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Paraxial propagation along the optical axis of a uniaxial medium
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An approach for describing paraxial propagation of light along the optical axis of a uniaxial medium is
introduced. Contrary to previous theoretical schemes, our approach directly deals with the propagation of the
whole optical field without resorting to the standard decomposition into ordinary and extraordinary parts, thus
avoiding some related mathematical difficulties. A paraxial equation governing the field propagation has been
derived, and its formal solution has been deduced. The structure of this solution allows us to think of the
optical field in the crystal as the corresponding one propagating in vacuum “dressed” by the effect of anisot-
ropy. This relationship is used to derive two analytical techniques for evaluating the propagated field. Starting
from the formal solution, the closed-form expression of the anisotropic propagator is also derived. The pro-
posed approach is used to predict the evolution of an astigmatic Gaussian beam through a calcite crystal, which
has been also experimentally investigated. The agreement between theory and experiment is good.
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[. INTRODUCTION uniaxially anisotropic media have been proposed. For in-
stance, Stamnest al. [14] employ of a plane-wave angular
Optical propagation inside anisotropic media is a subjecspectrum representation in order to predict the field radiated
still receiving a good deal of attention, mainly because of itshy a finite source inside an unbounded uniaxial crystal, under
intrinsic vectorial featuregl—3]. Among the classical topics, very general conditiongnonmonochromatic fields, disper-
the transmission and reflection of light at the interface besive materials and arbitrary propagation directicrhe only
tween an isotropic and an anisotropic medir7] and the  shortcoming of this approach resides in the inherent math-
propagation through birefringent optical fib¢B have been ematical complexity. Flecket al. [15] give approximate
largely investigated during past decades. The most intriguingaraxial equations for both the ordinary and the extraordi-
influence a crystal exhibits on light propagation consists imary components of the field, even though the boundary field
inducing a change in the polarization state of the incominglecomposition into ordinary and extraordinary components
radiation[9,10]. In fact, the vast majority of devices based is not immediate. Trippenbacét al. [16—19 consider the
on anisotropic materials is devoted to produce light with apropagation of light pulses in nonisotropic and dispersive
desired polarization staf¢1-13. Light propagation through media, deriving the equation for the slowly varying envelope
these devices is usually described by means of theoreticalf the electric field. Recently, a different theoretical scheme
approaches representing the light as a plane wave, so that thas been proposd@0], where the exact plane-wave angular
whole realm of diffractive phenomena is generally neglectedspectrum representation has been approximated within the
This description is accurate enough whenever the beam waiptiraxial constraint, obtaining the paraxial expressions for the
is much greater than the wavelength, but this condition is nobrdinary and extraordinary components of a field propagat-
always fulfilled in actual experiments, where the beams aréng along the optical axis. In that approach the authors also
often micronsized or smaller. This justifies the demand of alescribe the way to extract the ordinary and the extraordi-
paraxial theory of propagation, dealing with optical beamsnary parts from the boundary field, but, unfortunately, this
and not with plane waves only. Besides, it is also conceptudecomposition is not mathematically simple.
ally intriguing to investigate the propagation of beams under- Generally speaking, almost all the approaches presented
going both diffraction and depolarization at the same timejn literature share a common logical path. First, the boundary
since their simultaneous occurrence generates nontrivial pdield is represented as a superposition of an ordinary and
larization patterns and field distribution. extraordinary components; then it is shown that these two
Various approaches dealing with propagation of beams ifields propagate independently because the ordinary and ex-
traordinary plane waves are eigenwaves of the Maxwell
equations; the propagated field is finally obtained as the su-
*Electronic address: ciattoni@fis.uniroma3.it perposition of the propagated ordinary and extraordinary
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components, exploiting the intrinsic linearity of the propaga-ing to be investigated by means of our techniques. For this
tion process. Although this is the most natural way of rea-aim, we employ the perturbation scheme, which is particu-
soning, there are reasons suggesting that a description &frly useful for longitudinal propagation distances of about
propagation of the global optical field would be better inof a few diffraction lengths. Moreover, we employ a suitable
some cases. First of all, such a description would avoid th@umerical algorithm in order to deal with the formal expres-
analytical difficulties associated with the ordinary- Sion of the propagated field.

extraordinary decomposition. Second from an experimental Finally, we experimentally investigate the propagation of
point of view, the Cartesian field components can be directlya astigmatic Gaussian beam in a calcite crystal: the agree-

measured, whereas the ordinary and extraordinary entitieg€nt between theoretical predictions and experimental re-

are not easy to separate. sults is good.

In the present paper, the formalism of RE20] is ex-
ploited to develop an innovative scheme for describing I1l. PROPAGATION EQUATION FOR THE PARAXIAL
paraxial propagation of light along the optical axis of a FIELD
uniaxial crystal, without resorting to the usual ordinary- L id h bsorbi iaxial
extraordinary decomposition of the field. Basically, we de- et us consider a homogeneous nonabsorbing uniaxia
rive two coupled paraxial equations governing the evolutionCryStaI whose dielectric tensor is

of the transverse Cartesian components of the field. Their 2
coupling reflects the simple fact that the polarization state of n, 0 0
the radiation traveling in the crystal generally changes; be- e=| O ni 0], 1)
sides, it is responsible for an energy exchange between the 0 0 n?
e

Cartesian componenfg1].
One of the major virtues of these equations is that they are

much simpler to tackle numerically than the integral expres—w heren, andn, are the ordinary and extraordinary refractive

sions for the ordinary and extraordinary fields. Besides, theilnd'ces.' respgctlvely. Propagatl_on of a paraxial bear_n_along
structure reveals that the field propagating in the crystal cawe optical axis has been |nv_est|gatec_l in RB@, where it is
be thought of as a field propagating in vacuum with the sam@hOWn that the slowly varying amP“tUdéi of the trans-
boundary distribution, affected by an anisotropic perturbaverse part of the field€, =E,e,+Eye,=expkon,2A, (ko
tion. This observation offers a further way of understanding= @/c being the wave number in vaculiis given by A,
the propagation process and a consequent deeper physicaPiotALe, Where
insight; this connection has been already pointed out for the
particular case of cylindrically symmetric fielfi22]. _ 21 aik, ) a— (i2/2kgng)k2

The solution of the new propagation equations can be Ao, ’Z)_f d%k, e e (o,
formally written and manipulated in order to get some inter-

esting general consequences. First, we elucidate rigorously xi k)2/ —kiky A, (k)

and in a simple way, the connection existing between the kf —kyky k)% LARLD

field in the crystal and the corresponding field in the vacuum.

In fact, in the proposed solution, it is possible to keep the -

effect of the anisotropy apart from the isotropic diffractive A (r, ,2)= j d?k, ek e (inoz/2kong)ky

dynamics; thus the field propagating in the crystal naturally

appears as the corresponding one propagating in vacuum 1/ K kK

“dressed” by the effect of the anisotropy. x—( X Xzy) A (k)), (2)
As a straightforward application, we develop two differ- k¥ \keky kg

ent analytical techniques for evaluating the field in the crys-

tal: the first one is a convenient mathematical restatement afre the slowly varying amplitudes of the ordinary and ex-
the above-mentioned connection, and the second one isteaordinary contributions to the field, respectively. Here
perturbation scheme exploiting the paraxiality of the field in=xe, + yéy, k, =k,e,+ kyéy, whereas the vectorial angular

vacuum. spectrumA is the two-dimensional Fourier transform of the

Another general consequence of the scheme comes oyl sverse field at=0,
from the fact that the proposed solution formally links the
field at any transverse plane to the boundary field at the
entrance facet of the crystal. This allows us to explain the Al(k)=
propagation process as a linear system and to give the ex- (2
pression of the paraxial anisotropic propagator.

As a test, we finally investigate the propagation of anEquations(2) and (3) allow us to evaluate the field in the
astigmatic Gaussian beam along the optical axis of a calciterystal when it is known on the plarze=0. In order to get a
crystal. The case does not admit a fully analytical treatmenpicture of propagation not based on the ordinary-
because of the complexity of the involved integrals. On theextraordinary decomposition, we focus our attention on the
other side, the propagation of an astigmatic Gaussian beamhole fieldA, and we start by noting that, from Eq®), it
in vacuum has a closed form expression, so that it is appeais

1 2 —ik, -r
W)Zfd r,e”"™ e (r,,0). 3
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OA, 1 constant as intuitively expected. The major consequences

IE + HVEAL are that the state of polarization of the beam generally
07 changes during propagation and that a power exchange be-
_ A &K o kLrLe—(inoﬂZkoni)kf twgen thg two components.takes pl2&]. From a physical_
2kon, L point of view, such a coupling can be understood by noting

) that the ordinary and extraordinary fields show different dif-
ki kyky X (K 4 fraction behaviors, since the quadratic terkfjsin the expo-
kyKy kf, 1(ky), “) nentials of Eqs(2) are multiplied by different coefficients
andA is proportional to their difference. Therefore, the two
whereV? =g+ a; andA=nj/n;—1 is a parameter associ- fields mutually slide, preventing the polarization statezat
ated with the degree of anisotropy of the medium. However=0 to be reconstructed foz>0, since the ordinary and
it is rather simple to show that extraordinary polarization patterns are generally nontrivial
5 [see Eqgs(2)]. This polarization dynamics can be figured out
- I axy)A as a coupling between the two components, and it is also
L

T'ALE(a)Z(y 3 very intuitive that its strength is proportional to the anisot-

X

5 ropy parameten.
— [ g2k eiki T o (ino2gndid ke kiky _Areader can notice a similarity between Eq)_ and the
L k.k k2 differential equations of Refl16]. In that paper, Trippenbach
Xty y : . .
et al. consider a very general case of propagation of light

XA, (K,), (5) pulses through noninsotropic and dispersive media, but the
comprehension of the evolution of the polarization state is
which, combined with Eq(4), gives not immediate.
LA BN A TA (6)
i =- AL
9z~ 2kong Tt 2kgng Tt lIl. CONSEQUENCES OF THE PROPAGATION

. . . . EQUATION
Equation (6) furnishes an alternative paraxial approach to Q

propagation in uniaxial crystal, which is equivalent to that Although equivalent in describing paraxial propagation,
offered by the explicit expressions of Eq8). In fact, it can  the approaches based on the angular spectrum representation
be shown that the field, ,+ A, . of Egs.(2) is the unique of Egs. (2) and on the propagation equation E@), are
solution of Eq. (6) satisfying the boundary condition somehow complementary. In fact, E48) are physically in-

E, (r.,0). Equation(6) can be seen as the anisotropic coun-tyitive and simple enough to give a sufficient understanding
terpart of the parabolic equation describing paraxial propasf propagation, and of a number of its featuf@s—25.
gation in homogeneous isotropic media, to which it reduceqyeyertheless, performing the integrals is generally a difficult

in the isotropic limit(i.e., n,=ne=n or A=0). task in practical situations, because of the highly oscillatory

The structure of Eq(6) suggests a different way o figure pepavior of the integrands; in this perspective, E). is

light propaggtion through an anisotropic ”.‘ed‘“m- The keymuch more suitable for numerical computations, because of
observation is that the/hole effect of the anisotropy is em-

bedded in the right-hand side of E@), while the left-hand = S'MPle structure. Besides, H) simply yields some gen-

side is identical to that of the paraxial equation for an isotro—eral results concerning propagation, whose deduction from
pic medium of refractive index,. This means that there the angular spectrum approach is lengthy and not physically

must be a way of keeping the isotropic diffraction and the The starting point consists in noting that the formal solu-

anisotropic influence apart. More pictorially, this allows us to.. : . .
view the field propagating in the crystal as a field propagat—tlon of Eq. (6) with the boundary conditiorE, (r,,0) is

ing in the isotropic mediumvarpedby the anisotropy. given by
Splitting Eg. (6) into its two Cartesian components, we
get

enlightening.

A (r,,2)= e(izA/szno)%e(iz/zkono)vf E,(r,,0), ®)
A PA,
2kong Xay’

n2 ox?  gy?

2
A, 1 (no PP A

1 +
dz  2kgh,

as it can be straightforwardly verified; here the exponentials
, are defined by the usual power-series definition of a function
iﬁ—Ay+ 1 [ ng @ __ A I*Ay @) of operatoffi.e., expQ)==7_,0"n!]. Note that the opera-
9z 2Kon, Y 2Ken, dxdy tors V2 andT commute(i.e., V2T=TV?) so that they can
be treated as numbers in formal manipulations. Equation
We observe that the equations governing the evolution of thég) is an elegant way of expressing the field inside the crys-
Cartesian component&, and A, are coupledas a conse- tal, the price of this compactness is the formality of handling
guence of the anisotropyA playing the role of acoupling  functions of operators.

2 2.2
x> ngay
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A. Connection between the field in the crystal and in vacuum  the the ordinary and extraordinary fields, respectively: they
One of the most intriguing point suggested by the pro-2'€ both _generated by the field , enlightening their com-

posed approach is that the paraxial field propagating in th0n origin.

crystal is closely related to the corresponding one propagat- Equation(1l) is also suitable for a perturbation scheme to

ing in vacuum. As noticed in the preceding section, anisotevaluate the field at some distances from the piar6. By

ropy can be viewed as a perturbation to isotropic diffractionusing the power-series definition of the exponential, from Eq.

and their effects can be separately taken into account, béll), we have

cause of the linearity of the propagation process. In order to

convert this observation into a mathematical expression, we

introduce the field izA .2 1/ izA n-1
, Al 2)=|1+ 5 T3 n—.(2k - Vi)
AS_O)(“_,Z):e(iZ/zko)ViEL(rl,o), (9) ollo n=11Th 0''o
z
which coincides withE, (r, ,0) on the plang=0 and satis- xA(LO)( r, ,—), (14)
fies the parabolic equation Mo
AP 1 L
| + 5 VIAT=0. (10 where use has been made of the relatidh=T(V?)" 2,
0z 2k0 1

derived in part A of the Appendix. The series in the right-
A© describes the paraxial field propagating in vacuum withhand side of this equation is highly oscillating for large
the same boundary distribution 8f, . Equation(8) can be this is not a serious shortcoming as actual crystals are gen-
rewritten as erally not very long. Besides, there are two physical reasons
to employ Eq.(14): first, the majority of the crystals is
. - z N z slightly anisotropic 6, andn, are very closgso thatA is

AL(ry 'Z):e(IZA/ZKO%)TA(LO)( r n_o) ED(Z)A(LO)( r n_o) aIv?/ayg smaller ?har(:olas an exampk}e/, for the calcite it is
(12) A=0.24). In second place, the fiekio) is slowly varying as
, , , _ a paraxial field, that is to say(V?)""*AO(r, ,2)|
W(ho|)ch estapllshes _the des_lred co_nnecnon betwaenand <|(Vi)nA(¢0)(M ,2)|. This allows us to truncate the series up
AT Equatlon(ll).ls very interesting from bgth a CONCeP- 4 the first order, that is,
tual and an analytical point of view. In fact, it allows us to
figure the field in the crystal as thmare field propagating in
vacuumdressedoy the action of the anisotropic operalf)r izA . izA z
Moreover Eq(11) shows that it is possible to take the effect A.(r,,2)=|1+ 5 —T| 1+ Vf) A(lo)(h,—)-

. . . : oNo 4kon, Ng
of the anisotropy into account after the simpler associated (15)
isotropic problem has been solved.

By exploiting the properties of the operatfirwe give a

less formal aspect to Eq11); in fact, the effect of the op- |n order to obtain the longitudinal distance$or which this
eratorD can be worked out, givingsee part A of the Appen- relation holds, it is sufficient to assure that the neglected

dix) second-order term is much smaller than the first-order one.
, , Since it isV2 A~ Kk2f2A?) | wheref = \/w is the degree of
AL(r) 2)= dy Ty . (r i) paraxially ofA(?) (w measuring the waist of the beam and
LA - 3§y o2 | n, the vacuum wavelengthit is simple to show that Eq15) is

valid for z<zy=6n,/(kof2A) which, for paraxial beams is
8>2< 05 NoZ generally comparable with the size of actual crystals. The
JIE | = (12)
1 1 I

+

52 2 2 proposed perturbation scheme is very handy, because all the
oy e required contributions can be obtained from the vacuum field
where the field Al® by means of spatial differentiations only.
1 2.1 ’ O)/ 1
Fi(r,,2)= > driInjr, —r|AT(r,2) (13 B. Anisotropic propagators

Another remarkable property of EB) is that it embodies
has been introduced. Equati¢t?) represents an alternative a direct relation between the boundary figld(r, ,0) and the
advantageous way for evaluating the field inside an anisopropagated oneéA, (r, ,z). Such a way of understanding
tropic medium: if the vacuum field!®) is known, the diffi-  propagation is very common in optics, as the propagation
culty of determining the field in the crystal is reduced to theprocess can be viewed as a linear system and the output field
evaluation of the field=, in Eq. (13), sinceA, descends is obtained by convolving the input one with a propagator. In
from it by means of simple spatial differentiations. Note thatorder to obtain the propagator for an anisotropic medium, let
the two contributions in the right-hand side of EG2) are  us rewrite Eq(8) as
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. A . 2
AL(r,,2)= f o2r{[ellzZona T2 VL g(r —r )] G(r,—r})= f IHL i - - Gzongié L
. (2m?2" k2
XE, (r1,0
1(rL.0) K —kxky)
X 2
sf d?r | G(r, —r])E,(r],0), (16) —kky K
. . . d?k, 2 1
where the convolution property of the Dirac delta function + f — L @ik (rp =) = (ingzi2kong oK — —
8(r, —r|) has been exploited. This equation shows that the (2m)? kT
anisotropic exponential operator in E®) is an integral op- 2 kK
erator whose kerneG(r, —r|) is the desired anisotropic | X x y)
propagator. Inserting the well-known integral representation kyky k§

of the Dirac delta function into the definition @&(r, —r}) B , ,
and exploiting Eq.(A3) of part A of the Appendix, we =Go(r; —r1)+Ge(r, —r}), (18
straightforwardly obtain

where each operator has been replaced with the correspond-
ing eigenvalue. Equatiolil8) reveals that the anisotropic
propagator is the sum of an ordinary and an extraordinary
+ Felino?Zon) Vi jgik. (r=r]) (17)  contribution, G, and Ge, respectively, restating the well-
known physical fact that these two field independently
Note that the plane waves exdp(-r,) are eigenfunctions of propagate[see Egs(2)]. The integrals in Eq(18) can be
both T andV?, so that Eq(17) can be rewritten as analytically performedsee part B of the Appendixyielding

G(r,—r!)= _-f-)e(iz/zkono)vf

Koo 1— e—(k0n0/2iz)R2

e (kong/2iZ)R? _

Go(R) = kOnOe (kony/2iz)R? 10 _
0 41riz 27R2

41iz 0 1

R2\ 2XY  —X2+Y2

1 (XZ—YZ 2XY

2 2 _ a—(kon2/2in,z)R? 2_\2
e( ) &e*(koné/Zinoz)Rz 10 + kqne e*(kghi/Zinoz)Rz_l e 0Ne/iNoZ i X Y 2XY ,
4mingz 0 1/ |4mingz > R2 Rzl axy  —x2iy?
(19
|
where we seR=Xe+ Yéyzri—ri, for the sake of sim- EL(rl,0)=Eoe‘(xz/zsi)‘(yz/zsi)éx, 21)

plicity. Note that the description of propagation in uniaxial
media by means of propagators has been investigated in Ref.
[3], where integral expressions for the exact propagators ari@at is to say an ast|gmat|c Gaussian beam characterized by
given. It is remarkable that, within the paraxial approxima-two variancess; ands , @ unique waist plane, and a linear
tion, the propagators are expressed in a closed form. polarization along the< axis. In this case, Eq2) does not
Both the propagator§, andG, are the sum of an isotro- Yyield a closed-form expression; besides, the angular spec-
pic Fresnel-like term and an anisotropic one. Note that in thérum approach does not even suit for numerical analysis
isotropic limit n,=n,=n the anisotropic terms compensate since the involved integrals contain highly oscillating func-
each other, giving tions. To predict the propagated field, we resort to both the
numerical evaluation of Eq8) and the perturbation scheme
Ko [i.e., Eq.(15)], as the corresponding expression for the field
G(R)= GO(R)+GE(R)_ z° (konIZIZ)R (20 propag?’;\ting in vacuum is kr?own. I

which, as expected, coincides with the well-known Fresnel
propagator for an homogeneous and isotropic medium of re- A. Numerical evaluation

fractive indexn [26]. In order to numerically compute E@8), we express the

field A, (r, ,z) as a finite two-dimensional Fourier series
IV. THE ASTIGMATIC GAUSSIAN BEAM

N N
Let us consider the propagation of a paraxial beam whose A (1, 2)= > 3 A (z)gl@L)(nxEmy) (99
boundary distribution is given by =N m=—
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wherelL is the size of the squared domain where the field is 50
evaluated. Substituting E@22) into Eq. (8) and exploiting

Eq. (A3) of part A of the Appendix, we obtain the Fourier

coefficients 25

1 2

n2+m?

m

A (z)=

-nm =
E
2 0

nz) g

92024 2 2
% @~ li2m?(n?+m?)z/kgn,l ]Ain’m)(O)

—nm

1 2

n2+m?

n

nm)
nm n?

'Ei%o -25 0 25 50

x g li2mno(n?+mAZoneL A (M) ) - (23) X (um)

) ) i ) FIG. 1. Level plot for the normalized modulyE,|/|E,| of the
where, in the intermediate step, we have substituted eaclyjigmatic Gaussian beam with=15 xm s,=6 um at z=0

operator with the appropriate eigenvalue. The vector coeffiy|gne.
cientsA{™™(0) are given by the Fourier formula
influence ofA, on A, increases so that the shapeAyf ac-
quires a more structured profile, as evident from péat3
1 (L2 L2 ) .
Ain!m)(o): _f dX dy EJ_(X’ylo)e_|(277/L)(nX+mY) and (3.3) Of F|g 2
L2) -1z J-1r2

B. Perturbation scheme
2ms,syEy

L2

A(LO)(rJ_ 12):E0 2
0Sx

e*(Z’T/LZ)(”Zsf*mzsi)éx, (24) The perturbation scheme of Sec. Ill A can be efficiently
employed in the present case, since the corresponding
vacuum-propagating fielA(f) has a closed-form expression

where Eq.(21) has been taken into account and the integrai2],
tion domain has been replaced with the whelg plane. In ] ) _1
fact, L is chosen so that the field is neglected on the bound- 1z 1z

; ; ; : 1+ —|| 1+ —
ary of the integration domain for every valueodfThe choice k kosz) l
of N is more critical, since we have to guarantee that all the Y
non-negligible plane waves be taken into account and, X2
roughly speaking, this can be accomplished by choosing Xexpl ——— v
>L/(27T\/sx2+sy2). Equationg24), (23), and(22) allow us to 253( 1+ i)
numerically evaluate the field. KoS2

We consider an astigmatic Gaussian beam with 5

=0.514um, s,=15 um, ands,=6 um, propagating in a _ y 3, (25
calcite crystal fi,=1.658 andh,=1.486). For each longitu- '
dinal propagation distance we choose different. and N 255
parameters, so that only the effective region, where the field
is not vanishing, is considered. In Fig. 1, we report the leve
plot of |E,|/|E,| at the boundary plane=0 and in Fig. 2 the

0Sx

iz
1+ —
KoSy

|By inserting Eq.(25) into Eq. (15), we get the approximate
level plots of |E,J/|Eo| and |E,|/|E,| at z=2000um, 2 expression for the field inside the crystal, which is valid for
X 0 y 0 - ’

=8000um, andz=20000um. The most important effect Z<ZM:_3n°(S§+S§)./(27.T7\.A)' In the case ex_amiped in the

of the anisotropy is the growth of the component of the Préceding subsection it isy=2000xm and in Fig. 3 we
optical field, as a direct consequence of the coupling betweeffPOrt the level plots of|E,|/|Eq| and |E,|/|E,| at z

Ay andA, . The four lobes in the profile ¢f\,| can be easily =1000um and z=2000um. We computed the mean-
understood by an inspection of Eqg). In fact, for short ~Sduare error between the ap_prommated solution and that ob-
propagation distances, the field is essentially polarized alonffin€d in the preceding section; far-1000.m the errors
thex direction, so that, we can drop the right-hand side of thd® Ax a@nd Ay components are 0.05% and 2.8%, respec-
first of Egs.(7) and neglect the terms containidgA, and tively. For z=2000um the errors are 0.24% and 9.4%
af,Ay in the second one. As a consequence, the influence (gf:ompare Figs. @1,b) and Figs. %a2,b3].

A, on A, is negligible wherea#\, behaves like a pump for
Ay by means of the term containinﬁyAx; this contribution
explains the four symmetric lobes in the plot|&f|, since We sketch in Fig. 4 the laboratory setup: the so8cean
A, is bell shaped. As the propagation distance increases, tl@gon-krypton laser tuned for the=0.514 um line and the

C. Experiment
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60 @n
30
N
>
-30
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X (um)
(a2) (b2)
160 160 . .
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-160 0 160 -160 0 160
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160
160
g 0 £
S 3o
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FIG. 2. Level and density plots of the normalized modlj|/|E,| (al) (a2 (a3 and|E,|/|E,| (b1) (b2) (b3), obtained by the numerical
evaluation, of the astigmatic Gaussian bean=(0.514um, s,=15um, ands,=6 um) at the planesz=2000um (al) (bl), z
=8000um (a2 (b2), z=20000um (ad (b3) inside a calcite crystal.

fundamental mode; the output laser beam has a spot sizwder to produce an astigmatic Gaussian beam, we focus the
wo=1 mm, a divergenc@=1 mrad, and is linearly polar- laser beam by means of the two cylindrical lensgsndL,

ized. The beam is focused on the entrance facet of a calcitef different focal lengths ;=20 cm andf,=8 cm, respec-
crystal with refractive indicesa,=1.658 andh,=1.486, cut tively), positioned in order to compound an elliptical waist
as a rectangular parallelepiped of sizexll®x 20 mm; the  on the common focus plane. In this way, the resulting ellipse
propagation direction of the laser beam coincides with théhas a ratio 0.4 between the axes and the polarization direc-
optical axis, i.e., the longest dimension of the crystal. Intion is along the major axisx(axis). This focus plane is then
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FIG. 3. Level plots of the normalized modyk,|/|E,| (al) (@2 and|E,|/|Eq| (b1) (b2), obtained by the perturbation scheme, of the
astigmatic Gaussian bearn £0.514 um, s,=15 um, ands,=6 um) at the planeg=1000um (al) (bl1), z=2000um (a2 (b2) inside
a calcite crystal.

imaged by the len& 5 on the input facgt of the_cryst_al; the x 4.4 mm, 576 768 pixe) of a Sony TV camera; the cam-
lensL; and the crystal can be longitudinally shifted in order era is connected to a PC to record, process, and display the
to obtain an input ellipse of variable dimensions. The crystaimages. The rotatable polarizerallows us to measure the

length is D=20 mm, and we detect the field only at the jntensity distributions solely due to theor y components of
output facet. Since we are interested in the detection of thgye electric field.

field for various propagation distances, we vary the trans-
verse dimensions of the input waist to vazryln fact, from
Egs.(2) and Eq.(3), it is easily seen that, i, (r, ,z) cor-

Figure 5 shows the experimental intensity distributions of
the two Cartesian components of the optical field, zat
=8000 um andz=20000xm, respectively; for both cases,

responds 0 the boundary distributioB, (r,,0), then  yhe theoretical predictions and the experimental results show
A, (ar, ,a“z) corresponds td, (ar, ,0); therefore choos- 5 very good agreemefisee Fig. 2

ing «= \/D/z allows us to detect on the output facet the same
field that would be detected at distanzevith the original
dimensions.

The lensL, forms a magnified image of either the en- We have introduced an equation describing paraxial
trance facet or, by a distance regulation, the exit facet of th@ropagation along the optical axis of an uniaxial medium.
crystal on the charge-coupled device detector (3.3rhe mostimportant feature of the proposed approach is that

it is not based on the standard ordinary-extraordinary decom-

V. CONCLUSION

Li L Ls P L, position, so that it allows us to investigate some general
S RYSTAL ~———\ properties of the propagation which are somehow hidden in
Q """ %O} """ @‘. """ O} """"""""""" ': the standard angular spectrum approach. The structure of the
D

propagation equation is simple enough to permit us to de-
duce its formal solution, relating the propagating field to its
FIG. 4. Experimental setup. boundary distribution at=0. The main consequence is that
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FIG. 5. Experimental intensity distribution d&, (al) (a2 and E, (b1) (b2), of the astigmatic Gaussian bean=0.514 um, s,
=15 um, ands,=6 um) at the planeg=8000 um (al) (b1), z=20000um (a2 (b2) inside a calcite crystal.

we can establish a close connection between the field in the . . A 1/ izA \n.
crystal and the corresponding one propagating in vacuum D(z)=eli7/Zono)T=1 4 D' _'(Zk ) . (A1)
with the same boundary distribution, allowing us to identify =1n oMo

the effect of the anisotropy as a perturbation to free propa-

gation. From this conceptual connection, we also derive two R

analytical techniques for evaluating the field. The first one iSBecause of the structure of the operatoit is easy to work
embodied in a relatiofEq. (12)] analytically relating the out T", that is,

propagating field to that in vacuum, whereas the second one
consists in a perturbation scheme which exploits the intrinsic
paraxiality of the beam in vacuum. Besides, from the formal _ dy
solution, we are also able to deduce the expression for theT”={( )(ax dy)
anisotropic propagator. We have chosen the case of the as- Iy
tigmatic Gaussian beam to test some of the results of the

proposed approach; then we have implemented a numerical

algorithm to eyaluate the field from the fqrmal EXPreSSION.y 4iid for n=1. This relation allows us to rewrite EGAL),
These predictions have been compared with the appromma\teTter some operatorial manioulation. as

expression furnished by the perturbation scheme and with P P '
experimental results. In all cases the agreement is good.

n

dy A
=(§y)wf)“<ax ) =TV,
(A2)

~ ~ ~ . 2
APPENDIX D(2)=(V2) (VI -T)+Telz/ZM)Vi] (A3
A. Derivation of Eq. (12)

In order to obtain from Eq(11) a less formal expression, Inserting this expression for the dressing oper&i(z) into
let us consider the operatbrand its powers series definition Eq. (11), we obtain the relation
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2 2
_o2v—1] (u2 R\ A(0) z 2 [y Ty (0) z
Ap(ry 12)_(VJ_) (VL_T)AL ry ’n_ VJ_AL(U Z)= _32 0.,2 AL e ’I’]_
) Xy " )
92 92
~ n,z X Xy N,z
+7.A0 r, ,—% l (Ad) +(072 2 A0 5] (#e)
e Xy y e

where we have exploited the propagation property of the

vacuum field, , . . . .
which are two two-dimensional Poisson equations#pand

e(iZZIZkO)ViA(LO)(rL,Zl):A(LO)(rL,Zl_}_Zz)_ (A5) Ay, since the right-hand side is supposed to be known.
Therefore, assuming that the fiedd vanishes at infinity on
Applying the operatoivf to both members in EA4), we  the transverse plane, EqA6) can be straightforwardly

obtain solved, yielding
|
’ 2 12 2
1 L?yz _ax/y/ Z (?x ﬁ I’]OZ
A (r, 7)== sz In[r, —r’ O — |+ A(O) =1l (A7)
2= o7 -l A of \ Ay & ) n2

Splitting this equation into the sum of two integrals, thenwhereJ,(&) is the Bessel function of the first kind and order
integrating by parts twice with respect to bothandy’ and  n. Inserting Eq.(A10) into Eq. (A9), the integrals orv be-
exploiting the symmetry properties of —r ||, we obtain come trivial, thus getting

Eq. (12.

1

0 1/4

CoS2p sin2¢
sin2¢ —Cco0sZp

B. Evaluation of the ordinary and extraordinary propagators Go(R)= ( ) j dkke (1Z/2ono)k? g o(kR)

Let us introduce polar coordinates, both f&=Xe,
+Yéy=rL—ri and fork, ,

X=Rcosp, k,=kcosé,

= [ dkke (#2Honak (kR) (A11)
Y=Rsing, ky=ksing, (A8) 47 ), 2 :
which allow us to rewrite the ordinary propagator of Etg) _
as The integrals ork can be analytically evaluatg@7], so that
we have
Gy(R)= 1 fwdkke‘(‘Z’ZKO“o)kzjzwd peikR cos(0—¢)
2
(2m)=Jo 0 G (R)= —=-2 Koo o (kono/2i2)R? 10 Koo 070~ (kgng/2i2)R?
. . ° 4iz 0 1) |4miz
Sirf 6 —cosfsing
. (A9) 2 :
—cosésing cos 6 1— e~ (kong/22)R l(cosZzp sin 2¢ )
- || . (A12)
The integral oné can be evaluated by means of the well- 2mR? sin2¢ —cos2p
known Anger-Jacobi relation
+oo Expressing the trigonometric functions by meanXaind
kR cos(0—¢) — 2 i"J (kR)ein(=¢) (A10) Y we obtain the ordinary propagator of Ed.9). An analo-
e " ' gous calculation yields the extraordinary propagator.

[1] M. Born and E. Wolf,Principles of Optics(Pergamon Press, [3] H. Chen, Theory of Electromagnetic Waved#lcGraw-Hill,

Oxford, 1999. New York, 1983.
[2] A. Yariv and P. Yeh,Optical Waves in CrystaléWiley, New [4] T. Sonoda and S. Kozaki, Electron. Commun. Jpg8, 95
York, 1984. (1989.

036614-10



PARAXIAL PROPAGATION ALONG THE OPTICAL AXIS . .. PHYSICAL REVIEW E 66, 036614 (2002

[5] D. Jiang and J. Stamnes, Opt. Comm&3 55 (1999. [17] Y. Band and M. Trippenbach, Phys. Rev. L&, 1457(1996.
[6] D. Jiang and J. Stamnes, Opt. Commii4, 321 (2000. [18] C. Radzewicz, J. Krasinski, M. la Grone, M. Trippenbach, and
[7] J. Stamnes and V. Dhayalan, J. Opt. Soc. Am1&\ 1662 Y. Band, J. Opt. Soc. Am. B4, 420(1997.
(2001. [19] M. Trippenbach, T. Scott, and Y. Band, Opt. Le¥2, 579
[8] C.L. Xu, W.P. Huang, J. Chrostowski, and S.K. Chaudhuri, J. (1997.
Lightwave Technol12, 1926(1994). [20] A. Ciattoni, B. Crosignani, and P. Di Porto, J. Opt. Soc. Am. A

[9] J.F. Mosino, O.B. Garcia, A. Starodumov, L.A. Diaz-Torres, 18, 1656(2009).
M.A. Meneses-Nava, and J.T. Vega-Duran, Opt. Commun/[21] A. Ciattoni, G. Cincotti, C. Palma, and H. Weber, J. Opt. Soc.

173 57 (2000. Am. A 19, 1894(2002.

[10] R. Martinez-Herrero, J.M. Movilla, and P.M. Mejias, J. Opt. [22] G. Cincotti, A. Ciattoni, and C. Palma, J. Opt. Soc. Am19,
Soc. Am. A18, 2009(2001). 1680(2002.

[11] U. Hempelmann, H. Herrmann, G. Mrozynski, V. Reimann, [23] A. Ciattoni, G. Cincotti, and C. Palma, Opt. Commu®5, 55
and W. Sohler, J. Light Technal3, 1750(1995. (2002).

[12] R. Wolfe, R. A. Lieberman, V. J. Fratello, R. E. Scotti, and N. [24] A. Ciattoni, G. Cincotti, and C. Palma, J. Opt. Soc. Am19
Kopylov, Appl. Phys. Lett56, 426 (1990. 792 (2002.

[13] O. Zhuromoskyy, M. Lohmeyer, N. Bahlmann, H. Dotsch, P.[25] G. Cincotti, A. Ciattoni, and C. Palma, IEEE J. Quantum Elec-
Hertel, and A. Popkov, J. Light Techndl7, 1200(1999. tron. 12, 1517(2007).

[14] J. Stamnes and G.C. Sherman, J. Opt. Soc. A&6). 780 [26] J. Goodman,Introduction to Fourier Optics(University of
(1976. California Press, Berkeley, 1956

[15] J.A. Fleck and M. Feit, J. Opt. Soc. A3, 920(1983. [27] A. Prudnikov, Y. Brychkov, and O. Marichentegrals and

[16] M. Trippenbach and Y. Band, J. Opt. Soc. Am.18, 1403 Series(Gordon and Breach Science Publishers, Amsterdam,
(1996. 1986.

036614-11



