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Dynamical evolution of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts
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Dynamic behavior of mixing fronts plays a crucial role in multifluid turbulent mixing. In this paper, we
derive an analytic solution for the dynamic evolution of mixing fronts driven by constant acceleration
Rayleigh-Taylor (RT) and impulsive acceleration Richtmyer-Meshkov instabilities, from a simple physics
model expressed as a pair of ordinary differential equations. An approximate closed form asymptotic evalua-
tion of the RT solution is obtained, through terms of ordgfl), ast—x. This three term expansion,
including lower order terms, is used to interpret experimental and simulation data. Our solutions improve on
previous analyses in their agreement with experimental data, in that we can fit both the slope and the intercept
of the Z,, vs Agt? experimental plots by adjusting parameters in our model. Since the experimental data are
close to self-similar, the improvement due to the lower order contributions in the asymptotic expansion is
modest. We also apply this analysis to simulation data, for which preasymptotic data exist. We reexamine
previous simulation data and determine an improved growth ¢gte0.0625. The present paper provides
concepts and tools to explore the preasymptotic aspects of these data.
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I. INTRODUCTION II. MOTION OF THE BOUNDARY

The nonlinear evolution of the edge of a mixing zone
Chaotic mixing is a common and important phenomenorresulting from(incompressible RT or Richtmyer-Meshkov
in basic science and in engineering applications. Small distRM) unstable flows, can be described by the phenomeno-
turbances in a multifluid system produce buoyancy and shea@gical equation
driven instabilities at an interface between distinct fljitls

2
These instabilities grow and develop into turbulent mixing (Pi+kipi’)ﬂ:(pi_Pi’)g(t)_(_l)in i=1,2.
zones consisting of bubbles of light fluid and spikes of heavy dt 1Zi|
fluid, each penetrating into the opposite fluid. The evolution @

and structure of these mixing zones have been studied fQligrei=1=p (bubble andi=2=s (spike denote the light

several decades, see, for example, R&¥s5]. The location  5nd heavy fluids, respectively. The index of the phase oppo-
of the two edges of the mixing zone plays a distinguishedsjte t0j isi’=3—i. Also V;=dz,/dt is the velocity of the
role, as the simplest and primary descriptor of the mixingedgei of the mixing zone. We assume that {)'V;(t)>0
process. The study of mixing processes is not only of theofor all t. Also g(t) is the gravitational acceleratiok; is an
retical interest. It also plays an important role in the study ofadded mass coefficient due to the existence of fltjg; is
inertial confinement fusion and late time supernova evoluthe mass density of fluid, and C; is a phenomenological
tion. drag coefficient for the edge of fluid

The main contribution of the present work is to provide a Equation(1) has been divided by the volume for the pur-
detailed solution, expressed in closed form up to quadraturepose of normalization. Since the total drag force on a bubble
for the entire dynamical evolution of the two mixing zone or spike is proportional to its frontal surface area, upon di-
edges for the Rayleigh-TayldRT) instability. The solution viding by this volume one is left with a longitudinal length
is obtained through integration of an explicit differential scale, given in our model byZ;|. The form of the drag force
equation for the mixing zone edges. The large time asympreflects the assumption that the fluid infinitely far upstream
totics of this solution are derived in closed form. The lowerof the bubble or spike is stagnant.
than leading order asymptotics display dependence on initial The added mass paramekgrallows consideration of dis-
conditions for RT mixing, and their closed form expressiontinct flow regimes. We consider cylindrical bubbles and
contains approximations. This fact allows an improvement irspikes(i.e., three-dimensional bubbles and spikes connected
the fit of theory to experimental data. Reinterpretation of RTcontinuously to their ambient phgseroungs[7] allows a
simulation mixing rate data is also discussed. renormalization coefficient in front of the buoyancy term,
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which we set to unity here. This choice is consistent with our gy, —(=1)A V?

. . e e . . VI i i 1 ( 1) A I .
overall objective of minimizing the number of experimen- W:(_l) Ag(t)—(—1) C‘T ZT i=12,
tally determined parameters in our model, and thus to maxi- : 2
mize the fraction of the limited experimental data which is
actually predictedrather than fit by the model. Determina- TP
tion of the drag coefficienC; and validation of Eq.(1) where the drag coefficiert; is given by[6]
through comparison with experiment was presented in Ref. i :

[6]. _VYai—[1-(=1)'A]-ki[1—(—-1)'A] 3
Spherical front bubbles and spikes, representing a post e 2[1-(—1)'A] '

breakup configuration of the bubble and spike tips, discon-

nected from the ambient portion of their own phase, are alsg, \vhich a

modeled by Eq(1), but with a modified choice of the added '

massK; . It is common to replace the lengits;| in Eq. (1) by

a lengthL having its own dynamical evolution law. Finely

dispersed flows would then have a smaller valud_pfe-

flecting their smaller length scale. . RT MIXING FRONTS
A basic assumption of our analysis is that RT and RM

mixing can be described by a single ordinary differential

equation(ODE) with common drag and added mass coeffi- . ; ;L —

cients. In a previous study] this assumption was shown to work with scaled yarlables. Levi :V.i /. AgZi represe’nt

lead to results in good agreement with the existing experiiN€® scaled velocity of the RT mixing fronts andt

mental data on RT and RM instability. Equatiét) states Edt\/A_g/|Zi| the scaled differential time. Thzen the front ac-

that the acceleration of an edge arises from the net effect gieleration  dV;/dt=JAg|Z;[dV{/dt+AgV, “2=AgdV|/

buoyancy and drag forces, an idea that was proposed for Rit’ +AgV/ %/2. With these scaled variables, @) becomes

instability by Youngs[7]. Force laws similar in form were

used by Alonet al.[8,9] and Dimonteet al. [10-17 to ana- dv/ (=1 .

lyze the trajectories of the spike and bubble fronts in RT and T =(—-1)'— T{1+ Cl[1-(—1)'A]}V/2 (4

RM instabilities. In previous work a self-similar solution is

assumed and the bubble growth rate is determined by substi- _

tution of the assumed solution into the equation. Here wé\Noting that|V/|=(—1)'V], Eq.(4) can be rewritten as

derive an analytic solution for the entire evolution of the RT

mixing fronts in terms of the physical parametefs C; ,k;) dVv/| A

and the initial conditions. Therefore, this work provides a ———=1-3{1+C[1-(—D)'AT}V/|2 (5)

physical understanding for the self-similarity assumed in the dt

other models. The dynamical transition of the system from

an early (but still chaotically mixing behavior to the late As shown in Ref[6], the drag coefficien€; is a function of

self-similarity regime is clearly displayed, and the depen-A alone. For fixedA, C,; is a constant. Leaizz 3{1+Cj[1

dence of the lower than leading order RT solution asymptot— (—1)'A]}. We integrate Eq(4) to obtain

ics on initial conditions is obtained. We also present an

is the growth rate of fluid in the self-similar
regime of RT mixing andA=(p,—p41)/(po+p,) is the At-
wood number.

Assume steady acceleration, so th#ét) =g is indepen-
dent of timet in Eq. (2). In order to solve the ODE2), we

analysis of experimental data that provides a physical inter- 1 (1+alV/Df,
pretation of the meaning of the intercepts of thes Agt? t—th=n— #, (6)
line with the coordinate axes. Finally, an analysis of simula- 23 1-a|Vy|

tion data offers a possible explanation for the deviation of the
h vs Agt? curve from a straight line. A significant.diffgrence'where fio=(1—a|V/)/(1+a]| Vi), [Viol=|V/(ty)], and
between our model and related models appearing in the lit/ =t’(t=t,) are determined by initial conditions. Note that
erature is in the treatment of the drag term in Eg. Ir_1 our 1=a|V/|=0 is a fixed point of Eq(5) and so the argument
model we have consistent[$] used the ambltsnrt‘ fluid (ilen- of the logarithm in Eq(6) is always positive. The solution
ity pi , as discussed by Land@i3], instead of the displac- branch|a;||V{|<1 contains the RT late time asymptotics,
ing fluid densityp, used in work of otherf8—12] (a correc- 1\ 4y ¢ is the physical branch. Sirt€ is a positive mul-
tion to some of the cited work has recently appedrk4). : et
. L : e tiple of dt, we must chooseé’>t;, and then the branch;

Our expression leads to finite values©f in the limit of A =0 is selected. With this choice <0f <1
=1 in contrast to the otherwise zeftmfinite) drag coeffi- Solving E (6) for [V/| gives t’he Isocale. 4 velocities
cient describing a vacuum bubblspike rising in a fluid 9 EQ. il g
(vacuumn). Also our expression gives-dependent drag coef-
ficients if the RT bubble mixing ratey, is independent of e2ai(t’—t6>—fi0
Atwood numberA. These results are consistent with both IVi|= Zat ) : (7)
experiments and numerical simulatioifg. a;(e™ o'+ fio)

For cylindrical bubbles and spikes, we &et-1, and Eq.
(1) becomes Noticing that
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V[ 1 dlz] . d In|z| ® Integrating Eq(15) by parts, we obtain
i :«/AgZ- dt  dt’
| I| Ilzzai[[l"rfioe_zai(t ]1/2a| e(t )/Zai
and substituting Eq(8) into Eq. (7), we have
! ! f
din|z;]  e*t -1 © —(L+ i)V +—|2], (16)
dt’ a,(e2it' ") 4 f,0)
where
Integrating Eq(9) and using the formula
t’ P 02002
dx 1 . IZEf, [l+fioe—2ai(t to)](l 2a’)/2a;
f mzﬁ[mx—ln(aﬂLbe )], (10 to
« (' —t))[(1—4a7)/2a;] 2
we find that the trajectories of the RT mixing fronts are given e dt (7
by Similarly, integratingl, by parts gives
’ ! 1/3-,
fiore o™ —2a(t’ ~t})(1-2a2)/2a2
_ —(t' =ty =l— + it
|Zi|_|zi0|{1+—fio e~ (' tofa (11 2= 1— 4 {[1+fioe °

Xe(t’fté)[(lf4ai2)/2ai]_(1+flo)(172ai2)/2ai2} +1a,
where Z;p=2Z;(t;). Substituting Eq.(11) into Eq. (7), the '

(unscaled velocity of the RT mixing front can be expressed (18
as
where
’ ’ ’ ! 1/221-2
(e2( 7t —f,g) | fp+e?a(t 7t |7 2fo(1—2a%) (v
Vi|=+Ag|Z, . EMJ" 23t —t)1(1-4ad)/2a;
Vil =VAg| 'Olai(ezai“ il 1T 3= g2 ' [1+fe o]
x et ~tg)2a; (12 x el1-820)12a; gy (19

_Next we determine ”"e relationship betwe@mdt’. Sub-  Here we see that sina#=1/2, 1 is small relative td , and
stituting Eq.(11) into dt’ =dtyAg/|Zj| gives l,, i.e., 13<1,<I,, for t'>tg. Thus, neglecting the smaller
terms=<0(l3), and substitutind, into 1,, we have the ap-

1/2a? . .
proximate evaluation

) 2a;(t' —t()
Toalca ef(t’*t(’,)IZai

f
— At 7. |1/2
VAg dt=dt’|Z;| 177,

13

11=24 [1+fioe*Zai(t'*té)]l/2aize(t’ft6)/2ai
and therefore the relationship betweeandt’ is given by
2 f;
1/2a2 i0
/|Z [ £+ €20t | V20 —(Hhe) T T
t—to_ i ft io e*(t'fté)/Zaidtr. i
1+fj X{[1+fioe—zai(t’—t(’)>](1—2ai2)/2aize(t’—té)[(1—4ai2)/2ai]

(14

Clearly, for any value oé;, this integral can be evaluated —(1+ fi0)<12ai2>/23i2}] . (20

numerically. It determines=t(t') as a function ot’. Sub-

stituting the functional inverse of Eq14), t'=t'(t), into

Egs.(11) and(12) determines the entire dynamical evolution For larget’, e~ (' ~')<1. Using the Taylor series expansion

of the RT mixing fronts. and lettingx=e(t' ~10/2 e further write Eq.(20) in the
To illustrate the information contained in this solution, we form

consider its late time asymptotics. At late timéxt,. We

rewrite Eq.(14) as
(9 I,=2a;x 1—E+ﬂy—22+y—32 , (21)
X X4ai X8ai
2
(1+fio)l/2ai |Z |(t tO) f [l+f e 2a;(t' — ]1/221
where
Xe(t/—té)/Zaidt/ , 5%
=(1+f) V8| 1+ i ) 22)
=1,. (15) 7=(1+fio) (1+fio)(1-4a)) (
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fio fio(1-2a)
=7 and y;=—o——-. (23
Y27 2a2(1—4ad) a’(1-4ad)

At late time, x>1, x 2<x~!. Noticing thata?>1/2 and

ignoring high order terms, we obtain

> [ Ag
(1+fip) 1% \/W(t_to)%zaix
I

Therefore the relationship betweeh-t; andt—tq is

(1+f¥=  [Ag

e(t’ —t0)/28; —

In terms ofx, the trajectory and velocity of the mixing fronts

in Egs.(11) and(12) become

|Ziol a2 .2
|Zi(t)|:(1+fl a7 (1 fiox e
i)~

2
4]

4a?

ai(1+fi0)1/2ai2 X

Y1
1- Y) . (29

X=vy,+ t—ty).
7 2a; |Zi0|( 0

—2a2)/2a2
V| = Ag|Zio| (1 fi0)<1+ fio)(l 2a7)/23;
i|=— 1- .
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—— Exact solution
-.-.. Late time solution

ook aAgt

A=0.938
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R
-
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-
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FIG. 1. The entire dynamical evolution of the trajectory of the
bubble front forA=0.938. The solid line represents the exact solu-
tion, the dashed line denotes the late time asymptotic solution, and
the dotted line gives the pure leading order asymptotic solution.

We see from Eqs(30) and (31) that the corrections to the
leading order expressions foZ;| and |V;| depend on the
initial conditions. This result is consistent with recent nu-
merical simulations of Younggl6].

The entire dynamical evolution of the trajectory of the
mixing fronts (for both early and late timdas computed nu-
merically. The results are shown in Fig. 1, where we have
plotted the exact solution for the bubble front at Atwood
numberA=0.938 as a solid line. The dashed line represents

For larget’, x>1 so these solutions have the approxima-ne |ate time asymptotic solution and the dotted line denotes

tions
|Zi(t)|:—|zi0| 2<1+l§x4a?)x2
(1+fip) ™ 8
and
v, VAQIZol [ (4af-D)fip fi(1-2af)
Uoa(ltfi¥A | T 2ak 4 2a% %

the full leading order approximations to the late time asymp-
totics. From Fig. 1, we see that the full asymptotic solution
approaches the exact solution and represents it well even for
rather modest values @, /Z,, while the pure leading order
asymptotics converges much more slowly. Of the three pa-
rametersZ,q, Vg, andty needed to set the initial conditions
for Eqg. (5), only two specify independent solutions, as the
third amounts to translation along a solution trajectory. In
this log-log plot, the slope is determined by the exponent 2 in
t?, and the intercept is determined by the growth constant
ap. Thus both are determined by the leading order asymp-

We now examine the late time trajectories of the mixingtotics. The deviation from linearity is determined by the

fronts. Substituting the expressi¢25) into Eq. (28), for ai2
>1/2 (in most cases the second term in Eq28) is negli-

gible compared with the first term. We then get

1 Y1 2
Zi(t)|~ =5 Ag(t—tg)?+ — (1+f;o) VA
|Zi(1)] 4ai2 a( 0) ai( i0)

2
71|Z‘0|
X VAGIZiol (t—tg) + —————.
(1+fi0) ™

Substituting Eq(25) into Eq.(29) and neglecting the high
2
order termsO(x~43) for larget, we obtain the late time

velocities of the mixing fronts,

v AGZe L s VAGZdl
| ai(1+fio)1’2ai2 2a7 ° ai(1+fio)1/23i2'

lower than leading order terms. In more customary pllts

ear in theZ and Agt? variables, the slope is determined by
ap, i.e., the leading order asymptotics, and the lower than
leading order asymptotics determines the intercept of the
growth curve with the coordinate axes, as well as any pos-
sible deviation from linearity. The nonzero intercepts are
clearly visible in some of the experimental data and the de-
viation from linear growth inAgt? is clearly visible in most
simulation studies, as we see below.

To compare our exact solution with experimental data, we
take experiments No. 103AE0.938) and No. 101 A
=0.829) conducted by Smeeton and Yourid$] at the
Atomic Weapons EstablishmetAWE) as examples. The
bubble drag coefficients for these two experiments, inferred
from Eqg. (3) and the experimentally determined value for
ap, Is C,~3.8. Substituting these numbers into the
equation, we obtain the solution for the bubble fronts
corresponding to experiment 103 displayed in Fig. 2. Here
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100.0 T T T T T 6.0 T T T T
Data of Expt.103 (Smeeton & Youngs)
L BN J P 1:4
4642 % Exact solutions for A=0.938 / sgl & ¢ DataofFT 4
e o At , 2,=0.059 ) I I Exact solutions for A=0.5
21.5 -1 == a, Ag¥, a, = 0.0625
g 3.6
E 100 . 2
o
o
L T << ) [
25—~ & T
4.6 1 ‘T
Zo0es &~ T
22 - t3- 7 T Vpo=0.1, t;=0.775 7
1.0 A B S
10 22 46 100 215 464 1000 0.1 S : : :
Agt* (mm) 0.1 121 241 36.0 48.0 60.0

Agt®
FIG. 2. Comparison of the exact solution, late time pure leading G c ) t simulation d ith th luti f
order asymptotic solution, and the experimental data. Multiple exact FIG. 4. Comparison of simulation data with the exact solution o

solutions are obtained by varying while Z,, and V,, are held the model equatipn. The model equatitlid curve providgs a
fixed. possible explanation for the curvature of the data. The leading order

asymptotics is shown as the dash-dotted straight line.

we have choseZ;;=0.1=V,q and used, as a fitting pa- - . . .
rameter to obtain agreement with the experimental data{[.he ODE initial conditions. Our solution offers a theoretical

Thus the experimental slope and linear offset yietds faxplanatior) of these nonzlinear Iog-log. intercefie., the

while the nonlinear offset or intercept givésg. This figure mtercepts in theZ vs A%t . ploty. The |r_1tercepts for the

shows very good agreement between one of the calcuIaték%lea”yhplqtte.dlz vs Agt” line darg e_xpefrlmer?_tally _obser\r/]-

solutions and experiment 103, and provides a modest img e. The initial curvature, or deviation from linearity in the
|

2 .
rovement to the pure leading order (fihe dot-dashed line VSAQt p'af‘e’ oceurs too early to be obsgrved experimen-
ipn Fig. 2 to the daE[)a 9 d tally. We see in Fig. 3 that one of the solutions obtained by

In Fig. 3, we show the solution dependencezag. As is varying Zig agrees with thg data from experiment 101. Our
clear from Fig. 3 or from Eq(30), a positiveZ;; amounts to prefterred ?glutlon, a_ppILQXIrgateiI&b?iQt.??H b(;a(t:ketfed by .
a shift of the solution upwards, and thus gives an intercept one :vlooiobl ttcurt\;]es 'g Ig.th' ¢ ear;l/ tl St' € data otet>i<per|-
the positiveZ; axis. From Fig. 2, we see that the influence ofg]e;nd h de er f”‘”th.oe]?: e pure late time asympt(ities
to on the solution is primarily to shift the entire solution to ot-dashed curve in this iguice . .
the left or right. However, only the valug>0 should be In simulations datza can be recorded at all tlme_s. The lin-
admitted, corresponding to a shift of the solution to the right.early pIotfcedZ vs Agt” curvature or Iowe_r than leading order
Such a shift will give a solution which has an intercept onasymptotics of the solution may contribute to the observed

the AgE® axis, or at most a bounded distance along e [ SETVEE T B JCE S S ECeE e the
axis, as occurs in Fig. 2. Similarly, only positivg, should

be admitted as initial data. It follows that a suitable choice Ofexperlments, so the lower than leading order asymptotics

initial conditions will allow for an arbitrary positive intercept |CnOL[i|id rzab\?ea}[;fgttﬂzlﬂg& It?at?lfir?g'?l)y :;f’nsrast:g]nusla;;oge?ata'
on either axis for the solution, by varying;, or ty, for 9- & :

: : - [17], with Z,, plotted vsAgt?> and compare with the solution
example. However, the intercept does not uniquely determm%lf the buoyancy drag equatidd) with initial conditionst,

100.0 . ; , ; . =0.775,Z,,=0.185, andVy,o=0.1 for A=0.5 andC,=4.6
which corresponds to am,~0.0625.

These parameters are determined as follows. Only two of
the three initialization parametetg, Z,, Vo change the so-

e o Data of Expt.101 (Smeeton & Youngs)
46.4-" 7 Exact solutions for A=0.829
. @y AGE, a, = 0.063

215 - lution trajectory independently. Thus two parameters are
T used to make the solution pass through the first point of Fig.
£ 100 - 4. The single remaining solution paramet@y,, is modified
&L to force the solution to fit the remaining three points. Thus
461 _ Cp and ap= a,(Cp) are determined directly from the simu-

Zyget0 lation data. This method of determining, emphasizes the
. Yyo=001, tg=0 . later time data, and for this reason, we obtain a lower value
L ap=0.0625 than the value,= 0.07 obtained previously, us-
1.0 Sl ; : ! : ing a straight line fit to the datdl7].
10 22 46 Agt'18?1m) 215 464 1000 In order to see the whole picture we also replot these data
in a logarithm scale in Fig. 5 and display the experimental
FIG. 3. Dependence of the exact solution on variation of initialdata from experiment 101. In both figures, the dash-dotted
data ¢;,), while Vo andt, are held fixed. line is the leading order asymptotics for this same value of
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1000.00 ' ' ' ' 1 -1
V/|=|——+a?(t' —t}
¢ o Data of Expt.101, A=0.829, o, = 0.068 Vil Vol ai( o]
100.00 ® @ Data of FT —
- Exact solutions
_____ o, Agt', A=0.5, a, = 0.0625 2 1y 2
! ! N
10.00 . 1Zi|=|Zjo|[1+ & Vio| (1" —tg) M. (34)

100 The correlation function betweén-ty andt’ —t is found as

Zy,p=0.185
Vpo=0-1

0.77d ' ARV Y
0.101 vy B 1+af| Vil (" —tg)
e 2 2
0.01 il 1 [ A (1+2a?) v’ 2a;/(1+2ay)
N Od 1 1 1 | — + - K t — t .
0.1 1.0 10.0 1000 10000  10000.0 |Ziol 2 [Viol(1=to)
Agt®

(35
FIG. 5. Comparison of simulation data with the exact solution of

the model equation in a large scale. The solid curves provide & pstituting this into Eq(34), the trajectory and velocity of
possible explanation for the curvature of the preasymptotic snmula{he RM mixing edges at timeare obtained as follows:
tion data and for the straight line of the asymptotic experimental

data. The pure leading order asymptotics is shown in the dash-

dotted straight line. z

1 iz i)|V [(t—1to)
+— . —
2|Zio| ' 0

2/(1+2a?)

|Zi(D)|=1Zio] (36)

ap. The data, for both simulation and experiment cover
about one half decade of variation f@, or Agt®>. The ex-  and
perimental data relate these variables in a nearly linear man-
ner, and a fit to the slope determingg. The simulation data
are not close to linear, and so although the repodgavas IVi(1)]=|Viol| 1+ ( ) Vol (t—to)
determined previously by a straight line fit, and it is here ' ' 0 2|Zio] 0 0
determined by a one parameter fit to nonlinear data, neither 37
has the same significance as the linear fit to a nearly straight
line, as with the experimental data. In any case, we believdhese solutions are consistent with the solutions in R,
that the valuea,=0.0625 determined here on the basis ofwith the added feature that the exponents and coefficients in
solutions to Eq(1) improves on that determined earlier us- Egs. (36) and (37) are here explicitly related to the drag
ing a straight line fit. In both the experimental and simulationcoefficient and Atwood number.
case, Eq.(1) offers preasymptotic behavior as a possible For larget, the trajectory and the velocity of the mixing
cause of the deviation from linearity of the data. Finally, wefront of phase have the asymptotic behavior
note that the simulation and experimental data cannot be
compared directly. The axes in all the figures have units of |Zi(t)|~ | Zio| X~ | V0| gi*"i(t_to)ﬂi (38)
length. For the experiments the length unit is determined in
physical units, while the length unit for the simulation is and
arbitrary. However, to fit the simulation data and the experi-
mental data in a single solution of Ed,) shows qualitatively o
the asymptotic regime of the experiment data and the preas- IVi(0)]~1Ziol T W Vigl 6 i(t—t) %L, (39)
ymptotic regime of the simulation data.

In RM mixing, g(t)=6(t). Fort>0, Eq.(2) becomes  where;=2/(1+2a?). Clearly, forA=1, ;= 1. This result

agrees with theory and with existing experiment data. We

1-(—1)'A Vi2 also see that unlike RT mixing, the dynamical evolution of
—F— =+, i=12. (32 the mixing layer in RM mixing always depends strongly on
2 1Zil the initial conditions.

2 }(12ai2)/(1+2ai2)

N “1ic
T

In terms of the scaled variablesy|=V,;/JA|Z;], dt’

. IV. CONCLUSIONS
=dtyA/|Z;|, it reduces to

A complete, closed form solution for the edges of the

d|v/| mixing zone of acceleration driven RT and RM mixing lay-
d_t’I: - %{1+Ci[1—(—1)iA]}|V{z| = _ai2|vi'2|_ ers is given; in_ the RT case, thg solution contains a quadra—
ture. The late time RT asymptotics, through terms which are

(33 O(1) int, is obtained approximately in closed form.
The solution is based on a buoyancy-drag ODE, with a
This equation is easily solved by integrating twice with thepreviously validated choice of drag coefficient. The solutions
results provide the clearest explanation offered to date of the often
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