF DISCONTINUITIES IN PHOTONIC . . . PHYSICAL REVIEW E 66, 036618 ~2002!
rates of the mode sustained by the right~respectively left!
subcavity to the upper and to the right~respectively left!
waveguides are the same. Points~i! and ~ii ! enforce the fil-
tering behavior, whereas~iii ! minimizes the reflections bac

FIG. 17. Filtering behavior of the modifiedT junction structure
with the additional rod in the central cavity~Fig. 16!. The plotted
field is the time averaged electric field. Here, in contrast with F
15, almost no interference pattern in the vertical input waveguid
observed, which indicates that the reflection coefficients are sma
ro

.A

n

nd

a

03661
towards the input waveguide~for the chosen resonant fre
quencies!. The optimization of the cavity in order to satisf
the previous requirements will not be presented here. Ne
theless, to make it plausible, the following experiment
considered: In the central cavity one additional rod is
cluded~Fig. 16!. Adjusting the radiusr 8 and position of this
column by trial and error, the power transmitted towards
left is 98.8% for the high frequency and 93.3% towards
right for the low frequency, just demonstrating the poten
alities of such intervention~the inaccuracy in the energy con
servation was smaller than 1%!. The time averaged electri
field corresponding to this configuration is plotted in Fig. 1
Observe that the interference pattern in the input wavegu
has almost disappeared~especially for the high frequency!,
which means that the reflection coefficients are very sma

VI. CONCLUSIONS

Photonic crystal waveguide discontinuities can be ac
rately characterized with the presented method. Since
fields traveling away from the discontinuity are matched
the guided modes supported by the output channels, no
rious reflections occur. Thus, the computed transmission
reflection coefficients are due to the discontinuity alone, a
finite crystal size effects are not mixed with the intrins
discontinuity behavior. Additionally, the size of the comp
tational domain required for the simulation can be reduced
the minimum possible. The approach has been demonstr
within the context of coupling to radiative modes, pow
splitting, and diplexer operation. Extended versions of MM
for three-dimensional modeling are already available@52#,
but their efficiency concerning photonic crystal simulatio
has not been evaluated yet.
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