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Solutions of a(2+1)-dimensional dispersive long wave equation
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A special type of multisoliton solution with a particular dispersion relation is obtained for Wu-Zhang
equation[which describeg2+1)-dimensional dispersive long wavelsy the standard Weiss-Tabor-Carnvale
Painlevetruncation expansion. Using a nonstandard truncation of a modified Conte’s invariant Paixieve
pansion, two different types of soliton solutions without any dispersive relation is found. Two types of periodic
wave solutions expressed by Jacobi elliptic functions are found by the truncations of a special extended
Painleveexpansion. The soliton solutions are special cases of the corresponding periodic solutions.
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[. INTRODUCTION Though the nonlinear systems may have not the Painleve
property, some useful results such as exact solutions and
In Ref.[1], three sets of model equations are derived forBacklund transformations can still be produced from the
modeling nonlinear and dispersive long gravity waves traviruncated Painlevéest[6—8]. In this paper, basing on the
eling in two horizontal directions on shallow waters of uni- truncated WTC Painlevexpansion and the Conte’s modifi-
form depth. Omitting the higher order terms, one of thesecation, we study the exact solitary wave solutions of the
equations, the Wu-Zhan@VZ) equation, can be written as  system(1). The periodic solutions are also studied by the
standard and nonstandard truncations of a special extended

u;+uuy,+ou,+w,=0, L ) . :
t x T UHy ™ Wx Painleveexpansion given in Ref5].

vituvyxtooy+wy=0, (1) In Ref.[9], it was pointed out that for Eq2), there are
1 some types of single soliton solutions without any dispersion
Wi+ (UW),+ (vw), + §(Uxxx+ Uxyy T UxxyT Uyyy) =0, relation. It is natural to ask whether the situation is remained

for the WZ equation. The results of this paper show us a
wherew—1 is the elevation of the water wave, is the  positive answer.
surface velocity of water along thedirection, andv is the In Sec. Il of this paper, after finishing a brief discussion
surface velocity of water along the direction. By scaling on the non-Painlevimtegrability of the WZ equation, we use
transformation and symmetry reduction, K@) can be re- the standard and nonstandard truncations of the WTC Pain-
duced to the (% 1)-dimensional dispersive long wave equa- leve expansion and a special extended Painkxgansion to
tion obtain soliton solutions with and without dispersion rela-
tions. Section 1l is devoted to find periodic solutions of Eq.
(1) by using another special type of extended Painlexe
(2) pansion. The last section is a simple summary and discus-
sions.

vitvvytwy=0,

Wi+ (Wo)y+ 0.

1
3wy

A good understanding of all solutions of E(.) is very )
helpful for coastal and civil engineers to apply the nonlinear Il. TRUNCATED PAINLEVE EXPANSIONS AND EXACT
water wave model in a harbor and coastal design. Therefore, SOLITON SOLUTIONS
finding more types of solutions of E¢l) is of fundamental
interest in fluid dynamics. In this paper, we will find the
soliton solutions for Eq(1) directly by using the standard Before to find some exact solutions of the modbl we
and nonstandard truncations of the Weiss-Tabor-Carnevalgriefly discuss its non-Painlévetegrability by means of the
(WTC) approach and the modified Conte’s invariant Painlevestandard WTC approach. Usually, when we say a model is
expansion for the WZ equation. integrable we should pointed out that the model is integrable
It is well known that the Painlévanalysis developed by under what special meanifgy. For instance, we say a model
Weiss, Tabor, and Carnevdl2] not only is one of the most is Painleveintegrable if the model possesses the Painleve
powerful methods to prove the integrability of a model, butproperty and a model is Lax or inverse scattering transfor-
also can be used to find some exact solutions. CEBite  mation(IST) integrable if the model has a Lax pair and then
Pickering [4], and Lou[5] had generalized the WTC ap- can be solved by the IST approach. An integrable model
proach in some ways to find more exact and explicit soluunder some special meanings may not be integrable under
tions of nonlinear models. other meanings. For instance, some Lax integrable models
Furthermore, the WTC method and the modification ap-may not be Painleventegrable[10]. On the other hand,
proaches may also be applied to nonintegrable systemghough many scientists believe that the Painlereperty is

A. Non-Painleveintegrability of the WZ equation
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a sufficient condition on the integrabilifyl1] and the Lax a=—-1, pB=-1, y=-2 (4)
pairs can be found from the Painlesealysis[12], the Lax
pairs of various Painleéviategrable models have not yet been and
found[13]. In other words, whether possessing the Painleve
property is a sufficient condition for Lax and/or IST inte-
grable is still unclear. In this subsection, we only discuss the
non-Painleventegrability of the model.

As usual, we take the following Laurent expansion of the
functionu=u(x,y,t), v=v(x,y,t), andw=w(x,y,t) about
a singular manifold= ¢(x,y,t):

2 2
Uozg\/§a¢x, U0:§\/§a¢y!

2
Wo=— 3 ()t ¢)), a’=1. )

Now substituting the full expansio(8) into Eq. (1) yields
the recursion relation

o0

o0 ee}
u= >, uj¢i+a, v="2, vj¢j+ﬁ, w= > Wj¢>j+7.
=0 0 i=o

I= u; Fij—
3 J o
Al vy | =| Fzj-1], (6)
Substituting the leading term$=€0) of Eq.(3) into Eq. (1), W Fai s
by means of the standard leading order analysis, we can ob- ! !
tain where the coefficient matrix reads
|
2a 2a
2/ 2/ i —
ﬁ[d@(l —D+¢i(i—-2)] — ﬁd’yd)x dx(j—2)
Za Za 2/ 2/ H 2
A= —Eqﬁmy E[(ﬁx“_l)—i_ Py(i—2)]1 dy(i=2) : (7)
i

2a

(] =3)2¢y( 7+ B2 5

2 (=376 82+ 8)) (i=3)(¢2+ 82

w|

and the functions=; ;_,, i=1, 2, 3 are complicated func- Painleve truncated expansions. According to the WTC
tions and only dependent om,,v,,w,,k=0,1,...,j—1 method[2], we consider the standard truncation of E3).at
and the derivatives ap. All the functions{u; ,v;,w;} canbe first,

determined by the recursion relati®®) except for those spe-

cial resonancg which cause the determinant of the coeffi- U Vo Wy  W;
cient matrixA to vanish U=s—-+uU;, v=—"+vy, W=-——S+—"+Wy,

s ¢ 1 ¢ 1 ¢2 ¢ 2
A=detA 9

S ga\@(j +1)(j-1)(j—2)(j—3)(j—4)(p2+ ¢§)3_ Wherg{ul,v_l,wz} is a particular seed solution of the WZ
equation. Simple inspection of this system shows that, if
(8) vq, andw, are purely constants, the WZ systém is trivi-
., ally satisfied. Substituting Eq9) with the trivial constant
If the model possesses the Painl@reperty, four resonance geeq solution into WZ equatiofl) and vanishing all the

conditions located aj=1, 2, 3, and 4 should be satisfied qefficients with different powers ab, one can reobtain Eq.
identically. That means five arbitrary functiong &nd one of (5) and

uj, vj, andw; for everyj=1,2, 3, and 4) should be en-
tered into the general expansi@¢d). However, the detailed
calculations show us that the resonance conditiong at 2 (¢5+3¢7%) 2 ¢pi+3¢5 8 dybydyy
=3,4 are not satisfied identically. So the Ed) does not W1:§W xx §m vy 6@’
pass the WTC Painléevest. That means WZ equation has no Ty Ty Ty
Painleveproperty and then it is not Painlewetegrable. (10

B. Standard truncation of WTC and multiple soliton solutons ~ While ¢ is an arbitrary solution of the equation system
with a special dispersion relation

Though the model is non-Painleugegrable, we can still b
t

J3
. . =——w;—(u + , 11
construct some exact solutions by means of some suitable 5 Wi (Uidxtoidy) (D
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2/3[3W( 924 92) + (2 + 32)2) b+ 9a( J,+ Uy dy+ v 19y )W type soliton solutions, one may use the two-singular mani-
25Ty o Ce T fold approach 14] or the Pickering’s modificatiofl5] or the

=0, (120  extended Painleévanalysis approach.
and C. Extended Conte’s truncation and the soliton solution
12Wo( 7+ ¢7) — 1201 (byx+ dyy) — WS without dispersion relation
8,260 2bryy— W) form (z)ef(.:gﬁ],bg :iopdoi;irgsdagut that the Painlewexpansion
+8dy(2hyxyT 2byyy—3Wyy) w o -
T A3 A 3P+ AGL 4 2dy) =0, (19 U=]ZO ujet, U:JZO Vg, WIJZO w;él =2,
In order to give out one special type of explicit solution, we (20
choose the ansatz with ¢ being determined by
by=Cdy, (14 N N N
with ¢ being an arbitrary constant. Obviously, under the an- §x:§0 S¢, &= 2’0 C;é, ft:g‘o ST

satz(14), we have

2 5 When we takeN=2, the general expansidg0) with Eq.
Up==+3a¢,, vo==\3acCd,, (21) is just the Pickering’s modificatiofiL5]. Now using the
nonstandard truncation of E€RO), one can find some types
of new exact solutions. More specifically, we fix the expan-

2 2 i i
sion function as
W0:_§(1+CZ)¢)2(1 W1:§(1+Cz)¢XX1 (15)

¢X ¢XX>1

while Egs.(11)—(13) are simplified to En=2=0=N—)X, X= b 24 (22
X

bi=— ga(c2+ 1)y — (U +Cuq) Py (16)  with \ being an arbitrary constant arngl being an arbitrary
function of space-time variables. When we take 0, the
modified expansiori20) with Eq. (22) will be reduced back
to the usual Conte’s expansion. As in the usual Conte’s ex-
Waby =0, w2¢§:O. (17) pansion, thg coefficientdl;, V;, andW; are all invariant
under the Mbius transformation. From the special selection
Substituting solutions of Eqg16), (17) with Eq. (14) into  (22), Eq. (21) becomes
(9), we obtain the first type of solution for the WZ equation
(17). Combining the exponential solutions of the equation
system of Eqs(16) and (14),

and

S 2

N
_ 1

¢—1+Z exp(ki(x+cy) + wit+ &), (18 9,=C—C(A—0)+ E(CXX—CS)()\—g)Z, (23
with a particular type of dispersion relation between con- 1
stantsk; and w; gtzK—Kx()\—g)JrE(KXX—KS)()\—g)Z,

V3
w;=— ?a(c2+ 1)k?—dk; (19  where

yields a special type of multiple soliton solutions of Et), o= E(@)Z_ Pxxx c=— by Ke Dt (24
whered;=(u;+cv,) and¢;, are arbitrary constants. 2\ ¢y by o’ by

From above, we know that E¢l) possesses two branches
in the standard Painlévanalysis @=+1). So from the which are the Mbius transformation invariants. It is
Conte’s expansion one can obtain some new exact solutiorsgraightforward to prove that all the compatibility conditions
by nonstandard truncatig@]. However, if we use directly gy,=0yx, 9x=0ix, Oiy=0y: are satisfied automatically be-
the nonstandard truncated expansion basing on the Conte&suse of Eq(24).
Painleveexpansion, we cannot find the nonsingular riog When the expansion function of E(RO) is selected ag
bell) type soliton solutions for all the fields, v, andw. To  shown by Eq(22), the corresponding nonstandard truncation
overcome the singularity problem to obtain the rijog bell) ~ form reads
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Uo Vo (25 with U,=V,=W;=W,=0, one can obtain another
u=3 +U3+Uzg, v= 1 +Vi+Vyg, type of soliton solution that has the form
Wy W, ) u=EE(SAZ—Z)—E(aCZS)\—\/§V10+as>\—\/§K),
w= ?+?+W2+W3g+w4g . (25) 39 3
" J3ac
Substituting the nonstandard truncated expangi®b) v=— ?—(SA2—2)+V1, (28)
with Eq. (23) into Eqg. (1) and vanishing all the coefficients 9
of different powers ofg we can find a set of complicated ) ) )
overdetermined equations to fix the functiokk,V;, (j — 1+C7 (A -2) —S—)\(S)\Z—Z)
=0,1,2),W,, (k=0,...,4), S, C, andK. However, if we 3 29° g

only want to find the single soliton solution, we can take
them as constants simply. Omitting the detailed calculations
to solve these overdetermined equations, we only list the

SZ
++/3aVv,,— S+ 7)@

final result
whereg is given by Eq.(27) andV; is an arbitrary solution
Uoz\/—ga(SAZ—Z) of the Burgers equation
3 L
V3
\/_ Vlt:?a(l‘i‘ C2)V1yy

u1=?3(—5ac?>\—5a>\+ﬁvlc+@<), 5
+ —3[(a)\SC— V3V1)(1+C?) —3CK)]Vyy

V3 V3 V3 3
_V2 __N° 2_ __N°
U,= 3 as, Vg 3 aC(S\“—-2), V, 3 aSC (29
26
(26) with
1. 2 2 A 2 2 V..=CV 30
Wo=— £(C*+1)(S\*~2)%, Wy=5S(C?+1)(S\*~2), 1:=CVyy. (30)

This type of solution is the generalization of that obtained by
the standard truncation solution of the WTC expansion. If we
take S\2=2, the solution(28) is equivalent to the first type
of solution obtained by the standard truncation solution of
andV; is an arbitrary constant. Whe3) C, andK are taken the WTC expansion. When we takg =0, Eq.(28) with Eq.
as constants, the general solution of E2B) reads (27) is a new type of soliton solution without dispersion
\/_ \/_ relation. The fielde andu in Eq. (28) are kink or antikink
S 2 solitons whilew is a bell type soliton foV,=0.
9= ?[ VS~ \/ftan}{7\/§(x— Cy—Kt+dy) |, It is also worthy to mention that the usual tanh expansion
(27 method can also be considered as the general expansion of
Eq. (25) with

2

A S
W,=0, W3=§SZ(CZ+1), W4:—E(c:2+1), a?=1

whered; is an arbitrary constant. The fields v, andw in
Eq. (25) with Egs. (27) and (26) are bell- or ring-type Up=Vo=Wp=W,;=0. (31)
soliton solutions. Note that six arbitrary constants ) ) ) )
({S,K,C,\,dy,V,}) are included. One of the most interest- Dgtalled calculations show us_that the sol_lton soluthn ob-
ing facts may be that there is no dispersion relation amon{fined by the truncated expansion of E2f) with Eq. (31) is

the constant§, C, andK. However, if one puts some types eduivalent to Eq(28).

of special boundary conditions to the solitary wave solutions,

then some types of dispersion relations have to be intro- lll. PERIODIC SOLUTIONS OF EQ. (1)

duced. For instance, if we take the following boundary con-

ditions [ £= yS(x— Cy—Kt+dy) ] Usually, the single soliton solutions of integrable models

are special limited cases of the elliptic function solutions. In
our knowledge, the periodic solutions expressed by Jacobi or

»—0, v]|s-—0, _»—0, . T . ;
Ugmnm0, vlgm—0, Wleoim Weierstrass elliptic functions cannot be obtained by the WTC

then the corresponding dispersion relation reads standard truncated expansion, Conte’s standard and non-
standard truncated expansions, and the Pickering’s modifica-
3K2-2S—4SC2-2SC*=0. tion and the two-singular manifold approach.

If we take N—« in Eqg. (21) and select the functions
By the way, using the standard truncated form of the ex§;, C;, and K; such that the summations become some
tended Painlevexpansion Eq(20) with Egs.(22), i.e., Eq.  closed forms, then it is also possible to obtain some types of
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new exact solutions of the DLWE by using the standard andVhen¢ is determined by Eq.32) with M=4 and Eq.(33),
nonstandard truncations of the extended Painkygansion the nonstandard truncation form can be taken as

(20). For instance, a special type of summation form of Eq.

(21) may have the forms

Uo Vo
\/W \/W \/W U=?+U1+U2§, U=?+V1+V2§,
&= jgo G &= jzo g b= jZO g
. . . _ % w= Wo + %+W2+W3§+ W, &2, (34)
Using the expansion functions expressed by B8§) in Eq. FZ S

(20), we may use both the standard and nonstandard trun-

cated expansions to find new exact solutions. To find the )

solutions with elliptic functions, we taks;, c;, andk; as while the standard truncation has the same form as(¥4.
constants andM=4. The compatibility conditions of Eq. Put with U;=V;=W;=W,=0.

(32 for sj, ¢;, andk; being constants reads Substituting Eqs(34),(32),(33) and M=4 into Eg. (1)
and vanishing all the coefficients of different powers&f
cj=c%s;, k=K. (33  we have

CV2U2+U§+2W4:0, kU2+W3+CV1U2+U1U2:0, CVOUZ_CVZUOZO,
(Up+k+cVy)Ug+W;=0, U3+cVoUg+2We=0, U,V,+cVi+2cW,=0,
kV2+ CV]_V2+ U1V2+ CW3:0, kVO+ CW1+ U1V0+ CV1V0:O,

BU, W, + Ups,+ 3¢ VoW, + Vps,c+ c2U s, +€3V,5,=0,  cVA+2cWy+ UgV=0,
S
cVoW3+ kW, + U W, + Uo,Wa+ eV, W, + §(02U2+ U,+c3V,+V,0)=0, (35)
S
§2(1+c2)(u2+vzc)+w2(u2+ cV,) + W, (Ug+cVg) +Wy(U,+cV;+k)=0,

S
§2(1+02)(U0+ CVp) + Wo(Up+cVy) + Wy(cVo+Ug) + W (cV+U; +k)=0,

c3Vps; + U W+ KW+ c VoW, + cVyWo+ U W, + Vs, + Ugs; + ¢2U s, =0,

2¢VySp+ 2¢3Vosg+ 3U oW+ 3¢ VoW + 262U gSp+ 2U S, =0.

Solving out the equation syste(85) yields three nontrivial U2s2(1+c?) 2
cases. The first case W,y=— s Wy=— —s5(1+¢?),
18s7 9
2s5,(1+¢c?) UoSs 22
= "7 _ — = = 3 Ugs
N 30, cV;—k, U, 3s, Vo=cUp, So=-U2,  s,= 023
4 6s]
cUgss US ) 2 ) corresponds to the nonstandard truncation. The second case
2= , Wo=——(1+c%), W;=—3z(1+c)sy,
3s; 2 3 )
S
(36) U1=—l(l+02)—CV1—k, Vo:CUO, (37)
3Uq
8c?s3+3Ugs;c2—6c%s,U3s, +3Ugs; +8s5 — 6s,U3s, 2

2= D Wem— (146Y), W= osy(cPH1), sy= U2
18U2s, 0=~ % (1+¢%, Wi=—38(c"+1), so=7Uq,
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+c2 §;=S5=0. (41)
2 (4SE_SSZU3), U2:V2:W3:W4:0 ! 3
0 In Ref.[16], various solutions of Eq$39) with (41) were

is related to the standard truncation while the last case iL!Sted in a table. Then using the results of Rafé], say,

equivalent to the second case. Now the remaining problem is m2

to solve the equation syste(82) and give out the explicit 0= \/_294_(mZJr 1)g%+p% g=psnx, (42

expressions of the expansion functions. In these cases, the p

expansion functions can be expressed by the usual Jacobi ] ) o )

elliptic functions with help of the mapping deformation ap- W& may obtain many kinds of periodic solutions of the

proach proposed in Reff16—14. DLWE (1). In Eq. (42), srx is the usual Jacobi elliptic sine
Similar to the method used in Rq‘_fl?] or more con- function andm is the modular of the function sn In this

cretely in Ref[18], to solve the systerfB2), one may sim-  Section, we only write down two special cases, which are the

plify the equations by means of the symmetry property of thegeneralizations of the soliton solutions listed in the last sec-

expression. It is easy to check that E8Q) is form invariant ~ tion.

under the Mbious transformation. In other words, if we  If we rewrite the arbitrary constants in the first c486)

W2 =

make the transformation as
a+bg 2n2a§ 20 WA 22 2 S3_»
gam (bc,—ad#0), (39 U0—3—pz(m +p*—p°m=—p°), s;=7ai,
then the functiory satisfies the same equation as E2{) 2 302
7 ;= (3m*+ p*mP+p?+3p%),  sp=——(p*-m?),
/S i_ 9 _ G 2p 2a;p
Ox= A S9=32 "1 (39 (43)
with wherem, n, a;, andp are new arbitrary constants. Then the
general solution of Eq(32) with Egs.(36) and (43) has the
— sja*+sza’c;+s,a%ci+s,ac+50CT form
SOZ y (40)
(ad—bc,)? 1-p snz
z=n(x+cy+Kkt). (44)

§:a11+p snz’

_ ci(3ad+cyb)s; . 2ac;(ad+cib)s,

$1= (ad—be,)? (ad—bo,)? The corresponding periodic solution of Eg) reads
- 1 - 1
2
az(ad+3clb)53+ 4a%bs, .\ 4c3ds, u:A1+p—Azerz
1 2 — '
(ad—bc)?  (ad—bcy)?  (ad—bc,)? Ao(p? st 2 1)
2
~_cud(adteb)s, (2l +b’ct+aabad)s, __Bitp’Bysrrz (45)
Sy,= 2 _ !
2" (ad-bcy)? (ad—bcy)? ay(p®sitz—1)
, 3abad+eibs; 6a2b2s, N 6c2d2s, e Co(Cy—2p?C,sif z+p*Cysif 2)
(ad—bcy)?  (ad—bc))?  (ad—bcy)?’ (p?srfz—1)?
—_d¥ad+3cib)s, 2bd(ad+ cibs, where
S =
° (ad—bc;)? (ad—bc;)? Ao=—3Ugp?, B;=2cUo+Via;, B,=2cUp—Viay,

(46)
b2(3ad+c;b)s; . 4abls, 4c,d%s,

(ad—bcy)? (ad—bc;)?  (ad—bcy)?’

Aj=a;n[p*(c?+3)—m?(c?—1)—2p%(m?+1)]
—3Ugp2(cV;+k),

—  54b*+55b%d +5,b%d*+5,bd®+ 500"

Sy (ad—boy)? A,=n%a;[m?(c?+3)—p*(c?—1)—2p%(m?+1)]
+3Uop?(cVi+k),
From Eq.(40), we know that the expansion functigrcan be
expressed explicitly with help of the standard Jacobi elliptic n*a2(1+c?)
functions by the appropriate selections of the constants =T
a, b, ¢;, andd such that 9p"Uq
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FIG. 1. Plot of the periodic solutiofd5) with Eq. (47) for the FIG. 2. Structures of the soliton lattice solutigf5) with Eqg.
WZ equation for smalm (m=0.5). (a) The periodic solution re- (50) and m=0.9 for the WZ equation(a) The bell-bell soliton
lated to the upper sign of E¢47). (b) The periodic solution related lattice expressed by Eq&t5) and(48) with the upper sign(b) The
to the lower sign of Eq(47). The solid lines, dotted lines, and bell-ring soliton lattice related to Eq&45) and (48) with the lower
dash-dotted lines denote the values of the fields, andw, re- sign. The solid lines, dotted lines, and dash-dotted lines denote the

spectively. values of the fieldsv, v, andu, respectively.

C,=m*+2p*m2(2p%—3)+p®(4—3p?), As the modular increases, the periodic solutids) be-
comes a soliton “lattice” solution. Figure 2 shows the soliton
C,=m*(4p*— 6p?+3)— 2p?m?(3p*— 5p2+3) lattice structure of Eq(45) with m=0.9 and
+p*(3p*—6p*+4), Up=c=1, n=0.08, A,=—0.5736,

Cy=4m*(p?>—3)+4m?p?(2—3p?) +p® C,=0.7527, C,=0.04459,

with V1 being an arbitrary constant. C;=—-6.486, B,=2.211, B;=-0.4228,

In Fig. 1, the periodic waves are plotted for small modular
(m=1/2) for the fieldsu, v, andw which are expressed by k=¥0.00495, p=—0.4373, (48
Eq. (45) with

A,=7%0.212, V;=0.0158, A;=*=0.04054,
Ug=c=1, n=0.08, Ay=—0.6996, (47
a;=+13.38, C;=0.525.

As the modular increases further to 1, the periodic of the
lattice becomes larger and larger. Finally, whas=1 the
period becomes infinity and the functionshecomes tania
ie.,

A,=F0.03961, A,=+0.009238,
B,——0.528, Cy——0.3855, p=—0.4829,

C,=0.03546, k==*=0.2919,
snz|,_1—tanhz. (49
Cp=1.420, C,=0.03109, V,;==x0.002865,
So whenm— 1, the periodic solutior45) will be reduced to
a;=%92.13, B,=2.264. the ring- or bell-type soliton solution.
In Fig. 3, the special type of bell and ring shape soliton
Figures 1a) and 1b). are related to the upper and lower solution[Eq. (45) with Eq. (49)] is plotted. The correspond-

signs of Eq.(47), respectively. The parameters of Hg7) ing parameters related to Fig. 3 are
are obtained by Eqs43) and(46) after fixing four arbitrary

constants of them, sag, n, ¢, andU,,. Up=1, c=1, n=0.08, k=7%0.01786,
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FIG. 3. Structures of a single soliton solutiotb) with Eq. (50)
for the WZ equation(a) The bell-bell soliton solution described by
Egs. (45), (49), and (50) with the upper sign(b) The bell-ring
soliton solution(45), (49), and(50) with the lower sign. The solid

lines, dotted lines, and dash-dotted lines denote the values of the

fieldsw, v, andu, respectively.
B,=2.205, Ay=—0.5569,
a;=—11.45, A,=+0.2388, C;=0.8409,

Cy=0.03466, p=—0.4309, (50

C,=1.319, B;=-0.4093, v,=+0.01786,
A,=*0.04433, C,=—10.18.

Figure 3a) is related to the upper sign of Ep0) and the
lower sign corresponds to Fig(l§. From Fig. 3, one can see
that the soliton solution for the fielel possesses always the
bell shape, while the fieldsandv may possess both the bell
shape or the ring shape.

Similarly, for the second cas@7), if we rewrite the pa-
rameters as

30T (e ap(14+mD)
= - ———[p¥a,+a m
po2(ay—ap? " 2

—2(ayp*+a;m?)],

2n?

S frd
* p2a-ay)

5 (m?=p?)(1-p?),

PHYSICAL REVIEW E 66, 036605 (2002

n2

 pP(ay—ay)?

—2p*a3-2m?al],

S1 [p?aai(a,+ay)(1+m?)

(51)

2

n
s,=———[p?(ai—a’)(m?*-1
2 pz(az—al)z[p( 2—ag)( )

+2p?ay(3p®a,—2a;) +2m?a,(3a; — 2a,p?)],

4n%(pa,—a,)
S:%(paz'i_al)(paZ_alm)(pa2+alm)y
3p“(az—ay)

wherem, n, a;, a,, andp are all arbitrary constants. Then
the general solution of E432) with Egs.(37) and(51) be-
comes

a,+a,p snz

1+psnz ' z=n(x+cy+kt).

(52

In this case, the final periodic solution of E(l) has the
simple form

_ Ag—p A;snz
U= As(a,+ta,p snz)’

B (cUgt+Via,)p snz+cUy+Viag
a,tap snz

v , (53

Cs(Cg+ Cysnz+Cgsrt z)
W:
(a;+a,p snz)?

with

As=3p?Ug(az—ay)?,

Ag=p?aZa,(1+m?)(a,+c?a;+c?a,—a,)
—2p*a3(a,+c?a; +a,) — 2c?ajm?

+3Ugp?ay(k+cVy)(a,—as)?, (54)

A;=2p?na,a5(1+m?)(a,+c?a,—a;+c?a,)
—4n?adm?(a,+ c?a,—a,) —4ajc’n?p?
—3Upa’p?(k+cVy)(az—ay)?,

4n*(c?+1)

=—————— C;=2ajplai(m’—1)?
9p2Uj(a,—ay)?

5

Ce=aZ(ajm*+3a5p*)(1+m?)—2p2a3(asp*+3ajm?),

Cg=ajp*(azp*+3aim?)(1+m?)

—2am?(ajm?+ 3azp?).
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Similar to the first case, when the modufartends to 1, the periodic solutions expressed by elliptic function solutjoois
periodic solution(53) tend to the kink solution for the fields the WZ system(1) can be obtained by direct integration.
u andv and the bell soliton solution for the field because However, any one of the standard and nonstandard trunca-
of Eq. (49). tions of the WTC and Conte expansions cannot be used to
find the exact elliptic function solutions. In this paper, we use
IV. SUMMARY AND DISCUSSIONS standard and nonstandard truncations of a special limited
) case of the extended Painleexpansion to obtain some
In summary, for the WZ equatioil), there are three types ypes of periodic solutions which are expressed by the Jacobi
of soliton solutions though it has no Painlepeperty. The  gjliptic functions. When the modular of the elliptic function
first type of multisoliton solutionfEqg. (9) with Egs.(15) and  tends to 1, two types of periodic solutions tends to the
(18)] with a special dispersion relatidi9) can be obtained gquivalent two types of solitary wave solutions, respectively.
from the standard truncation of the WTC approach. The method proposed here to find the exact periodic solu-
~Usually, the solitons and the solitary wave solutions sattjons expressed by the Jacobi elliptic functions can be used
isfy some dispersion relations. However, the results of thigg, other types of models, which cannot be integrated di-
paper show us that for some types of nonlinear models theﬁ%cﬂy_
may be some types of solitons or solitary wave solutions Because the modél) is derived for modeling nonlinear
without any dispersion relation. The second and third typegnd dispersive long gravity waves traveling in two horizontal
of soliton solutions of the WZ equatidi) are not necessary gjrections on shallow waters. More details on the results of
to satisfy some special types of dispersion relations. Howthis paper, especially on the soliton solutions without disper-

ever, if we put some special boundary conditions to the solisjon relations and the method to obtain these solutions, are
tary wave solutions, then we have to put some special disyorthy of further study.

persive relations to the solitary wave solutions. These two

types of solitary wave solutions are obtained from the non-
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