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Paraxial propagation along the optical axis of a uniaxial medium
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An approach for describing paraxial propagation of light along the optical axis of a uniaxial medium is
introduced. Contrary to previous theoretical schemes, our approach directly deals with the propagation of the
whole optical field without resorting to the standard decomposition into ordinary and extraordinary parts, thus
avoiding some related mathematical difficulties. A paraxial equation governing the field propagation has been
derived, and its formal solution has been deduced. The structure of this solution allows us to think of the
optical field in the crystal as the corresponding one propagating in vacuum ‘‘dressed’’ by the effect of anisot-
ropy. This relationship is used to derive two analytical techniques for evaluating the propagated field. Starting
from the formal solution, the closed-form expression of the anisotropic propagator is also derived. The pro-
posed approach is used to predict the evolution of an astigmatic Gaussian beam through a calcite crystal, which
has been also experimentally investigated. The agreement between theory and experiment is good.
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I. INTRODUCTION

Optical propagation inside anisotropic media is a sub
still receiving a good deal of attention, mainly because of
intrinsic vectorial features@1–3#. Among the classical topics
the transmission and reflection of light at the interface
tween an isotropic and an anisotropic medium@4–7# and the
propagation through birefringent optical fibers@8# have been
largely investigated during past decades. The most intrigu
influence a crystal exhibits on light propagation consists
inducing a change in the polarization state of the incom
radiation @9,10#. In fact, the vast majority of devices base
on anisotropic materials is devoted to produce light with
desired polarization state@11–13#. Light propagation through
these devices is usually described by means of theore
approaches representing the light as a plane wave, so tha
whole realm of diffractive phenomena is generally neglect
This description is accurate enough whenever the beam w
is much greater than the wavelength, but this condition is
always fulfilled in actual experiments, where the beams
often micronsized or smaller. This justifies the demand o
paraxial theory of propagation, dealing with optical bea
and not with plane waves only. Besides, it is also concep
ally intriguing to investigate the propagation of beams und
going both diffraction and depolarization at the same tim
since their simultaneous occurrence generates nontrivial
larization patterns and field distribution.

Various approaches dealing with propagation of beam
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uniaxially anisotropic media have been proposed. For
stance, Stamneset al. @14# employ of a plane-wave angula
spectrum representation in order to predict the field radia
by a finite source inside an unbounded uniaxial crystal, un
very general conditions~nonmonochromatic fields, dispe
sive materials and arbitrary propagation direction!. The only
shortcoming of this approach resides in the inherent ma
ematical complexity. Flecket al. @15# give approximate
paraxial equations for both the ordinary and the extrao
nary components of the field, even though the boundary fi
decomposition into ordinary and extraordinary compone
is not immediate. Trippenbachet al. @16–19# consider the
propagation of light pulses in nonisotropic and dispers
media, deriving the equation for the slowly varying envelo
of the electric field. Recently, a different theoretical sche
has been proposed@20#, where the exact plane-wave angul
spectrum representation has been approximated within
paraxial constraint, obtaining the paraxial expressions for
ordinary and extraordinary components of a field propag
ing along the optical axis. In that approach the authors a
describe the way to extract the ordinary and the extrao
nary parts from the boundary field, but, unfortunately, th
decomposition is not mathematically simple.

Generally speaking, almost all the approaches prese
in literature share a common logical path. First, the bound
field is represented as a superposition of an ordinary
extraordinary components; then it is shown that these
fields propagate independently because the ordinary and
traordinary plane waves are eigenwaves of the Maxw
equations; the propagated field is finally obtained as the
perposition of the propagated ordinary and extraordin
©2002 The American Physical Society14-1
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components, exploiting the intrinsic linearity of the propag
tion process. Although this is the most natural way of re
soning, there are reasons suggesting that a descriptio
propagation of the global optical field would be better
some cases. First of all, such a description would avoid
analytical difficulties associated with the ordinar
extraordinary decomposition. Second from an experime
point of view, the Cartesian field components can be dire
measured, whereas the ordinary and extraordinary ent
are not easy to separate.

In the present paper, the formalism of Ref.@20# is ex-
ploited to develop an innovative scheme for describ
paraxial propagation of light along the optical axis of
uniaxial crystal, without resorting to the usual ordinar
extraordinary decomposition of the field. Basically, we d
rive two coupled paraxial equations governing the evolut
of the transverse Cartesian components of the field. T
coupling reflects the simple fact that the polarization state
the radiation traveling in the crystal generally changes;
sides, it is responsible for an energy exchange between
Cartesian components@21#.

One of the major virtues of these equations is that they
much simpler to tackle numerically than the integral expr
sions for the ordinary and extraordinary fields. Besides, th
structure reveals that the field propagating in the crystal
be thought of as a field propagating in vacuum with the sa
boundary distribution, affected by an anisotropic pertur
tion. This observation offers a further way of understand
the propagation process and a consequent deeper phy
insight; this connection has been already pointed out for
particular case of cylindrically symmetric fields@22#.

The solution of the new propagation equations can
formally written and manipulated in order to get some int
esting general consequences. First, we elucidate rigoro
and in a simple way, the connection existing between
field in the crystal and the corresponding field in the vacuu
In fact, in the proposed solution, it is possible to keep
effect of the anisotropy apart from the isotropic diffracti
dynamics; thus the field propagating in the crystal natura
appears as the corresponding one propagating in vac
‘‘dressed’’ by the effect of the anisotropy.

As a straightforward application, we develop two diffe
ent analytical techniques for evaluating the field in the cr
tal: the first one is a convenient mathematical restatemen
the above-mentioned connection, and the second one
perturbation scheme exploiting the paraxiality of the field
vacuum.

Another general consequence of the scheme comes
from the fact that the proposed solution formally links t
field at any transverse plane to the boundary field at
entrance facet of the crystal. This allows us to explain
propagation process as a linear system and to give the
pression of the paraxial anisotropic propagator.

As a test, we finally investigate the propagation of
astigmatic Gaussian beam along the optical axis of a ca
crystal. The case does not admit a fully analytical treatm
because of the complexity of the involved integrals. On
other side, the propagation of an astigmatic Gaussian b
in vacuum has a closed form expression, so that it is app
03661
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ing to be investigated by means of our techniques. For
aim, we employ the perturbation scheme, which is parti
larly useful for longitudinal propagation distances of abo
of a few diffraction lengths. Moreover, we employ a suitab
numerical algorithm in order to deal with the formal expre
sion of the propagated field.

Finally, we experimentally investigate the propagation
an astigmatic Gaussian beam in a calcite crystal: the ag
ment between theoretical predictions and experimental
sults is good.

II. PROPAGATION EQUATION FOR THE PARAXIAL
FIELD

Let us consider a homogeneous nonabsorbing unia
crystal whose dielectric tensor is

e5S no
2 0 0

0 no
2 0

0 0 ne
2
D , ~1!

whereno andne are the ordinary and extraordinary refractiv
indices, respectively. Propagation of a paraxial beam al
the optical axis has been investigated in Ref.@20#, where it is
shown that the slowly varying amplitudeA' of the trans-
verse part of the fieldE'5Exêx1Eyêy5exp(ik0noz)A' (k0
5v/c being the wave number in vacuum! is given byA'

5A'o1A'e , where

A'o~r' ,z!5E d2k'eik'•r'e2( iz/2k0no)k'
2

3
1

k'
2 S ky

2 2kxky

2kxky kx
2 D Ã'~k'!,

A'e~r' ,z!5E d2k'eik'•r'e2( inoz/2k0ne
2)k'

2

3
1

k'
2 S kx

2 kxky

kxky ky
2 D Ã'~k'!, ~2!

are the slowly varying amplitudes of the ordinary and e
traordinary contributions to the field, respectively. Herer'

5xêx1yêy , k'5kxêx1kyêy , whereas the vectorial angula
spectrumÃ is the two-dimensional Fourier transform of th
transverse field atz50,

Ã'~k'!5
1

~2p!2E d2r'e2 ik'•r'E'~r',0!. ~3!

Equations~2! and ~3! allow us to evaluate the field in th
crystal when it is known on the planez50. In order to get a
picture of propagation not based on the ordina
extraordinary decomposition, we focus our attention on
whole fieldA' and we start by noting that, from Eqs.~2!, it
is
4-2
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i
]A'

]z
1

1

2k0no
¹'

2 A'

5
D

2k0no
E d2k'eik'•r'e2( inoz/2k0ne

2)k'
2

3S kx
2 kxky

kxky ky
2 D Ã'~k'!, ~4!

where¹'
2 5]x

21]y
2 andD5no

2/ne
221 is a parameter assoc

ated with the degree of anisotropy of the medium. Howev
it is rather simple to show that

T̂•A'[S ]x
2 ]xy

2

]xy
2 ]y

2 D A'

52E d2k'eik'•r'e2( inoz/2k0ne
2)k'

2 S kx
2 kxky

kxky ky
2 D

3Ã'~k'!, ~5!

which, combined with Eq.~4!, gives

i
]A'

]z
1

1

2k0no
¹'

2 A'52
D

2k0no
T̂•A' . ~6!

Equation ~6! furnishes an alternative paraxial approach
propagation in uniaxial crystal, which is equivalent to th
offered by the explicit expressions of Eqs.~2!. In fact, it can
be shown that the fieldA'o1A'e of Eqs. ~2! is the unique
solution of Eq. ~6! satisfying the boundary conditio
E'(r',0). Equation~6! can be seen as the anisotropic cou
terpart of the parabolic equation describing paraxial pro
gation in homogeneous isotropic media, to which it redu
in the isotropic limit~i.e., no5ne5n or D50).

The structure of Eq.~6! suggests a different way to figur
light propagation through an anisotropic medium. The k
observation is that thewholeeffect of the anisotropy is em
bedded in the right-hand side of Eq.~6!, while the left-hand
side is identical to that of the paraxial equation for an isot
pic medium of refractive indexno . This means that there
must be a way of keeping the isotropic diffraction and t
anisotropic influence apart. More pictorially, this allows us
view the field propagating in the crystal as a field propag
ing in the isotropic mediumwarpedby the anisotropy.

Splitting Eq. ~6! into its two Cartesian components, w
get

i
]Ax

]z
1

1

2k0no
S no

2

ne
2

]2

]x2
1

]2

]y2D Ax52
D

2k0no

]2Ay

]x]y
,

i
]Ay

]z
1

1

2k0no
S ]2

]x2
1

no
2

ne
2

]2

]y2D Ay52
D

2k0no

]2Ax

]x]y
. ~7!

We observe that the equations governing the evolution of
Cartesian componentsAx and Ay are coupledas a conse-
quence of the anisotropy,D playing the role of acoupling
03661
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constant, as intuitively expected. The major consequenc
are that the state of polarization of the beam gener
changes during propagation and that a power exchange
tween the two components takes place@21#. From a physical
point of view, such a coupling can be understood by not
that the ordinary and extraordinary fields show different d
fraction behaviors, since the quadratic termsk'

2 in the expo-
nentials of Eqs.~2! are multiplied by different coefficients
andD is proportional to their difference. Therefore, the tw
fields mutually slide, preventing the polarization state az
50 to be reconstructed forz.0, since the ordinary and
extraordinary polarization patterns are generally nontriv
@see Eqs.~2!#. This polarization dynamics can be figured o
as a coupling between the two components, and it is a
very intuitive that its strength is proportional to the aniso
ropy parameterD.

A reader can notice a similarity between Eq.~7! and the
differential equations of Ref.@16#. In that paper, Trippenbach
et al. consider a very general case of propagation of lig
pulses through noninsotropic and dispersive media, but
comprehension of the evolution of the polarization state
not immediate.

III. CONSEQUENCES OF THE PROPAGATION
EQUATION

Although equivalent in describing paraxial propagatio
the approaches based on the angular spectrum represen
of Eqs. ~2! and on the propagation equation Eq.~6!, are
somehow complementary. In fact, Eqs.~2! are physically in-
tuitive and simple enough to give a sufficient understand
of propagation, and of a number of its features@23–25#.
Nevertheless, performing the integrals is generally a diffic
task in practical situations, because of the highly oscillat
behavior of the integrands; in this perspective, Eq.~6! is
much more suitable for numerical computations, becaus
its simple structure. Besides, Eq.~6! simply yields some gen-
eral results concerning propagation, whose deduction fr
the angular spectrum approach is lengthy and not physic
enlightening.

The starting point consists in noting that the formal so
tion of Eq. ~6! with the boundary conditionE'(r',0) is
given by

A'~r' ,z!5e( izD/2k0no)T̂e( iz/2k0no)¹'
2
E'~r',0!, ~8!

as it can be straightforwardly verified; here the exponent
are defined by the usual power-series definition of a funct
of operator@i.e., exp(Ô)5(n50

` Ôn/n!]. Note that the opera-

tors ¹'
2 and T̂ commute~i.e., ¹'

2 T̂5T̂¹'
2 ) so that they can

be treated asc numbers in formal manipulations. Equatio
~8! is an elegant way of expressing the field inside the cr
tal, the price of this compactness is the formality of handli
functions of operators.
4-3
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A. Connection between the field in the crystal and in vacuum

One of the most intriguing point suggested by the p
posed approach is that the paraxial field propagating in
crystal is closely related to the corresponding one propa
ing in vacuum. As noticed in the preceding section, anis
ropy can be viewed as a perturbation to isotropic diffract
and their effects can be separately taken into account,
cause of the linearity of the propagation process. In orde
convert this observation into a mathematical expression,
introduce the field

A'
(0)~r' ,z!5e( iz/2k0)¹'

2
E'~r',0!, ~9!

which coincides withE'(r',0) on the planez50 and satis-
fies the parabolic equation

i
]A'

(0)

]z
1

1

2k0
¹'

2 A'
(0)50. ~10!

A'
(0) describes the paraxial field propagating in vacuum w

the same boundary distribution ofA' . Equation~8! can be
rewritten as

A'~r' ,z!5e( izD/2k0no)T̂A'
(0)S r' ,

z

n0
D[D̂~z!A'

(0)S r' ,
z

n0
D ,

~11!

which establishes the desired connection betweenA' and
A'

(0) . Equation~11! is very interesting from both a concep
tual and an analytical point of view. In fact, it allows us
figure the field in the crystal as thebare field propagating in
vacuumdressedby the action of the anisotropic operatorD̂.
Moreover Eq.~11! shows that it is possible to take the effe
of the anisotropy into account after the simpler associa
isotropic problem has been solved.

By exploiting the properties of the operatorT̂ we give a
less formal aspect to Eq.~11!; in fact, the effect of the op-
eratorD̂ can be worked out, giving~see part A of the Appen
dix!

A'~r' ,z!5S ]y
2 2]xy

2

2]xy
2 ]x

2 D F'S r' ,
z

no
D

1S ]x
2 ]xy

2

]xy
2 ]y

2 D F'S r' ,
n0z

ne
2 D , ~12!

where the field

F'~r' ,z!5
1

2pE d2r'8 lnur'2r'8 uA'
(0)~r'8 ,z! ~13!

has been introduced. Equation~12! represents an alternativ
advantageous way for evaluating the field inside an an
tropic medium: if the vacuum fieldA'

(0) is known, the diffi-
culty of determining the field in the crystal is reduced to t
evaluation of the fieldF' in Eq. ~13!, since A' descends
from it by means of simple spatial differentiations. Note th
the two contributions in the right-hand side of Eq.~12! are
03661
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the the ordinary and extraordinary fields, respectively: th
are both generated by the fieldF' , enlightening their com-
mon origin.

Equation~11! is also suitable for a perturbation scheme
evaluate the field at some distances from the planez50. By
using the power-series definition of the exponential, from E
~11!, we have

A'~r' ,z!5F11
izD

2k0no
T̂(

n51

`
1

n! S izD

2k0no
¹'

2 D n21G
3A'

(0)S r' ,
z

n0
D , ~14!

where use has been made of the relationT̂n5T̂(¹'
2 )n21,

derived in part A of the Appendix. The series in the righ
hand side of this equation is highly oscillating for largez;
this is not a serious shortcoming as actual crystals are g
erally not very long. Besides, there are two physical reas
to employ Eq. ~14!: first, the majority of the crystals is
slightly anisotropic (no and ne are very close! so thatD is
always smaller than 1~as an example, for the calcite it i
D.0.24). In second place, the fieldA'

(0) is slowly varying as
a paraxial field, that is to sayu(¹'

2 )n11A'
(0)(r' ,z)u

!u(¹'
2 )nA'

(0)(r' ,z)u. This allows us to truncate the series u
to the first order, that is,

A'~r' ,z!5F11
izD

2k0no
T̂S 11

izD

4k0no
¹'

2 D GA'
(0)S r' ,

z

n0
D .

~15!

In order to obtain the longitudinal distancesz for which this
relation holds, it is sufficient to assure that the neglec
second-order term is much smaller than the first-order o
Since it is¹'

2 A'
(0);k0

2f 2A'
(0) , wheref 5l/w is the degree of

paraxially ofA'
(0) (w measuring the waist of the beam andl

the vacuum wavelength!, it is simple to show that Eq.~15! is
valid for z,zM56no /(k0f 2D) which, for paraxial beams is
generally comparable with the size of actual crystals. T
proposed perturbation scheme is very handy, because a
required contributions can be obtained from the vacuum fi
A'

(0) by means of spatial differentiations only.

B. Anisotropic propagators

Another remarkable property of Eq.~8! is that it embodies
a direct relation between the boundary fieldE'(r',0) and the
propagated oneA'(r' ,z). Such a way of understandin
propagation is very common in optics, as the propagat
process can be viewed as a linear system and the output
is obtained by convolving the input one with a propagator.
order to obtain the propagator for an anisotropic medium,
us rewrite Eq.~8! as
4-4
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A'~r' ,z!5E d2r'8 @e( izD/2k0no)T̂e( iz/2k0no)¹'
2
d~r'2r'8 !#

3E'~r'8 ,0!

[E d2r'8 G~r'2r'8 !E'~r'8 ,0!, ~16!

where the convolution property of the Dirac delta functi
d(r'2r'8 ) has been exploited. This equation shows that
anisotropic exponential operator in Eq.~8! is an integral op-
erator whose kernelG(r'2r'8 ) is the desired anisotropi
propagator. Inserting the well-known integral representat
of the Dirac delta function into the definition ofG(r'2r'8 )
and exploiting Eq.~A3! of part A of the Appendix, we
straightforwardly obtain

G~r'2r'8 !5
1

~2p!2E d2k'~¹'
2 !21@~¹'

2 2T̂!e( iz/2k0no)¹'
2

1T̂e( inoz/2k0ne
2)¹'

2
#eik'•(r'2r'8 ). ~17!

Note that the plane waves exp(ik'•r') are eigenfunctions o
both T̂ and¹'

2 , so that Eq.~17! can be rewritten as
ia
R
a
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n

G~r'2r'8 !5E d2k'

~2p!2
eik'•(r'2r'8 )2( iz/2k0no)k'

2 1

k'
2

3S ky
2 2kxky

2kxky kx
2 D

1E d2k'

~2p!2
eik'•(r'2r'8 )2( inoz/2k0ne

2)k'
2 1

k'
2

3S kx
2 kxky

kxky ky
2 D

[Go~r'2r'8 !1Ge~r'2r'8 !, ~18!

where each operator has been replaced with the corresp
ing eigenvalue. Equation~18! reveals that the anisotropi
propagator is the sum of an ordinary and an extraordin
contribution, Go and Ge , respectively, restating the well
known physical fact that these two field independen
propagate@see Eqs.~2!#. The integrals in Eq.~18! can be
analytically performed~see part B of the Appendix!, yielding
Go~R!5
k0no

4p iz
e2(k0no/2iz)R2S 1 0

0 1D 2F k0no

4p iz
e2(k0no/2iz)R2

2
12e2(k0no/2iz)R2

2pR2 G 1

R2 S X22Y2 2XY

2XY 2X21Y2D ,

Ge~R!5
k0ne

2

4p inoz
e2(k0ne

2/2inoz)R2S 1 0

0 1D 1F k0ne
2

4p inoz
e2(k0ne

2/2inoz)R2
2

12e2(k0ne
2/2inoz)R2

2pR2 G 1

R2 S X22Y2 2XY

2XY 2X21Y2D ,

~19!
d by
r

ec-
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where we setR5Xêx1Yêy5r'2r'8 , for the sake of sim-
plicity. Note that the description of propagation in uniax
media by means of propagators has been investigated in
@3#, where integral expressions for the exact propagators
given. It is remarkable that, within the paraxial approxim
tion, the propagators are expressed in a closed form.

Both the propagatorsGo andGe are the sum of an isotro
pic Fresnel-like term and an anisotropic one. Note that in
isotropic limit no5ne5n the anisotropic terms compensa
each other, giving

G~R!5Go~R!1Ge~R!5
k0n

2p iz
e2(k0n/2iz)R2

, ~20!

which, as expected, coincides with the well-known Fres
propagator for an homogeneous and isotropic medium of
fractive indexn @26#.

IV. THE ASTIGMATIC GAUSSIAN BEAM

Let us consider the propagation of a paraxial beam wh
boundary distribution is given by
l
ef.
re
-

e

l
e-

e

E'~r',0!5E0e2(x2/2sx
2)2(y2/2sy

2)êx , ~21!

that is to say an astigmatic Gaussian beam characterize
two variancessx

2 andsy
2 , a unique waist plane, and a linea

polarization along thex axis. In this case, Eq.~2! does not
yield a closed-form expression; besides, the angular sp
trum approach does not even suit for numerical analy
since the involved integrals contain highly oscillating fun
tions. To predict the propagated field, we resort to both
numerical evaluation of Eq.~8! and the perturbation schem
@i.e., Eq.~15!#, as the corresponding expression for the fie
propagating in vacuum is known.

A. Numerical evaluation

In order to numerically compute Eq.~8!, we express the
field A'(r' ,z) as a finite two-dimensional Fourier series

A'~r' ,z!5 (
n52N

N

(
m52N

N

A'
(n,m)~z!ei (2p/L)(nx1my), ~22!
4-5
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whereL is the size of the squared domain where the field
evaluated. Substituting Eq.~22! into Eq. ~8! and exploiting
Eq. ~A3! of part A of the Appendix, we obtain the Fourie
coefficients

A'
(n,m)~z!5

1

n21m2 S m2 2nm

2nm n2 D
3e2[ i2p2(n21m2)z/k0noL2]A'

(n,m)~0!

1
1

n21m2 S n2 nm

nm m2 D
3e2[ i2p2no(n21m2)z/k0ne

2L2]A'
(n,m)~0!, ~23!

where, in the intermediate step, we have substituted e
operator with the appropriate eigenvalue. The vector coe
cientsA'

(n,m)(0) are given by the Fourier formula

A'
(n,m)~0!5

1

L2E2L/2

L/2

dxE
2L/2

L/2

dy E'~x,y,0!e2 i (2p/L)(nx1my)

5
2psxsyE0

L2
e2(2p/L2)(n2sx

2
1m2sy

2)êx , ~24!

where Eq.~21! has been taken into account and the integ
tion domain has been replaced with the wholex-y plane. In
fact, L is chosen so that the field is neglected on the bou
ary of the integration domain for every value ofz. The choice
of N is more critical, since we have to guarantee that all
non-negligible plane waves be taken into account a
roughly speaking, this can be accomplished by choosinN
@L/(2pAsx

21sy
2). Equations~24!, ~23!, and~22! allow us to

numerically evaluate the field.
We consider an astigmatic Gaussian beam withl

50.514mm, sx515 mm, andsy56 mm, propagating in a
calcite crystal (no51.658 andne51.486). For each longitu
dinal propagation distancez, we choose differentL and N
parameters, so that only the effective region, where the fi
is not vanishing, is considered. In Fig. 1, we report the le
plot of uExu/uE0u at the boundary planez50 and in Fig. 2 the
level plots of uExu/uE0u and uEyu/uE0u at z52000mm, z
58000mm, andz520000mm. The most important effec
of the anisotropy is the growth of they component of the
optical field, as a direct consequence of the coupling betw
Ax andAy . The four lobes in the profile ofuAyu can be easily
understood by an inspection of Eqs.~7!. In fact, for short
propagation distances, the field is essentially polarized al
thex direction, so that, we can drop the right-hand side of
first of Eqs.~7! and neglect the terms containing]x

2Ay and
]y

2Ay in the second one. As a consequence, the influenc
Ay on Ax is negligible whereasAx behaves like a pump fo
Ay by means of the term containing]xy

2 Ax ; this contribution
explains the four symmetric lobes in the plot ofuAyu, since
Ax is bell shaped. As the propagation distance increases
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influence ofAy on Ax increases so that the shape ofAx ac-
quires a more structured profile, as evident from parts~a2!
and ~a3! of Fig. 2.

B. Perturbation scheme

The perturbation scheme of Sec. III A can be efficien
employed in the present case, since the correspon
vacuum-propagating fieldA'

(0) has a closed-form expressio
@2#,

A'
(0)~r' ,z!5E0F S 11

iz

k0sx
2D S 11

iz

k0sy
2D G21/2

3expS 2
x2

2sx
2S 11

iz

k0sx
2D

2
y2

2sy
2S 11

iz

k0sy
2D D êx . ~25!

By inserting Eq.~25! into Eq. ~15!, we get the approximate
expression for the field inside the crystal, which is valid f
z,zM53no(sx

21sy
2)/(2plD). In the case examined in th

preceding subsection it iszM.2000mm and in Fig. 3 we
report the level plots ofuExu/uE0u and uEyu/uE0u at z
51000mm and z52000mm. We computed the mean
square error between the approximated solution and that
tained in the preceding section; forz51000mm the errors
for Ax and Ay components are 0.05% and 2.8%, resp
tively. For z52000mm the errors are 0.24% and 9.4%
@compare Figs. 2~a1,b1! and Figs. 3~a2,b2!#.

C. Experiment

We sketch in Fig. 4 the laboratory setup: the sourceS is an
argon-krypton laser tuned for thel50.514mm line and the

FIG. 1. Level plot for the normalized modulusuExu/uE0u of the
astigmatic Gaussian beam withsx515 mm, sy56 mm at z50
plane.
4-6



l

PARAXIAL PROPAGATION ALONG THE OPTICAL AXIS . . . PHYSICAL REVIEW E 66, 036614 ~2002!
FIG. 2. Level and density plots of the normalized moduliuExu/uE0u ~a1! ~a2! ~a3! anduEyu/uE0u ~b1! ~b2! ~b3!, obtained by the numerica
evaluation, of the astigmatic Gaussian beam (l50.514mm, sx515 mm, and sy56 mm) at the planesz52000mm ~a1! ~b1!, z
58000mm ~a2! ~b2!, z520 000mm ~a3! ~b3! inside a calcite crystal.
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fundamental mode; the output laser beam has a spot
w051 mm, a divergenceu51 mrad, and is linearly polar
ized. The beam is focused on the entrance facet of a ca
crystal with refractive indicesno51.658 andne51.486, cut
as a rectangular parallelepiped of size 10310320 mm; the
propagation direction of the laser beam coincides with
optical axis, i.e., the longest dimension of the crystal.
03661
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order to produce an astigmatic Gaussian beam, we focus
laser beam by means of the two cylindrical lensesL1 andL2
of different focal lengths (f 1520 cm andf 258 cm, respec-
tively!, positioned in order to compound an elliptical wai
on the common focus plane. In this way, the resulting ellip
has a ratio 0.4 between the axes and the polarization di
tion is along the major axis (x axis!. This focus plane is then
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FIG. 3. Level plots of the normalized moduliuExu/uE0u ~a1! ~a2! and uEyu/uE0u ~b1! ~b2!, obtained by the perturbation scheme, of t
astigmatic Gaussian beam (l50.514mm, sx515 mm, andsy56 mm) at the planesz51000mm ~a1! ~b1!, z52000mm ~a2! ~b2! inside
a calcite crystal.
e
er
ta
e
th
ns

m

n-
th
3.

-
the

e

of

,
how

ial
m.
that
om-
ral
in

f the
de-
its
at
imaged by the lensL3 on the input facet of the crystal; th
lensL3 and the crystal can be longitudinally shifted in ord
to obtain an input ellipse of variable dimensions. The crys
length is D520 mm, and we detect the field only at th
output facet. Since we are interested in the detection of
field for various propagation distances, we vary the tra
verse dimensions of the input waist to varyz. In fact, from
Eqs.~2! and Eq.~3!, it is easily seen that, ifA'(r' ,z) cor-
responds to the boundary distributionE'(r',0), then
A'(ar' ,a2z) corresponds toE'(ar',0); therefore choos-
ing a5AD/z allows us to detect on the output facet the sa
field that would be detected at distancez with the original
dimensions.

The lensL4 forms a magnified image of either the e
trance facet or, by a distance regulation, the exit facet of
crystal on the charge-coupled device detector (

FIG. 4. Experimental setup.
03661
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34.4 mm, 5763768 pixel! of a Sony TV camera; the cam
era is connected to a PC to record, process, and display
images. The rotatable polarizerP allows us to measure th
intensity distributions solely due to thex or y components of
the electric field.

Figure 5 shows the experimental intensity distributions
the two Cartesian components of the optical field, atz
58000mm andz520 000mm, respectively; for both cases
the theoretical predictions and the experimental results s
a very good agreement~see Fig. 2!.

V. CONCLUSION

We have introduced an equation describing parax
propagation along the optical axis of an uniaxial mediu
The most important feature of the proposed approach is
it is not based on the standard ordinary-extraordinary dec
position, so that it allows us to investigate some gene
properties of the propagation which are somehow hidden
the standard angular spectrum approach. The structure o
propagation equation is simple enough to permit us to
duce its formal solution, relating the propagating field to
boundary distribution atz50. The main consequence is th
4-8
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FIG. 5. Experimental intensity distribution ofEx ~a1! ~a2! and Ey ~b1! ~b2!, of the astigmatic Gaussian beam (l50.514mm, sx

515 mm, andsy56 mm) at the planesz58000mm ~a1! ~b1!, z520 000mm ~a2! ~b2! inside a calcite crystal.
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we can establish a close connection between the field in
crystal and the corresponding one propagating in vacu
with the same boundary distribution, allowing us to ident
the effect of the anisotropy as a perturbation to free pro
gation. From this conceptual connection, we also derive
analytical techniques for evaluating the field. The first one
embodied in a relation@Eq. ~12!# analytically relating the
propagating field to that in vacuum, whereas the second
consists in a perturbation scheme which exploits the intrin
paraxiality of the beam in vacuum. Besides, from the form
solution, we are also able to deduce the expression for
anisotropic propagator. We have chosen the case of the
tigmatic Gaussian beam to test some of the results of
proposed approach; then we have implemented a nume
algorithm to evaluate the field from the formal expressio
These predictions have been compared with the approxim
expression furnished by the perturbation scheme and
experimental results. In all cases the agreement is good

APPENDIX

A. Derivation of Eq. „12…

In order to obtain from Eq.~11! a less formal expression
let us consider the operatorD̂ and its powers series definitio
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D̂~z!5e( izD/2k0no)T̂511 (
n51

`
1

n! S izD

2k0no
D n

T̂n. ~A1!

Because of the structure of the operatorT̂ it is easy to work
out T̂n, that is,

T̂n5F S ]x

]y
D ~]x ]y!Gn

5S ]x

]y
D ~¹'

2 !n21~]x ]y!5T̂~¹'
2 !n21,

~A2!

valid for n>1. This relation allows us to rewrite Eq.~A1!,
after some operatorial manipulation, as

D̂~z!5~¹'
2 !21@~¹'

2 2T̂!1T̂e( izD/2k0no)¹'
2
#. ~A3!

Inserting this expression for the dressing operatorD̂(z) into
Eq. ~11!, we obtain the relation
4-9
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A'~r' ,z!5~¹'
2 !21F ~¹'

2 2T̂!A'
(0)S r' ,

z

no
D

1T̂•A'
(0)S r' ,

noz

ne
2 D G , ~A4!

where we have exploited the propagation property of
vacuum field,

e( iz2/2k0)¹'
2
A'

(0)~r' ,z1!5A'
(0)~r' ,z11z2!. ~A5!

Applying the operator¹'
2 to both members in Eq.~A4!, we

obtain
en

ll-

,

03661
e

¹'
2 A'~r' ,z!5S ]y

2 2]xy
2

2]xy
2 ]x

2 D A'
(0)S r' ,

z

no
D

1S ]x
2 ]xy

2

]xy
2 ]y

2 D A'
(0)S r' ,

noz

ne
2 D , ~A6!

which are two two-dimensional Poisson equations forAx and
Ay , since the right-hand side is supposed to be kno
Therefore, assuming that the fieldA' vanishes at infinity on
the transverse plane, Eq.~A6! can be straightforwardly
solved, yielding
A'~r' ,z!5
1

2pE d2r'8 lnur'2r'8 uF S ]y8
2 2]x8y8

2

]x8y8
2 ]x8

2 D A'
(0)S r'8 ,

z

no
D1S ]x8

2 ]x8y8
2

]x8y8
2 ]y82

D A'
(0)S r'8 ,

noz

ne
2 D G . ~A7!
er
Splitting this equation into the sum of two integrals, th
integrating by parts twice with respect to bothx8 andy8 and
exploiting the symmetry properties ofur'2r'8 u, we obtain
Eq. ~12!.

B. Evaluation of the ordinary and extraordinary propagators

Let us introduce polar coordinates, both forR5Xêx

1Yêy5r'2r'8 and fork' ,

X5R cosw, kx5k cosu,

Y5R sinw, ky5k sinu, ~A8!

which allow us to rewrite the ordinary propagator of Eq.~18!
as

Go~R!5
1

~2p!2E0

`

dkke2( iz/2k0no)k2E
0

2p

dueikR cos(u2w)

3S sin2u 2cosu sinu

2cosu sinu cos2u D . ~A9!

The integral onu can be evaluated by means of the we
known Anger-Jacobi relation

eikR cos(u2w)5 (
n52`

1`

i nJn~kR!ein(u2w), ~A10!
whereJn(j) is the Bessel function of the first kind and ord
n. Inserting Eq.~A10! into Eq. ~A9!, the integrals onu be-
come trivial, thus getting

Go~R!5S 1 0

0 1D 1

4pE0

`

dkke2( iz/2k0no)k2
J0~kR!

1S cos 2w sin 2w

sin 2w 2cos 2w D
3

1

4pE0

`

dkke2( iz/2k0no)k2
J2~kR!. ~A11!

The integrals onk can be analytically evaluated@27#, so that
we have

Go~R!5
k0no

4p iz
e2(k0no/2iz)R2S 1 0

0 1D 2F k0no

4p iz
e2(k0no/2iz)R2

2
12e2(k0no/2iz)R2

2pR2 G S cos 2w sin 2w

sin 2w 2cos 2w D . ~A12!

Expressing the trigonometric functions by means ofX and
Y we obtain the ordinary propagator of Eq.~19!. An analo-
gous calculation yields the extraordinary propagator.
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