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Self-rotation in electrocapillary flows
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The mechanism of appearance of swirl in a certain class of converging flows is investigated numerically. The
analysis is motivated by the spontaneous generation of swirl, which has been observed in electrified menisci
(Taylor coneg The electrical stress acting on the cone surface drives these electrified millimetric fluid flows.
Numerical results show that the primarily swirl-free meridian flow is unstable within an interval of values of
the Reynolds number based on the surface stress. For values of the Reynolds number outside this interval,
which depends on the forcing conditions and the geometry of the flow, the nonswirling meridian flow is stable.
The instability mechanism of circulation amplification, which has nothing to do with the well-known increase
of swirl velocity due to the vortex stretching mechanism, is due to a convection-diffusion effect. The circula-
tion accumulated at the axis zone by the converging meridian motion is pumped by diffusion toward the
conical surface. This feedback loop mechanism shoots the circulation amplification for values of the Reynolds
number larger than a critical one. The same instability mechanism of swirl amplification could also appear in
other converging flows generated by body for@esatural convection, electrical forces, eic.
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[. INTRODUCTION jarevics experiment among others. A Taylor cone forms at
the exit of an electrified needle when a liquid is injected
Swirl generation in fluid masses without any apparenthrough it at appropriate flow rates. Details of a typical ex-
cause leading to it, namely self-rotation, is met in many natuperimental setup are given in R¢.0] among many others
ral systems. For example, the rotation observed in spiral gal-11].
axies, protostar nebulae, and other astrophysical obj&tts Liquid motions inside the Taylor cone, which have been
Hurricanes and tornadoes are also examples of natural flowscently investigated, in Ref$9] and [12], are driven by
where the generation of circulation remains also unexboth the tangential component of the electrical stress acting
plained. In a more humble scenario, the bathtub vortex is an the gas-liquid interface of the meniscus and the injected
classical example closely related to self-rotatjgh A care-  value of the flow rate. Moreover, as shown by experiments,
ful experimental investigation on swirl generation in a bath-the flow pattern depends strongly on the properties of the
tub, [3] has shown that swirling motion around the sinkholeliquid that is being electrosprayed, mainly the viscosity
appears only when the sink flow rate exceeds some threshofthd the electrical conductiviti. In fact, when liquids with
value. In any case, whether the bathtub vortex is either due teufficiently high values of both electrical conductivity and
symmetry breaking at a certain threshold value of some paviscosity are electrosprayed no noticeable motion different
rameter of the problem or external forcing is still a matter offrom the pure sink flow corresponding to the imposed value
controversy[4]. A recent experimental investigation on the of the flow rateQ is observed. For such liquids the voltage
appearance of swirl in a confined sink flo®] suggests that drop in the liquid is so small that the tangential electrical
the formation of the vortex is due to a supercritical bifurca-stress on the surface is negligible.
tion at a certain critical Reynolds number. In addition to the When we use liquids with smaller values of the electrical
above mentioned cases, other examples of spontaneous anductivity and viscosity, the tangential electrical stress at
pearance of circulation in flows under well-controlled experi-the surface increases and, consequently, the velocity induced
mental conditions are, i.e., free convection in a sealed cylinby the stress increases too. If this characteristic velocity is
der [6]; a horizontally oscillating glass of watdi7]; an  larger than that due to the flow rate, a recirculating meridian
electrically driven flow of mercury in a cu8]; and the flow motion, towards the apex along the generatrix and away
inside electrified menisdi9] (Taylor cones in the electro- from it along the axis, appears. The liquid lying close to the
spray literaturg surface is ejected through the jet while the rest recirculates
Although spontaneous circulation is a common feature irtowards the apex along the generatrix. The two flows are
all these different flows, the physical mechanism leading to iseparated by a dividing stream surface passing through an
can be entirely different for each one of them. Here, we arestagnation point located at the axis at a certain distance from
interested in the discussion of the mechanism of spontaneotise cone vertex. Figure 1 shows the projections of the par-
appearance circulatiogswirl) in primarily swirl-free, merid-  ticle path lines on the meridian plane of a Taylor cone or-
ian recirculatory flows. Note that we refer to generation ofthogonal to the observation axis. It should be pointed out that
circulation instead of generation of large swirl velocities with the shape of the electrified meniscus becomes more conical
constant circulation as it occurs, for instance, in convergings the applied voltage increases, but the flow pattern remains
flows due to the vortex stretching mechanigsamgular con-  essentially identical to the one in Fig. 1. Propylene glycol
servation momentuin Meridian recirculatory flows take doped with a small amount of hydrochloric acid to enhance
place inside electrified menis€Taylor coneg or in the Bo-  its electrical conductivity K=0.015 S/m) has been used.
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ity much smaller than those of the propylene glycol
(~1500 and 60 times less conducting and visg¢ouas the
liquid used in this experiment.

The Reynolds number, defined from a characteristic ve-
locity of the liquid and the needle diameter is the only dy-
namical parameter making a difference between the two
cases considered in Figs. 1 and 2. Based on experimental
observations, the Reynolds number of the motion was esti-
mated to be %10 2 for the propylene glycol case and 50
for the ethanol casp,12].

To explain the appearance of circulation in primarily me-
ridian recirculatory flows such as the ones inside Taylor
coneg[12] (also in the experiment by Bojarevi¢8,13]) we
considered the self-similar motion of a liquid inside an un-
bounded cone driven by a stress in the radial direction, which
varies as the inverse of the square distance to the cone vertex
r*; the component of the stress in the azimuthal direction
being zero. Thus, the Navier-Stokes equations reduce to a
system of nonlinear ordinary differential equations that de-
termines the velocity vector and pressure field. The results of
the self-similar analysis show that swirl appears owing to
. .. bifurcation from a primarily swirl-less meridian flow where
AI.SO’ similar flow patterng are_observed when _other IIqUIdSthe liquid moves towards the vertex along the generatrix and
V.V'Fh values of both the viscosity and the electrical Conduc'away from it along the axis. This bifurcation occurs when a
tivity of the same order are used.

In contrast, it is found that the streamlines are not Con_characterlstlc Reynolds number of the motion is larger than a

tained in meridian planes when liquids with sufficiently threshold value, . . .
small values of both the electrical conductivity and the vis- C'€arly, the assumption of an unbounded conical domain
cosity are electrosprayeihe case of liquid paraffins and required fo_r t_he existence of self-similar solutlons_could put
some alcohols see Fig. 2. As shown in the figure, there areSOMe restrictions for the_ re_levance of the self-similar results
an intense motion in the azimuthal directiGwirl) in addi-  regarding to real flows inside Taylor cones. Another draw-
tion to the meridian one. Figure 2, which results from superback of the analysis by Shtern and Barr¢id] is that, in
position of several consecutive video frames, shows the prd€al Taylor cones, the tangential component of the electrical
jections of the particle path lines on the meridian plane of thelreS$ scales with the distance to the vertex in the form
Taylor cone orthogonal to the observation axis. Ethanol, a§* ~» see Ref[10], while anr* = dependence is required

purchased, which has values of the conductivity and viscosfor the Navier-Stokes equations becomes self-similar. It
should be pointed out that for very high Reynolds numbers,

the Euler equations also admit self-similar conical solutions
if the driving stress has the form.,~r* ' (I being any
real number[14]. Nonetheless, such inviscid analysis is not
appropriate to investigate the existence of bifurcations at fi-
nite values of the Reynolds number.

To enhance the knowledge on the phenomenon of sponta-
neous appearance of circulati@wirl) in Taylor cones when
a parameter(the Reynolds numbgrexceeds a threshold
value, we have considered the axisymmetric motion of a lig-
uid inside the conical domain of Fig. 3. The motion is driven
by a stress in the radial directionx, acting at the conical
surface. The axisymmetric Navier-Stokes equations govern-
ing the problem are solved numerically. Since, as in real
electrosprays, there is no direct mechanism of swirl genera-
tion, we are looking for the conditions at which intense swirl
motion appears in addition to the meridian motion generated
by the forcing stress.

The paper is structured as follows: Equations and bound-
ary conditions for the modeling of the flow inside Taylor

FIG. 2. Particle path lines in an electrified meniscus of ethanolcones as well as a brief description of the numerical scheme
Trajectories show unambiguously the existence of an intense switised to integrate the equations are given in Sec. Il. Finally,
in the liquid motion. results are presented and discussed in Sec. Il

FIG. 1. Particle path lines in an electrified meniscus of propy-
lene glycol. No azimuthal velocities are observed in this case.
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and the radial component of the electrical field is almost
exclusively due to electrical conduction,

|
E * = ’ (5)
' 27(1— oSO, )Kr*2

where vy is the liquid-gas surface tensiop, is the permit-
tivity of the vacuum K is the electrical conductivity of the
liquid, andl is the current emitted throughout the jet.

A. Governing equations

For the numerical computation of the axisymmetric mo-
FIG. 3. Sketch of the conical domain considered in the problem{ions considered here, it is useful to infroduce a stream
function-vorticity formulation. Therefore, we define dimen-
I. PHYSICAL MODEL sionless axisymmetric meridian stream functibrand a cir-

. _ o _culationI” such as
We have considered the motion of a liquid inside the coni-

cal domain sketched in Fig. 3, 1 9 1 9v

Y 2gng a0 Y rsng o ©
Risr*<sR,, 0s6<46,., (1)
. . . _ and
R, is typically the distance from vertex to needle, ddis
small as compared tB,. The needle diameter is related to r
R, asd=2R, sin 6, whereé, is the cone semiangle. Up=" snd’ W)

At the conical surfaced= 6.), we assume that there is a
tangential stress pointing to the vertex, which drives the lig-

uid motion. This stress depends on the dimensional distané@here Ur, Uy, and Ug are t_he radial, po!ar, and az_|m_utha|
to the vertexr* as components of the dimensionless velocity of the liquid. All

variables are dimensionless aR¢g andv/R, have been cho-
sen as scales of length and velocity, respectively. Therefore,

pv?
Tyx H(I’*)Z —Re—

R |
1) ?

V=v/py and [=T/v, (8)

wherep is the density of the liquidy is the kinematic vis- where¥ andI’ are dimensional stream function and circu-
cosity, andl is any positive real number. Note that we havelation, respectively. In addition, we define the new variaple
excluded the small region near the vertex 0" <R, from  (related to the azimuthal vorticity ;) in the form

the domain since the Navier-Stokes equations in spherical

coordinates are singular at the origin; also the driving stress ) . [d(ruy)  du,
(2) becomes singular at the origin. Note also that the Rey- 7=rsinfwy=sing| ——=—5/, ©
nolds number has been defined here from the strength of the
driving stress. Therefore, if one introduces arbitrarily a charg that, taking into account E¢g), Eq. (9) reads
acteristic velocity of the motion defined as
R (Ry) PE A wa\If 10
Tx =—————|—5—cotd—|.
chw, (3) K a2 r2\ g2 a0

pv

. Two additional equations fdr and » are obtained from both
the Reynolds number of the motion has the usual form Rene azimuthal momentum equation

= VCR2/V.

In real electrosprays, the value of the exporléntEqg. (2) DI 2T 1[4 g
is close to the valué=2.5[10]. In fact, the electrical stress =+ = ( - Cotg_) , (11)
is given by« y= B.E4E+, where the normal component of Dt g2 2\ 902 a9
the electric field is approximately given by Taylor’s value
[15], and the azimuthal vorticity equation
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Dy 2r (91“+2Fcosa al“Jr 2y ¥
Dt r3sing 90  r2sirfg I  r3sing 90
r2silt e 9r a2 r2\ 962 a0’
(12
where
D J 1 oV 9 1 oV 9
- - (13

is the total derivative.

B. Initial and boundary conditions
At t=0, the liquid is assumed to be at rest, hence

V=T=7=0, (14)

at any point inside the considered domai*R;/R,<r

=<1, 0=#6#=46.. Alternatively, any steady solution with a
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In principle, condition(18) on the spherical surfaces= 6§
andr=1 would have nothing to do with real Taylor cones
where there is a net flow rate through it. The azimuthal ve-
locity will increase enormously along the converging stream-
lines that issue throughout the jet, but circulation will remain
almost constant. As shown in the analysis, the amplification
(generation of circulation, which occurs in Taylor cones, is
due to bifurcation from a primary meridian recirculating
swirl-free flow. In real situations such a flow presents when
the injected flow rate is near the minimum one compatible
with a stable cone-jet mode configuration. In this case, the
velocities due to the electrical stress are much larger than
those due to the injected flow rate and most of the liquid
recirculates along meridian planes. Since we are interested in
the description of the trigger mechanism of such bifurcation,
we have not considered the influence of a nonzero, but small,
flow rate.

Conditions of regularity and symmetry must be satisfied
at the axis,#=0,

Reynolds number close to that of the numerical solution wey,, corresponding conditions féF and 7 are
are looking for may be used as initial condition to start the

numerical integration.

In real situations the gas-liquid interface, whose shape
results from a balance of the capillary, electrical, and dy
namical pressures, does not differ substantially from th
conical surfacef=6.. This observed conical symmetry is
explained from the fact that the effect of the dynamical pres
sure is almost negligible as compared to the other two effec
(the Taylor solution corresponds to the static ¢ga$his qua-
siconical shape gives strong support to the assumption thaf
indeed the shear stress at the surface of the conical menisc

follows a power law withr as given by Eq(2).
Therefore, atV= 6. we have for the driving stress

nO0=020r\ x| 2r 90,
and
_|sing d [ uy o 16
Todlo=0.=| 21 35| sing o (16
4

2o, 19
Up=Up=—5=0; (19
»=T=0 at 4=0. (20)

Keliable boundary conditions at the spherical surfaces

andr =1 cannot be obtained from experimental observations
since the measurements of the velocity field inside the elec-

tt’:’rified meniscus are still lacking. On the other hand, @4)

IS linear inI", so that some source of angular momentum is
eded to have solutions of the axisymmetric Navier-Stokes
guations with nonzero circulation. In electrocapillary flows
this source could be due to some nonsymmetric conditions of
the capillary needléroughness, skewness, et€herefore, to
model the influence of small perturbations in the circulation
at the upper boundany=1, we assume

I'=esifgatr=1, (21)

wheree is a nondimensional constant that is assumed to be
very small €<1). The dependence &f on 6 in Eq. (21) is

just the one to satisfy the conditions fbrin both the axis
and the conical surface. Clearly, the numerical solution will
depend on the chosen valueefso that, for each value @f,

aries. Sincauy,=0 at #= 6., Eqgs.(15) and(16) taking into
account Eqs(9) and (10) become

ar
n=2Resinds1™! and 24 ~2lcotf=0 at 6=0,.
17

(one diagram for each value af); the critical Reynolds
number at which bifurcation occurs being a function eof
Nonetheless, it is small enough, the numerical solution and
the critical Reynolds number become independert diote
that the limit cases=0 is different. In this case no bifurca-
tion occurs and only the trivial solutiofi=0 exists.

In addition, we suppose that the forcing stress at the coni-

The boundaries of the domain in Fig. 3 are assumed to bgal surface is the only source of azimuthal vorticity in the

impermeable, so that

=0 at 6=0,0=6,,r=6, and r=1. (18

domain[see first equation in Eq17)], so that, we assume

n=0 atr=¢6 and r=1. (22
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Finally, regarding boundary conditions dn at r=45, we 8
arbitrarily assume

ar_,
a_ .

(23 6r

. . . r
As an alternative to conditiof23), we have considered that — max
the surface stress in thg direction vanishes at= 6 41

dr
o4 =0 or, equivalently,——2I'=0. (24)
dr 0.00004

The use of these two alternative boundary conditions allows
us to know their influence on the swirl generation process.
As shown by the numerical results the swirl generation is 0

independent of using either E(3) or Eq. (24). System of 0 04 0.8 12 16
second-order, nonlinear partial differential equatighe)— t
(12) together with initial and boundary conditio(#4), (18), FIG. 4. Time evolution of the maximum circulation in the do-

(17), (20), (21, (22), and eithen23) or (24) yield the values  main for three different values &f and for Re=8.95, §=0.1, and
of ¥, I', and n as functions of the variables ¢, andt and  §,=45°.
dimensionless parameters R, 6., |, ande.
We solve the nonlinear systerf?5) using a standard
C. Numerical procedures Newton-Raphson procedure from an initial guess

We have used two different numerical schemes to solve DF(WI,TY, 7':\)(8W, 6T, 87)=—F(W T, 7))
Egs. (10—(12). The time evolution of the flow inside the o T o ’(26)
domain has been calculated by using an explicit method.

Alternatively, a Newton-Raphson scheme have been used to  yyi+1_ i SU, THI=Ti+ 8T, 5 *l=7+57.
obtain steady state solutions of Eq$0)—(12). In the first (27)
method, Egs.(10)—(12) are discretized in space using a

second-order central-difference approximation to spatial definally, we have used and standard iterati¥@RES solver

rivatives; a uniform grid ofM XN nodes in the numerical (Slatec package from ITLto calculate efficiently the inverse
domain has been considered. A two-step, second-ord&jparse Jacobian matrixF.
predictor-corrector scheme has been used to integrate Egs.
(1) and(12) in time. Finally, we have used the matrix di-
agonalization methoflL6], whose computational complexity
is of the ordeMNMmin(M,N), to solve efficiently the Poisson A. Bifurcation diagrams
equation in Eq(10). Several mesh sizes and different inte-
gration time steps depending on both the Reynolds numbein in the conical domain is shown in Fig. 4. It has been
Re, and the geometrical parametérand 6, have been used ;I?:ﬁlated numerically for Re8.95, 5=0 1 0' —45° |
to integrate the discretized equations. The main drawback oiz 5 and three different values of (6':’4;10_5 e
this method is th‘?‘t the integr_ation_ t_ir_ne ”ee‘?'?d to reach E;0:0’4, ande=4). We found that if the Reynolds nun”lber is
iﬁr??%esﬁgsg:gg?u:]%r;a given initial condition Increasesgreater than a thresho!d vaIugCF(eriti_caI value., the steady

: state value of the maximum circulation experiences an enor-

Bifurcation diagrams can be obtained with much Iessmous amplification with respect to the value of the seeded

o e coeton e eno et ochare, SRETUTCALON: (S the casee-4 10 ande=0.04 1 i,
y ‘ ' , while no amplification occurs for values of the Reynolds

resultant equations of removing the time law derivatives in o
: . 4 .. humber smaller than the critical value. As expected, the nu-
Egs.(10)—(12) are discretized using second-order central dif- . .
merical solution depends on the valueeyfthe steady state

ferences. It yields a system ofVBX N nonlinear algebraic s . . . a .
equations for the unknown valud, 7., ¥, in each node valuel'; ., being different in the case=4 than in the_ other
two cases. Note, however, that for valueseobufficiently

= = = =N
Ee \(/vr:}t?e)n ;S\ M=M,1=n=N. This nonlinear system can small, the differences between the values of the steady state
become practically indistinguishable from each offsee the
F(V,I,7;0)=0, (25) casese=0.04 ande=4x10"5).

The independencef the steady solution on the seeded
where F is the matrix resulting from the discretization perturbatione, for e small, is due to the enormous amplifi-
procedure and\ represents the characteristic parameteication undergone by the maximum circulation during the
vector of the problem, which in our case contains Rg, 8,  transient process. In the cases 0.4x10°°, T'},,, is about

e, andl. one hundred and fifty thousand times larger than the imposed

IIl. DISCUSSION OF RESULTS

The time evolution of the maximum value of circulation
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25 in Figs. 5a) and 3b), the value of the critical Reynolds
@) P number decreases whéimcreases; Re=10.2, Rg=6, and
ool - Re,=2.8 forI=2, 1=2.5, andl =3, respectively. This be-
e havior lies on the fact that for given values of both the Rey-
.7 nolds number and the geometrical parameters, the driving
15} 7 stress(15) and consequently the induced velocities increase
s ’ with I. Therefore, the larger the value bfthe smaller the
max Reynolds number at which convection becomes important to
101 shoot up the instability mechanism.
It should be pointed out that the bifurcation diagrams can
5| be also obtained by shedding an initial circulatimall
perturbation in the whole domain instead of forcing with a
small perturbation at=1. We found that if the Reynolds
0 s number is smaller than the critical one, RRg;, the initial
0 10 FQ{O so | 1 a0 perturbation in the domain is damping down and a solution
© Re Re, with I'S=0 is obtained. On the contrary, for Reynolds num-
40 bers larger than the critical, the flow evolves towardE®a
(b) #0 solution. Numerical calculations show that circulation
85r , remains zero at any time if both the forcing perturbation at
a0l ,/ boundaryr=1 is zero €=0), and no circulation perturba-
=3 tion is shed in the whole domain. This is due to the fact that
251 ,’ if T is zero every where at a given tintg, the numerical
max o // evaluation of each term in Eqll) leads identically to zero
; [=2 - at any timet>t, . That is, the truncation and round-off errors
5L 7 -7 are zero in the numerical integration of E4l) if I'=0 in
/ -7 the domain and its boundary at the initial time.
101 Let us finally point out that the effect of nonsymmetric
sl perturbations on the flow, which has not been considered
here, they could be analyzed either by numerical simulation
0 : s or by a linear analysis of the stability of the symmetric so-
0 Rle??:B) Rle:(3) ﬁ% 60 R|e:(2)8° lutions under small nonsymmetric perturbations. Nonethe-

less, both studies are beyond the scope of this work.
FIG. 5. Bifurcation diagram of the steady state value of the
maximum circulation in the domairi},,,, as a function of the

Reynolds number far=2.5, 6=0.1, andd.=45°. The dashed part The instabilit hani b lained bearing th
of the curve corresponds to flows with vortex breakdown. Values of € instability mechanism may be explained bearing the

both R& and Ré are indicated on th& axis. (b) Bifurcation dia- circulation equation in mind

B. Instability mechanism

grams of the steady state value of the maximum circulation in the dr
domain,T},,,, as a function of the Reynolds number 6+ 0.1, - =V?I'—v.VI. (29
6.=45°, and two values of . The dashed part of the curves cor- dt

responds to flows with vortex breakdown. Values of both Raed
Re! are indicated on th& axis.

At sufficiently small Reynolds numbers, convection of circu-
value of the perturbation; this figure is one thousand timesation I" is negligible. Circulation is transported by diffusion
less in the other case=0.04. Note that, for a given value of from the boundaryr=1 and its value inside the domain
the Reynolds number and as long ass small, the same grows with time until a steady state is reached. At any time,
steady flow can be reached through unsteady processes thhé maximum circulation is located et 1 and its value is of
start from different initial conditions; the larger the value of the order ofe. No circulation amplification takes place.

e the shorter the required time to reach the steady state value. If the effect of viscosity decreasdhigher values of the

In Fig. 5@), we have plotted the bifurcation diagram of Reynolds numberI is transported by both convection and
'} .« (solid and dashed parts of the curves a function of diffusion. The converging meridian motion transports circu-
the Reynolds number fo6=0.1, 6.=45, andl=2.5; the lation from boundary =1 towardsr = §. Appreciable circu-
cased =2 andl=3 are plotted in Fig. &). It can be ob- lation gradients in thé direction are generated near the axis
served in both figures that for values of the Reynolds numbepy this meridian motion. Thus, circulation is transported by
smaller than a critical one, R@), which depends oh the diffusion from the axis towards the conical surface from
flow is meridional, swirl-free, and stable under symmetricwhere it is convected back towards the axis. This circulation
small perturbations while it bifurcates to a swirling flow for pumping, due to diffusion, is essential to close the feedback
values of the Reynolds number larger than(®e As shown loop that shoots the circulation amplification mechanism for
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Reynolds numbers larger than the critical value. The steadlation pumped by diffusion cannot reach the conical surface

state value is reached by saturation. because the axis to conical surface distance is for these Rey-
Note, finally, that the instability mechanism here de-nolds numbers larger than the corresponding viscous pen-

scribed has nothing to do with the well-known increase ofetration length.

swirl velocity due to the vortex stretching mechanism. In that  Numerical results show that the parametric range of the

case, circulation(angular momentuin remains constant Reynolds numbers, ReRe<Re', for which swirling

along the fluid trajectorieshigh Reynolds number flows .5 present, widens out when lesser valueRgfwith R,

On the contrary, in this case, circulation is amplified by Afixed. are considered. In particular, for the case® andR;

mechanism that combines convection of circulation toward%ecreasing the value of the critical Reynolds numbey Re

the axis along the outermost streamlines and feedback diff ound numerically aporoaches to the critical value of the
sion transport from the axis towards the outer streamlines. AS y app

a result, the swirl-less, recirculating, meridian flow bifurcatesSelf-similar analysis while R increases monotonously as
to a swirling flow, for Reynolds numbers greater than a criti-R1 90€s t0 zero. Note that to have an efficient pumping of
cal one. Diffusion transport is therefore the ultimate mechacirculation from the axis towards the outer boundary, the
nism responsible for the change of circulation experiencegharacteristic distanck; at the domain must be smaller or
along the streamlines. comparable to the viscous penetration, or equivalently, the
Reynolds number of the flow should be smaller thafj Rim
conical self-similar flows Re becomes infinitd 12], since

C. Circulation quenching at increasing Reynolds numbers the ratio between convection and diffusion is independent of

Beyond Re, swirling flows are found numerically as far the distance from the origin and beyond the critical Rey-
as the value of the Reynolds number is less than a valyBolds number Recirculation increases monotonically with

called hereafter Rgl). For values of the Reynolds number Re.

greater than Re, swirling regimes are not found numeri- A peculiarity of the flo_vvs withl>2.4 is the existence of
cally, so that, we conclude that the only stable solutions fofWo metastable regimes in the interval ReRe<Re , [see

Re>Re" are those with"=0. As shown in Fig. 5, the value Figs. 5a) and §b)]. In that interval of Reynolds numbers,

S . . one of the two metastable regimes corresponds td th®
gfﬁgxgrigzviﬁogzjsggggi?;ly %‘2 t\t‘:luiiyr;?l%n:? berregime and the other to the bifurcated swirling one, while
% . -

. i only swirling flows are found to exist in the interval Re
tained numerically for the casés 2, 2.5, and 3 are, respec- <Re<Re*. Re* corresponds to the maximum value of the
tively, 71, 36, and 28. '

L he bif ion di tound i Reynolds number for which a solution with amplificatibn

.et us now compare t e |urcgt|on diagram found in . g js optained when the numerical integration is started
conical self-similar flows with that given in Fig.(| for | ¢ the rest. Thd'=0 regime is unstable under symmetric
=2. In conical self-similar flows, there exists bifurcated

- X . small perturbations in the interval ReRe<Re*, while it is
swirling flows in the interval Re<Re<«. On the contrary, P ke

we found numerically that the existence of swirling flows is not in R& <Re<Re, . The inifial condition at which the
. cally 9 numerical integration is started determines which of the two
restricted to the interval ReZRe<R€ . In both the cases,

th I £ th . irculation inside the d >’ metastable regimes is finally reached. For example, jfiRe
crga\;aegem%not(ca)nmce;)l(llmurr?eﬁlrtfwgzli?lgnnlc?lzls?1 mebe?mglga{g;aa value of the Reynolds number lying in the interval Re
ically w y u : %Rels Re , the numerical solution witl'#0 correspond-

Also, we found numerically a critical Reynolds number for . . .
B L - ing to that value of the Reynolds number may be obtained in
the casd =2 that is slightly larger than the one reported in : )
the following way. First, one must choose a value of the

the self-similar cas¢12]. T .

The reasons for this apparent discrepancies between ng'r?gr:;(z)allizlggemnbuer:\gi)gl?g tg:etgoelulgf)er:\;glr ;§ R?’ﬁsRsef)
merical and self-similar solutions are discussed in the fol; .. yu . &- S
lowing. The thickness of the axis zone where diffusion isIutlon must be used as initial condition of the numerical in-

important decreases when the Reynolds number increases.f{ﬁ/gerlat'?fnéol\flglv(\jnghn?ézqw;ﬁﬂ Sscgﬁgfnnef?sr ife%l ﬁ]l:eersncihtion
fact, this thickness is of the order ofV.~R,/Re. There- Y. P !

fore, the circulation pumping by diffusion from the axis g‘;}?re.smt’r:‘d'”g to R:el(?je% thSt betﬁsgdt a? znt'r:"t'al ggss.
could not reach the conical surface if the thickness of the > 'S tN€ €asier and laster method 1o fin € nonero

diffusion zone is smaller than the minimum distance betwee?l?rar_'Ch of th_e m@erval I_%(eSR_el$Re** ;lnce_the final nu-
merical solution is obtained in a few iterations. Het2.5

the axis and the conical surface, which is of the ordeR pf < .
In that case, which occurs for Reynolds numbers larger tha"d =3, we have found numerically Re-33 and Re
=16, respectively. The width of the region where the two

a certain value R, circulation cannot be pumped by diffu- : . X X
sion from the axis towards the cone surface. Then, the maxfpetastable regimes exist, ReRe, increases with and ap-

mum circulation is of the order of and no circulation am- Proaches to zero fdr=2.4.

plification takes place. In fact, we found that for a given

value of & there is a value of Reynolds number’Ré), D. Vortex breakdown

which is a function of5, such as no circulation amplification The existence of internal flow separation at the axis, or
exists for Reynolds numbers larger thaniReOnly non-  vortex breakdown, is another interesting feature of these
swirling meridian flows present for ReR€; since the circu-  swirling flows with forcing at the surface. Vortex breakdown
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1 - : - moves inside the domain when vortex breakdown takes
place. The distance between the region where circulation is
accumulated and the outer surface is less in the case of a
double-cell flow than in the single-cell one. Therefore, in
spite of the occurrence of vortex breakdown, the pumping of
circulation by diffusion still works efficiently and stronger
values of circulation are generated in the outer cell. Clearly,
for Reynolds numbers greater thanRethe transport of
circulation by diffusion is unable to reach the outer surface
and only swirl-free flows are found to exist since the self-
rotation mechanism does not work efficiently any more.

It should be finally pointed out that in electrocapillary
flows, vortex breakdown takes place at Reynolds numbers of
order of unity, which are much lower than those of the vortex
breakdown experiments described in the literature. Let us
now comment some of the differences between the vortex
breakdown occurring at very high Reynolds numiéesated
in previous workg and that at Reynolds number of order of
unity characteristic of the flows considered here. At high
Reynolds number swirling flows, vortex breakdown appears
as a catastrophic event. The flow pattern changes drastically
when the swirl parameteusually a characteristic swirl to
axial velocity ratig is slightly increased beyond a critical
value, with the sudden appearance of a large counter-
recirculating bubble in the meridian flow. A concrete, clear-
cut example illustrating the mathematical scenario of vortex
breakdown in flows at high Reynolds was provided by the
near-axis analysis of nearly inviscid vorticgs]. These au-
thors found that vortex breakdown appears when the singu-
larities at the axis that often appears in axisymmetric inviscid
swirling flows cannot be regularized through thin viscous
. . . . . cores. In those cases, the near-axis viscous vortex equations
0 0.1 0.2 0.3 0.4 05 0.6 governing the viscous core of the vortex fail to have a solu-

o ) tion. This behavior shows that viscosity plays an important

FIG. 6. Steady state one-cell meridian streamlines for the casgyle in the existence of these nearly inviscid vortices and
Re=5.6,1=3, 6=0.1, andf.=45°. (b) Steady state double-cell g,,nnrts the theory proposed by HEL7] on vortex break-
meng:llan streamlines for the case Re5, |=3, §=0.1, andé§, down as analogy to boundary layer separation.
=45 That is not, clearly, the situation in flows at moderately

) i , . Reynolds numbers where viscosity is not restricted to very
takes place when the azimuthal to radial velocity ratioy,q regions of the flow. In our case, for example, a small

reaches a threshold value. It entails a strong modification of e first appears when the Reynolds number slightly
the meridian flow, which changes abruptly from a single-cellyerpasses the critical valughe flow separates at some
structure like the one shown in Fig(a to a double cell with point at the axis with immediate reattachmemind the

a coun'ter-recwcula'tmg blﬂbb'e near the axis, see FiB).6  pubble size increases gradually with increasing the Reynolds
There is a stagnation point at the axis, which separates the,nper. Clearly, in the cases of spontaneous generation of
axis zone where velocities are negati@wards the vertex  ¢ircyjation (self-rotation the double cell disappears for Rey-
from that where velocities are positive. The meridian bac‘%olds numbers larger than Reor which circulation is al-

flow near the axistowards the vertex along the axis a most zero. In flows with forced circulation as those generated

consequence of the low pressure induced there by the eﬁ‘eBE/ a rotating disk(see for example Refd19] and [20]

of the centrifugal forces. The plot of the meridian streamlines ; :
in Fig. 6(b) indicate that, in the outer cell, velocities are large among others this nonabrupt kind of vortex breakdown has

th ical ¢ d in the ietlike flow leaving th been also observed. An incipient small bubble presents at a
near the conical surface and In the jetlike flow leaving eReynolds number slightly greater than the critical valak

r =4 region, while in the. inner cell the fluid is almost stag- the order of 100pand whose size grows when the Reynolds
nant. Steady state swirling flows with double-cell structure - ber increases

are represented on the dashed part of the bifurcated swirling
curve in Fig. 5. Note that in this case, vortex breakdown does
not prevent the growing of the maximum circulation of the
flow when the Reynolds number is increased. In fact, the The influence of the cone angt on the bifurcation dia-
jetlike flow, which develops along the axis in single cell, gram is shown in Fig. 7, where we have plotted values of

05

0.4

03

02

(0)

0.1

0

E. Influence of the cone angle
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SELF-ROTATION IN ELECTROCAPILLARY FLOWS
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FIG. 7. Influence of the cone angle on the bifurcation diagrams
for §=0.1 and =2.5. The dashed part of the curves corresponds td

flows with vortex breakdown.

;. as a function of the Reynolds number for three differ-
ent values of the cone angle. Note that there exists a value of

the cone angled, close to 45° for which the circulation
amplification is maximum. Note that larger valueséfput

limits to the pumping mechanism of circulation while lower
values ofé, lead to lower values of the driving stress, for a

given value of the Reynolds numbjesee the first condition
in Ref.[13]]. Therefore, there exists a value &f, which is
found to be close to 45° for which the self-

PHYSICAL REVIEW B56, 036311 (2002

than those in the case of zero circulation flux condition
adiabaticboundary dI'/dr=0.

Although the detailed experimental results of the velocity
field inside Taylor cones are not still available, it may be
finally instructive, however, to compare typical values of the
azimuthal velocity obtained numerically with those esti-
mated from experimental measurements in electrospjédys
In the electrospraying of heptane €684 kg/nt and v
=5.7x10"" m?/s at room conditions values of the Rey-
nolds number close to 10 and azimuthal velocities of a few
centimeters per second has been reported. For Re |
=2.5, andf.= 35 (the value off,, closer to the experimental
meniscus semiangle, see Fig.@he obtains from Fig. (3)
value of the dimensionless circulatidi},,,~=6. Therefore,
from Eq. (8), the dimensional circulation is

[ max= vl ma=6v, (29
nd for a capillary needle d®,=10"3 m, the typical value
of the maximum azimuthal velocity is

* I max

Y$7 SR,

=3 cml/s, (30)

which is the value of the typical velocity reported in Ref].

IV. SUMMARY

Recirculating meridian fluid flows inside Taylor cones are
observed in the electrospraying of liquids with sufficiently

rotation procesg,rge values of both the viscosity and the electrical conduc-

results to be more efficient. It should be pointed out that fortivity. In these motions, which are mainly driven by the elec-

6c=55°, the strength of the circulation is lower than in the yric5| stresses acting at the cone surface, the liquid flows

two other cases and the azimuthal to radial veIociFy ratio isgwards the cone vertex, along the generatrix, and away from
lower than the threshold value required for the existence of; along the axis. In addition to the recirculating meridian

vortex breakdown. Numerical results also show that there i$,qtion. an intense swirl is also observed when liquids with

no amplification of circulation ifg is larger thanm/2. This  smajler values of viscosity and electrical conductivity are
result can be explained from condition in E@6) or equiva-  gjectrosprayed. This transition from a nonswirling recirculat-
lently the second condition in E¢L7), which establishes the ing meridian motion to a swirling one takes place when the

absence of any forcing in the azimuthal direction acting atnaracteristic Reynolds number of the flow is larger than a
the cone surface. This condition that plays a key role in the.iitical value.

accumulation process of circulation at the cornéro() of To model this phenomenon, we have considered the flow

the domain, shows thal’/d6| ,—,_is positive(negative for  griven by a tangential stress at the generatrix of the conical
values of the cone anglé, smaller(largep than /2. Since  domain sketched in Fig. 3. A small region containing the
the extreme ofl' must be located at the boundaries, thecone vertex has been excluded from the domain to avoid
maximum ofl" would be located at the corne$,@.) only if  singularities in the computational process. The parameters
0.<m/2. Otherwise, the maximum must be located at thethat govern the problem are the Reynolds number of the
boundaryr =1 and, therefore, there is no amplification in the motion, the geometrical parametefisand 6., and a real
value of circulation inside the domain. For conical flows, numberl that characterizes the dependence of the driven
Ref. [12] reported the same result when the cone angle istress. An unsteady, axisymmetric Navier-Stokes numerical
larger thanm/2. code is used to solve this problem. Therefore, the influence
Let us now comment the influence of using conditi@d) of nonsymmetric perturbations on the generation of swirl has
instead of Eq(23) on the process of generating circulation. not been considered in this analysis.
When condition(24) is used, the maximum value of the cir- Numerical results show that a nonswirling meridian flow
culation is not longer reached at the corné; 4.) but at  bifurcates to a swirling one for values of the Reynolds num-
some point (1,6;), §<r,<1. In that case, boundary=¢5  ber larger than a critical one, ReValues of Rg are calcu-
behaves as a sink of circulatiod]'/dr#0 atr=46 when lated for several values df 6., and 6. The amplification
condition (24) (zero stress in thep direction is used, and process of circulation is due to an advection-diffusion trans-
therefore the values reached by circulation are much smallgyort mechanism of circulation. Small perturbations in circu-
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lation existing in the boundary=1 are convected by the the interval Rg<Re<Re*. The initial conditions at which
meridian recirculatory motion; towards the vertex along thethe numerical integration is started determine which of the
conical surface, and away of it along the axis. Large graditwo metastable regimes is finally reached. The width of the
ents of circulation in thed direction are generated in the interval Ré¢ <Re<Re' widens out withl and goes to zero
near-axis region from where circulation is transported to-3s| goes to 2.4.

wards the conical surface by diffusion. A steady state value is The existence of vortex breakdown is also found numeri-
reached when both diffusion and convection are balanceq;.a"y when the strength of the swirling-to-meridian motion
For Reynolds numbers higher than the critical ong,(Be¢  reaches a threshold value. Flows with vortex breakdown cor-
which depends oh this convection-diffusion transport feed- respond to the dashed part of the bifurcation curves in Fig. 5.
back loop is very efficient and large values of circulation areThe meridian flow is strongly affected by the occurrence of
reached. The value of the steady state circulation is a growyortex breakdown. The structure of the meridian flow is of
ing function of the Reynolds number of the flow. the one-cell type in the absence of vortex breakdown; the

There exists a value of the Reynolds numbef Rach as  fluid moves towards the vertex along the conical surface and
swirling flows are numerically found for values of the Rey- away from it along the axis. This flow structure changes
nolds number in between of the interval ReRe<Re; , abruptly to one of the double-cell type when vortex break-
while only swirl-less flows are found for ReRe; . Re de-  down occurs. In this case, an inner counter-recirculating
pends on both the exponenand the geometrical parameter bubble, where circulation is almost zero and the fluid is al-
8. The nonexistence of swirling flows beyond’Ris due to ~ most stagnant, coexists with an outer recirculating cell with
a given value ofs, the viscous penetration length becomesnonzero circulation. A dividing streamline that meets the axis
smaller than the minimum separation distance between thi@ a stagnation point separates the two cells.
axis and the conical surface and circulation cannot be The influence of the cone anglg on the generation of
pumped up to the conical surface by diffusion. Therefore, n¢irculation has been also studied. We have found that the
amplification of circulation takes place for Reynolds num-mechanism of circulation amplification is more efficient for a
bers larger than Re. Numerical results show that the inter- Value of 6 that is close to 45°. . N
val Re.<Re<R€" becomes wider whe# decreases witR, _ It should_ be p0|ln.ted out finally that.the instability mecha-
fixed (Re decreases while Reincreases In particular, for ~ NiSM of swirl ampl|f|cat|on here described could also appear
the casd =2, the value of Refound numerically decreases In other_convergm_g flows generated by body forestural
and approaches to the critical value found in the self-similafFOnvection, electrical forces, exe.
analysis whers decreases witR, fixed while R€ increases
monotonously.

Bifurcation diagrams with>2.4 are slightly different to This work was partially supported by the DirecgiGen-
those already described with<2.4. Forl>2.4, we found eral de Enseanza Superior of Spain, through Grant No.
the existence of two kind of flows, with zero and nonzeroBFM2000-0528. The authors thank Dr. J. M. Gordillo, Pro-
circulation, which are stable in the interval of Reynolds num-fessor Fernadez de la Mora, and Dr. V. Shtern for their
bers R& <Re<Re€; , while only swirling flows are found in  valuable comments.
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