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Two-dimensional electromagnetic crystals formed by reactively loaded wires
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Two-dimensional electromagnetic crystals formed by rectangular lattices of thin ideally conducting cylinders
periodically loaded by bulk reactive impedances are considered. An analytical theory of dispersion and reflec-
tion from this medium is presented. The consideration is based on the local field approach. The transcendental
dispersion equation is obtained in the closed form and solved numerically. Different types of the loads such as
inductive, capacitive, serial, and paralleC circuits are considered. Typical dispersion curves and reflection
coefficients are calculated and analyzed.
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I. INTRODUCTION media as one of the components of double negative materials
is very important. Wire media can be used also in the syn-
Various artificial materials for applications in the micro- thesis of artificial impedance surfacils’]. One of the most
wave regime have been known for a long time. In recengttractive features of the artificial materials under consider-
years, many new exciting applications were suggested fagtion is a possibility to design materials with desired proper-
photonic band gap structures whose another nsioe band  ties.
structures(SBS appears to be more appropriate in the mi-  Periodical structures with stop bands are usually analyzed
crowave regime. SBS can be used, for example, as mainumerically. This concerns also two-dimensional arrays of
elements of microwave filters and antenna reflectors. In theerfectly conducting cylinders. For a brief overview of this
present paper we study a different kind of SBS which allowfield we refer to Ref[18]. However, no accurate analytical
enhanced opportunities for design and tunifigcluding  model which would enable to predict the medium properties
electrical control of these devices and for minimization of for a wide range of geometrical parameters and operating
their sizes compared to the wavelength in free spacéhe  frequencies is known. The particular system of loaded wires
SBS under study are modifications of the well known artifi-was analyzed before numericall¥,3], and only a very sim-
cial wire media(lattices of straight conducting wiresThe  plified analytical model for inductive loadings is known from
properties of these stop band materials can be tailored bRef.[3]. A simple method for calculating explicitly the band
periodical loading the wires by small impedance circuits, astructure of wire media was presented in Rf8]. That
suggested in Refl1]. An application of arrays of capaci- rather accurate approach based on the local field approach
tively loaded wires in the design of antenna reflectors wagan be generalized to the case of periodically loaded wires.
suggested in Ref2]. Load impedances can be electrically or The distance between loads in each wire is assumed to be
optically controlled, thus allowing electrical control of the small compared to the wavelength in free space, so that the
SBS properties. A similar idea of loading wires by loopsloading leads to some importafrfequencydispersion prop-
(inductive loadg was published in Ref.3], with the goal to  erties of wire media modified in this way. Here we are not
reduce the effective plasma frequency of the medium. interested in the effects of spatial periodicity of loads. In Ref.
Wire media are known in the microwave engineering for a[19] the structure with periodically interrupted wiréghere
long time as an artificial dielectriet] with negative effective the splits form a lattice tilted with respect to the plane or-
permittivity at low frequencies. In the literature, wire media thogonal to the wire axg¢$as been studied. In that work the
have recently received increasing attention because of nesgpatial dispersion effects were considered and the distance
applications, for example as antenna reflec{&s8|, con-  between splits was assumed to be comparable. to
trollable SBS[1], and components of artificial double nega-  Note that the approach suggested in Re8] is analogous
tive materialgmaterials whose permittivity and permeability to that presented in Ref20] for regular lattices of point
have negative real pajtf9—13]. In view of the current dis- scatterers. The theofy1 8] offers not only a method to ana-
cussion on possible flaws in the interpretation of the experilyze the dispersion properties of wire media, but also a tech-
mental demonstration of negative refractid®,15 and the nique to synthesize media with desired dispersion properties.
problem of perfect len$16], better understanding of wire For example, we can reactively load the wires and the same
basic approach will still work. In this paper we generalize the
theory of Ref.[18] for the case of two-dimensional electro-
*Also at General Physics Department, Saint-Petersburg Institutenagnetic crystals formed by reactively loaded wires and in-
of Fine Mechanics and Optics, Saint Petersburg, Russia; electronkestigate the dispersion characteristics of such media to-
address: belov@rain.ifmo.ru gether with their reflection properties. The behavior of the
TAlso at General Physics Department, Saint-Petersburg Institute alispersion curves and the reflection coefficients from a half
Fine Mechanics and Optics, Saint Petersburg, Russia; electrongpace dramatically depends on the value of the load imped-
address: simovsky@phd.ifmo.ru ance. Finally, we note that this method allows to evaluate the
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+YZ Yo on the coordinate along the wire lilg€°°%e 192 can be found
> O g O ? from the boundary condition on the wire surface,
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A e Eloc k2— 2)
CpkP=a) [ 2] \K—qzro
Z1 . NT 1—]; InT+7 s (3)
, c
A ) Y .
where y~0.5772 is the Euler constant. Thus, we can con-
7 = = el| <@ sider continuous wires as lines of current with known sus-
! /([(L 2P © ceptibility (3).
U j J 1 4 X‘ If we include lumped reactive loads, (ohm) with the
- A?B/Qj; S, periodc<<\ into the wires, they effectively form a uniformly
distributed impedanc&=2,/c (ohm/m) per unit length of
FIG. 1. Inner structure of loaded wire media. the wire. It changes the wire susceptibility to
ciple, it allows to calculate the amplitudes of the eigenwaves, k2— qf
too. However, at this stage we restrict the study to dispersion a t= a51+ 2 Z(w). 4

and reflection properties only.

Here the coefficientk?—q2)/k? takes into account the in-
fluence of the local field phase shift along the wire.
Let us consider rectangular grids of infinite loaded wires

1. FORMULATION OF THE PROBLEM

as drawn in Fig. 1. The elementary cell has dimensians IIl. THEORY
Xh. The radius of wires isy<<a,b, and they are periodically _ _ _
loaded by impedanceZ () (ohm) with the period c A. Dispersion equation

<a,b,\. In this situation the loading can be interpreted as a The dispersion characteristics of the media under consid-

uniformly distributed impedancé&(w)=Z,(w)/c (ohm/m  eration can be found as solutions of the corresponding eigen-

per unit length of the wire. value problem. Here we briefly reproduce the derivation
We choose a coordinate system so Bataxis is the axis  made in Ref[18] for ideally conducting wires and in Ref.

of the reference wire, an@X and OY axes are parallel to [20] for three-dimensional lattice of point scatterers. Assum-

vectorsa andb, respectively. In this coordinate system theing that an eigenwave has the spatial dependence

radius vectors of distances from the reference wire to the~i(%x+ay+az2) e write the expression for the local elec-

wire with numbersm,n can be written asR,, ,=ma-+nb. tric field acting on the reference wire,

We assume that the wires are thin, so that their transversal

polarization is negligible. Thus, the electric field produced by _, oc (k32— qﬁ)

a single polarized wire outside of the wire volume is equal to ¢ I=E;"=~— 4k

the electric field of a current line centered at the wire axis. To

study the eigen\_/vaves of an infinite periodic structure we as- S [HO(K=gR,, e iGamtabn)
sume the coordinate dependence of the current complex am- miZ00 = ° z:mn :

plitudes in the form
)
| = Iefj(qxam+qybn+qzz), (1) ) . .
’ It was shown in Ref[18] that applying the Poisson summa-
tion formula with singularity cancellation E¢22] one can

wherel is the current of the reference wire. The time depen X .
rewrite Eq.(5) in the form

dence is harmonic, in the for@“'. The longitudinal com-
ponent of the electric field produced by any wire reéelg.,

Ref.[21]) 1 sink{¥a

1 2
—In +—Z(w)+
“ m 2@y K (@) bk{® cosk{®a—cosq,a
n

2_ 2
—qy) o
E(r,Z):_TZHE)Z)(\/kZ—qir)Ie 1922 (2) 1 sinkMa 1
X

- =0.
770 \ bk cosk(Ma—cosga 27N

where 7 is the free-space wave impedance, distands
measured from the wire axis, ardis the free-space wave (6)
number.

The effective susceptibility of an ideally conducting con- Herek{" denotes thec component of the wave vector ofh
tinuous wire excited by a local electric field which dependsFloquet mode,
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k‘x”>=—j\/

Formula(6) is a real-valued dispersion equation, whose so-
lutions give dependencies of the eigenwave propagation con-
stantsqy ,qy ,d, versus the frequency.

2
+02-k%, R \O}>0. (7)

2mn
LA

B. Reflection coefficient

Normalized frequency, ka/(2r)

Now it becomes possible to study the reflection properties
of a half space filled by the lattice of loaded wires. In order
to solve the reflection problem we solve the dispersion equa- . ‘ ‘ ‘
tion numerically and find all modes that can exist in the M r X M
structure. Following Refs[18,20, we can then determine Normalized wave vector, qa/nt
the relative amplitudes of excited modes and calculate the . . . )
reflection coefficient from the half space. It is very important  FIG. 2. Dispersion curves for square grid of unloaded cylinders
here to take into account not only the propagating modes puyith filling ra_t|o_f=0.001 (thick lines and dispersion curves for
also evanescent ones, which do not change the absolut&® spacethin lines.
value of the reflection coefficient but influence its phase.

This theory gives the solution of the reflection problem in a 2= 27ls (10)
simple and physically clear form in terms of the propagation 0 2 '
factors of the eigenmodes inside the lattice. In27-rr0 + mz(wH F(r)

Consider a plane interface between a half space filled with
a wire medium x>0, or indexm=0) and free space and wheres=+/ab, r=alb,
suppose that an incident plane electromagnetic wave

Ee (ke rky*ka2) jlluminates this interface. To solve for the 1 < [coth(mnr)—1| ar
reflection, it is convenient to split the incident electric field F(r)=-— 5'””241 I + B 11

vector into the longitudinal and transverse parts with respect
to the wire axis. Obviously, under our assumption of thinThe assumptions used in the derivation of form(8 are
wires, the wave whose electric field is orthogonal to they /4 q,<m/b, q,<m/c. Note, that it is not equivalent
wires does not see the grid. The reflection coefficient for thgg the Jow-frequency restriction only, because one can obtain
longitudinal part is[20] rather high propagation constants in the regions of the im-

oo ) pedance resonances.

sin (q{M —k,)a/2] ) . L
_ _ aikea jkya Ax x For square gridsg=b) expressior{10) simplifies and we
R=-e X H e — (n) ’ (8)
n=1 sin(gy” +ky)a/2] have

2/a?

: : : L k3= : (12
Whereqﬁ(”’ are the solutions of dispersion equati@) with 0 2

—k —k In + —2Z(w)+0.5275
Qy=Ky, 4z;=K;. 2mrg 7]k

The product in Eq(8) includes all the modes propagating
into the half space filled by the lattice. It means that oneFor waves traveling in the direction orthogonal to the wire
should take the correct sign mﬁ(") (corresponding to the axis (q,=0), the dispersion equatiof®) can be reformu-
direction of the Poynting vector of the mode from the sourcdated in terms of frequency dependent effective permittivity,
into the half space

k3(w
8(0)):80(1_ ol )2
EoMoW

: (13

C. Dense grids

In the low-frequency regime the lattice of loaded wireswhich is the well-known plasmonic fori].
does not possess magnetic properties, so it is possible to
introduce the effective frequency dependent permittivity of |\, coNVENTIONAL AND INDUCTIVELY LOADED
the material. For dense latticéperiods are much smaller WIRE MEDIA
than the wavelengjhthe dispersion equatioi®) can be sim-
plified using the Taylor expansion of sine and cosine func- As a reference for comparisons with arrays of loaded
tions for small argument and analytically solved. The resulwires we first calculate dispersion curves for a square grid of
is the following: ideally conducting cylinders with the filling ratiof
s o o o o o =7r5/a®=0.001. The result is shown in Fig. 2, wheFe
q°=0x+ay+ad;=k"—kp, (9  =(0,0,0), X=(w/a,0,0), and M=(m/a,w/a,0)" are
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FIG. 3. Reflection coefficientat normal incidence and for po- FIG. 4. Dispersion plot for a square grid of cylinders with the

larization along wiresfrom a half space filled by a square grid of filling ratio f=0.001 loaded by inductive impedankte: 20 1o per
unloaded cylinders with the filling rati6=0.001 and the corre- unit length.
sponding propagation constants vs normalized frequency.
for antenna applicationsinductive loads connected in series

points in the first Brillouin zone. Here together with the thick with the wire sections allow to make the low-frequency band
lines representing the dispersion curves for the describedap narrowef3] (Fig. 4).
wire media the dispersion curves for free space as thin lines In the cases of ideally conducting unloaded wires with
are presented to show the difference. This dispersion plaZ(w)=0 and inductively loaded wires with(w)=jwlL the
coincides with the plots from Ref$23] and[24] for the  parameterk, (10) becomes frequency independent and the
same system. stop band at low frequencies has the upper edge at the fre-

We have calculated the reflection coefficiénbrmal in-  quency corresponding tay: for k<k, q=—}j \/koz—kz, and
cidence, electric field polarized along the wiré®mm a half  for K>k, = JkZ=K2. This is the well-known classical re-
space filled by a square lattice of cylinders with filling ratio gt [4,25), which shows that ;<0 for k<k, and 0< &
f_=0.00_1(the same whose dispersion curves are shown in-q o k> Ko. In other words, in the low-frequency regime
Fig. 2).|n the single-mode r.eg|mek(a<277). In_ Fig. 3 this o, g,=0 the medium behaves as an artificial plasma with a
result is shown as a function of the normalized frequencysiasmonlike permittivity(negative at the frequencies lower

ka/(2m) together with the corresponding propagation con-than the plasmon resonance frequency
stants. The propagation constants have two types: propagat-

ing Im(g) =0 and decaying Inf{)<0. The decaying modes 2

can be further classified into two types: exponentially decay- 8(w)280< 1— ﬁ) (14)
ing [Re(q) =0] and exponentially decaying with alternating w?]’

directions of the currents in wirdgRRe(q)= w/a]. The last

type of decaying modes appears only near spatial resonancggere

In Fig. 3 at the upper part only the real parts of the propaga-

tion constants for propagating modes are plo(’im_hginary , 276 gpo S

parts are zergsat the central part only the imaginary parts wp= oL . (15
of the propagation constants for decaying modes are plotted In + e +F(r)

[real parts are zeros in all the cases except curves marked 27y po

with Re(q) = mr/a]. In the plots for Re§a/ ) and Im@a/ )
thin lines show the modes for zero susceptibility of wires Inductive loads reduce the plasmon frequency of the
(free space considered as a lattag b but without any in-  structure[3], which can be interpreted as an effective reduc-
clusions. tion of the wire radius. Such reduction is very effective, be-
Note that near the upper edge of the low-frequency stogause the plasmon resonance frequency is inversely propor-
band the interface between free space and the wire mediutronal to the inductance(in contrast to a logarithmic
operates as a magnetic wall. It can be very useful in antenndependance on the wire radius whose reduction is also re-
applications, because a wire antenna placed over a magnestricted by the skin effegtt Thus, one can move the upper
screen does not suffer destructive influence of its image, bugdge of the low-frequency stop band to any desired fre-
instead of it experiences double amplification of the radiatedjuency by tuning inductive loads and obtain a magnetic wall
field. The position of the upper edge of the stop band isat an interface between such a medium and free space. In-
sensitive to the wire radius, but the physical restrictions orductive loads can also be used to create high-quality reject-
the wire radius do not allow to obtain this edge at comparaing filters of lower frequencies with a controlled frequency
tively low frequenciegwhich is usually the case interesting band. Numerical estimations show that it is realistic to obtain
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FIG. 5. Dispersion plot for a square grid of cylinders with the  FIG. 6. Dispersion plot for a square grid of cylinders with the
filing ratio f=0.001 loaded by capacitive impedanc€ filling ratio f=0.001 loaded by capacitive impedances wih
=0.05eq per unit length. =21eq per unit length.
an artificial magnetic wall at such low frequencies that theobserved in three-dimensional lattices of resonant ferrite

. sphered26].
array periodsa andb are of the order oh/1000. If the self-resonance frequency of the loaded wires is

higher than the frequency of the first lattice spatial resonance
V. CAPACITIVE AND SERIES LC-CIRCUIT LOADINGS (practically meaning that the load capacitance is gméile
. . .low-frequency band gap completely disappears, and the first

Next, let us consider arrays of wires loaded by capaciyanch of the dispersion curves takes the same form as for a
tances. This means that the wire is periodically @be pe-  three-dimensional lattice of point scatteréfig. 5).
riod is much smaller than the wavelengénd a bulk capaci- SeriesL C-circuit loads operate in the same manner as the
tance inserted in every gap. Every wire can be seen as mag@pacitive loads in the wire media with the wire radius ef-
up of series connections of these load capacitances and ifectively reduced by inductive loading, see the discussion on
ductances formed by wire sections between the loads. Th@ductive loads above.
effective medium behavior dramatically depends on the reso- In the quasistatic regime for fields independentofe.,
nant frequency of these sections. If the load capacitancg,=0, in case of capacitiv&(w)=1/(jwC) and seried.C
tends to infinity (which corresponds to unloaded cylinders, circuit Z(w)=1/(jwC) + jwL loads we have a resonant ef-
because the impedance of the loads tends to) zeecobtain  fective permittivity in the form
the classical dispersion curvéBig. 2,[23,24)) with a wide 5
stop band[4,25] at low frequencies. In the case when the Cl(&0s7)
capacitance is infinitely smallwhich corresponds to inter- —w?w?)’
rupted wireg the medium behaves as a three-dimensional
lattice of dipole scatterersee Fig. 5.

The dispersion plot, reflection coefficient from a half
space filled and the corresponding propagation constants for
a square grid of cylinders with the filling ratib=0.001
loaded by capacitive impedances with a larger value of the
capacitance@=2me per unit length are presented in Figs.

6 and 7. In general, the topology of the propagation constant
plot looks similar to the unloaded case except the appearance
of the mentioned low-frequency pass band and exponentially
decaying modes with alternating current directions dye(

= 7r/a existing at frequencies higher than the upper edge of
that pass bancFig. 7). The reflection coefficient from a half
space at frequencies within the first stop band is mainly de-
termined by the evanescent modes with the smallest decay
factors, and in this particular case we observe that inside the
first stop band near the lower band edge the mode with
Re(@)=m/a has a smaller decay factor, but at higher fre- F|G. 7. Reflection coefficientat normal incidence and for po-
quencies up to the upper band edge the mode withgRe( |arization along the wirésfrom a half space filled by the same grid
=0 determines the reflection properties. Similar effects in-as in Fig. 6 and the corresponding propagation constants vs the
side stop bands produced by resonances of inclusions wasrmalized frequency.

e(w)=¢gp| 1+ (16)

Re(qa/m)

Im(ga/w)

0 01 02 03 04 05 06 07 08 09
Normalized frequency, ka/(27)
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FIG. 8. Dispersion plot for a square grid of cylinders with the  FIG. 9. Reflection coefficientat normal incidence and for po-
filling ratio f=0.001 loaded by a parallel resonant circuit with  larization along wiresfrom a half space filled by the same medium
=21 g inductance tuned to the resonant frequekgy=0.4m/a. as in Fig. 8 and the corresponding propagation constants vs normal-

ized frequency.

where
that there is a very narrow pass band inside the wide low-
) 27/ (oC) frequency stop band. Also, as mentioned above, we can have
wy= 2L . (17)  a narrow stop band inside a wide pass band of the structure
In + —+F(r) increasing the resonance frequency of the loads. In the case
2wy Mo of parallelLC-circuit loadsZ(w)=jwL/(1— w?LC) the ef-

fective permittivity (again, introduced foig,=0) tends to
At frequencies lower than the circuit resonance the meinfinity and also passes through unity at nearly positioned
dium operates as an artificial dielectric, and at higher frefrequencies,
guencies the medium becomes an artificial plasma. We can
conclude that tunable capacitive loads can be used to create 2
rejecting filters with a controllable frequency band. e(w)=eo 1— 2/ (eopow”s”) . (18)

S 2L/
+ 2R LR

In
VI. PARALLEL RESONANT LC-CIRCUIT LOADING 271 1-w?LC

Combinations of inductive and capacitive loads connected o
in parallel give us an ability to control the medium disper-At the circuit resonant frequency the value of the load be-
sion in general. If the lumped loads are parall€ circuits, ~comes infinite, and the medium becomes transparent avith
the main resulting effect is seen in the appearance of a trans=€o- At higher frequencies the load behaves as a capaci-
parency band near the resonance frequency of the circuit arfi@nce, and there is also a resonance of the medium, where the

a stop band at higher frequenci@ggs. 8 and 9 permittivity tends to infinity.
The pass band is formed around the series resonance fre-
guency, where the wires are weakly excited due to a high VIl. CONCLUSION

total impedance of wires per unit length. At high frequencies
the impedance of the loads is very small, so they do not We have developed an analytical theory of dispersion and
influence the array properties. It is interesting that inside theeflection for the electromagnetic crystals formed by rectan-
new pass band of the medium the reflection coefficient frongular lattices of parallel infinite loaded wires. Dispersion
a half space varies from plus offéhe lower englto minus  curves and reflection coefficients for some typical cases have
one (the upper engd passing through zero in the center, been presented. The quasistatic limit has been studied, which
where the medium becomes transparent. This can have pbas resulted in a simple analytical formula for the frequency
tential applications because with a small change of the loadependent permittivity of the medium.
parameters the desired reflection properties can be achieved Opportunities offered by periodical loading of the wires
at a given frequency. (in the control of frequency and reflection phapsee dis-
One can position the self-resonance of the load circuit atussed. We have analyzed in details the properties of reac-
any required frequency and design electromagnetic crystakively loaded wire media. We have found that capacitive
with desired band structure. Furthermore, the band gap struteading makes the crystal an ordinary artificial dielectric at
ture in this case is modified only near the load resonance. Fdow frequencies without any changes of the properties at
from that frequency the waves are naturally not affected byhigh frequencies. Inductive loading is equivalent to an effec-
the loads. Thus, for example, one can tune the structure dove reduction of the wire radius and makes the low-
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frequency stop band narrower, but on the other hand it helpare rather sensitive to the position of the circuit resonance.
to position the upper edge of the first stop bamndhere the All the described electrically controlled crystals can be suc-
interface has very interesting reflection propeitigslower  cessfully used in the microwave regime, for example, as el-
frequencies. ResonahtC-circuit loading allows one to de- ements of polarization sensitive microwave filters, antenna
sign very interesting crystals with reflection properties whichreflectors, and lenses.
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